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ABSTRACT 
This paper investigates differences in students having various 
scores when designing controlled experiments in two types of 
scientific inquiry tasks (a fair test and an exhaustive test). We 
measure temporal features of preparation time and execution time, 
which reflect respectively the process of question understanding 
and answer planning and that of executing the control-of-variables 
strategy in answer formulation. We also measure mean execution 
time per answering event to reflect the efficiency of answering 
events. Results show that: in the fair test, the full score students 
showed less execution time than the lowest score ones; in the 
exhaustive test, the full score students showed more execution 
time than the lowest score ones; but in both tests, the high-
performing students had less mean execution time than the low-
performing ones. These results reveal that despite test differences, 
students who appropriately apply the control-of-variables strategy 
in these tests are more goal-directed and efficient in planning and 
executing response strategies than those who fail to do so. This 
study provides process-based features and large-scale evidence of 
scientific inquiry practice in in educational assessment. 
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1. INTRODUCTION 
Scientific inquiry refers to the activities by which students develop 
knowledge of scientific ideas and understand how to investigate 
the natural world in a scientific way [1]. In STEM education, 
scientific inquiry skills have been emphasized as a key goal of 
scientific literacy [2,3], and scientists and science educators have 
advocated teaching science as inquiry [4–8]. Among scientific 
inquiry activities (see [6] for overview), planning, designing, and 
carrying out investigations have long become a principal focus of 
children’s and youngsters’ scientific inquiry practices [9,10]. 
Many studies aim to investigate, based primarily on response data, 
how students design controlled experiments by constructing 
related conditions for comparison. 

Fair tests and exhaustive tests have been widely adopted to 
examine how students plan, design, and carry out controlled 
experiments. A fair test (see an example in Sec. 2.2) refers to a 
controlled investigation carried out to answer a scientific question 

about the effect of a target variable. To control for confounding 
factors and be scientifically sound, students are supposed to apply 
a control-of-variables strategy (CVS) [9,11] to ensure that: (a) all 
the other variable(s) are kept constant; and (b) only the variable(s) 
under investigation is changed across conditions for comparison. 
Only in such a fair setting, the effect of the target variable(s) can 
be explicitly observed, since the other variables remain constant 
across conditions. Students can complete the task by choosing, 
among a large number of possible combinations of variables, one 
or a few conditions that meet the fair test requirement.  

An exhaustive test (a.k.a. combinatorial test, [12,13]) (see an 
example in Sec. 2.3) requires constructing, physically or mentally, 
all possible combinations of given variables to address inquiry on 
which conditions could cause a specific outcome. Like fair tests, 
students in exhaustive tests also need to control target variables to 
construct combinations, but the number of possible combinations 
is generally smaller than that in fair tests. In exhaustive tests, 
students are asked to enumerate all combinations; in fair tests, 
students only need to select one (or a few) condition that meet the 
requirement. In this sense, exhaustive tests require more cognitive 
resources especially in situations with not easily foreseen 
combinations. How to conduct an exhaustive test is taught and 
learned late in science education, and items assessing such skill 
often lie in the 8th, 12th, or higher-grade assessments [3]. 

CVS is required in both types of tests. Among other types of 
procedural knowledge, or “process skills”, CVS is deemed central 
to early science instruction [14]. Existing research shows that 
children, adolescents, and adults with low scientific inquiry 
expertise tend to have difficulty in applying CVS [9,10,15]. 
However, due to lacking measures on processes of scientific 
inquiry, existing studies focus primarily on students’ responses.   

In modern digitally-based assessment programs (e.g., National 
Assessment of Educational Progress (NAEP)), technology-
enhanced (TE) items have been used to study scientific inquiry 
practice. The interactive nature of such items allows recording not 
only final submitted answers, but also the process whereby 
students formulate their answers via a series of drag-and-drop, 
(de)selection, or correction actions. Obtained process data can 
gather additional evidence on what students do during inquiry 
[16–18]. TE items have now touched upon many disciplines, 
including math, science, and social science [18–21], and process 
data obtained have covered not only observable behaviors of test-
takers in problem solving but also frequencies and durations of 
such actions, both contributing to illustrating the mastery phases 
in scientific inquiry and response strategies of students [22–25]. 
In addition, process-based analyses help discover the aspects 
where students of different scores differ, and lead to better 
understanding of the cognitive framework of scientific inquiry.  
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Rather than concrete events recorded in obtained process data of 
TE items, the time needed for different stages of scientific inquiry 
has been undervalued in recent research of scientific inquiry or 
problem solving [26]. Temporal information can reveal different 
stages of problem solving, clarify performance patterns of 
students with different levels of problem solving competency, and 
allow inferring something about the cognitive processes occurring 
at various phases of problem solving. 

Noting these, this study aims to investigate the scientific inquiry 
practice, to be specific, the practice of designing controlled 
experiments by applying the CVS in fair and exhaustive tests. By 
evaluating relations between defined process-based, temporal 
measures and students’ performance gauged by scores, we aim to 
address the following two research questions:  

(a) What are the process-based characteristics of the high-/low- 
performing (indicated by different scores) students in the tests?  

(b) Are these process-based characteristics consistent across the 
fair and exhaustive tests? 

Answers to these questions can benefit the general discussions on 
scientific inquiry practice, especially whether the CSV strategy 
manifest differently across various types of inquiry tasks. They 
also provide actionable feedback to teaching and learning the 
skills required in scientific inquiry tasks. Moreover, this study 
enriches the literature of using process data and derived features 
to address theoretical issues in educational assessment. 

In the rest of the paper, we describe the NAEP science fair test 
and exhaustive test used in this study, define the process-based 
measures, and describe the analysis plan. Then, we report the 
results, discuss the research questions accordingly, and conclude 
the study by highlighting theoretical or operational applications of 
process-based analyses in education and psychology research. 

2. METHORDS AND MATERIALS 
2.1 NAEP Science Tasks 
Our study uses the 2018 NAEP science pilot tasks. NAEP is a 
congressionally mandated, nationwide digital assessment project 
administered by the National Center for Education Statistics 
(NCES) in the Institute of Education Sciences of the U.S. 
Department of Education. NAEP provides large-scale, regular 
assessments on many disciplines (e.g., math, reading, writing, 
science, etc.). All the assessments are designed and updated by 
content specialists, education experts, and teachers from around 
the U.S. Participants of the tests are grades 4 (~9-year-olds), 8 
(~13-year-olds) and 12 (~17-year-olds) students. Along with the 
assessment, survey data of students, teachers, and schools are 
gathered, covering students’ demographical information (gender 
and ethnicity), special programs, self-evaluation of performance, 
etc. NAEP has now become one of the largest and most important 
national assessments of what U.S. students know and can do. 

The 2018 assessment was conducted by the NAEP field staff, who 
went into schools across the nation to administer tasks on students 
from the NAEP sample. The science tasks were administered on 
NAEP-provided tablets with an attached keyboard and earbuds. 
Students had 60 minutes to complete the questions in the given 
task. Tutorials and surveys were given throughout the test. 

A total of 32 science tasks were designed for the 2018 NAEP pilot 
test, some of which were administered on grades 4, 8, and 12 
students. Our study focuses on a fair test and an exhaustive test, 

which were administered respectively on grade 8 and 12 students. 
This choice was due to three considerations. First, lower grade 
students have not been taught how to solve both types of tests, so 
we avoid tasks administered on grade 4 students. Second, since 
fair tests were administered mostly on grade 4 and 8 students but 
exhaustive tests were administered mostly on grade 12 students, 
we could not select fair tests and exhaustive tests administered on 
students of the same grade. Third, to properly answer the two 
chosen tests, students needed to submit similar numbers of 
distinct answers, which avoided possible interference from 
cognitive load in students’ answer formulation process.  

Due to the privacy and secure nature of the NAEP data, we use 
conceptually equivalent tasks (cover tasks) to disguise the content 
and context of the real tasks. Cover tasks have similar underlying 
structures and require similar cognitive processes to solve. 

2.2 Fair Test, Scoring Rubric, Students 
This test came from an earth and space science task. Its cover test 
is as follows (see Figure 1). A city near a mountain suffers from 
north winds each year. Its government plans to test the wind-
blocking power of three types of trees, which can be planted at the 
north side of the mountain. After simple instructions of the task, 
in the fair test scene of the task, students are asked to drag each 
type of trees and drop them at one of the four virtual mountains 
resembling the real one near the city. Students can drop the trees 
at the foot (low), side (medium), or peak (high) of the north side 
of a mountain. Each mountain holds at most one type of trees, and 
each type can only be planted at one mount. Students can move 
trees from one position/mountain to another. After selecting the 
locations of the three types of trees, students can click on the on-
screen “Submit” button to trigger the experiment, and the wind 
speeds before and after passing over the mountains are shown on 
the screen. By default, one mountain is left without any tree. 

There are two types of variables in this fair test: tree type and tree 
position on mountain. To illustrate the effect of trees, students 
must control the positions of the trees to be identical across 
conditions (mountains). There are in principle 3×3×3×P(4,3) = 
648 choices for students to plant the trees, among which 3×P(4,3) 
= 72 choices meet the fair test requirement.  

Figure 1. Example answers in the fair test. “Low”, 
“Medium”, “High” denote positions (foot, side, peak) of 
trees in the north side of the mountain. “None” means no 
tree planted. In (a), the first “Low” indicates that one type 
of trees are planted at the foot of the mountain, the second 
and third “Low” indicate that the other types of trees are 
planted on the second and third mountains, and “None” 
means no trees on the fourth mountain. The scoring rubric 
ignores tree types and the mountain without trees, the 
submitted answer can thus be denoted by the positions of 
trees in three mountains. 
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Table 1 shows the scoring rubric of this test. The rubric ignores 
tree type, since students cannot put the same type of trees in two 
mountains or two positions of one mountain. It also ignores the 
mountain without trees (“None”), since this is a default condition 
of the test; no matter how to answer the test, one mountain must 
be left without trees. A complete comparison to show the effects 
of trees requires the condition without trees, but in this test, 
students are not required to set up this condition. The rubric 
focuses on the target variable of tree positions across mountains. 
Answers meeting the fair test requirement receive a full score (3), 
those partially meeting the requirement get a partial score (2), and 
those not meeting the requirement have the lowest score (1). 

Table 1. Scoring rubric of the fair test. 

Score Rubric 
3 Choices of trees have the same positions on three 

mountains (e.g., Low; Low; Low in Figure 1(a)) 
2 Two types of trees are on the same positions of 

mountains (e.g., Medium; High; High in Figure 1(b)) 
1 Positions of the three types of trees on mountains are 

all distinct (e.g., Low; High; Medium in Figure 1(c)) 

This task was administered to 1,657 (825 females) grade 8 
students. The response and process data of 1,607 (800 females) 
students were recorded in the fair test for analyses. Fifty-one 
students, due to various reasons, quit before reaching the fair test.  

2.3 Exhaustive Test, Scoring Rubric, Students 
This test came from a life science task. Its cover test is as follows. 
Farmers attempt to cultivate flowers with a special color in a 
natural way (without using any fertilizers) or using two types of 
fertilizers. After simple instructions of the task, students are asked 
to design an experiment to show which way has the highest 
probability to induce the target color. They can set up a condition 
by selecting (or not) any (or both) type of the fertilizers. After 
setting up a condition, they can click on the on-screen “Save” 
button to save the condition. They can also click on a saved 
condition and click on the “Delete” button to remove it. After 
setting up and saving many conditions, students can click on the 
“Submit” button to submit saved conditions as final answers. 

This is a typical exhaustive test with four possible combinations 
of the variables (see Figure 2). The conditions no fertilizer (Figure 
2(a)) and both fertilizers (Figure 2(d)) are not easily foreseen.  

Table 2 shows the scoring rubric of the test. It has four scales, 
among which partially high (3) and partially low (2) are classified 
by submitted saved conditions, especially whether they include 

the not-easily foreseen conditions. Whether the rubric reasonably 
classifies students’ skill levels is not the focus of this paper. 

This task was administered to 2,869 (1,360 females) grade 12 
students. The response and process data of 2,726 (1,285 females) 
students were recorded in the exhaustive test for the analyses. Due 
to various reasons (e.g., early quitting or glitches in data capture), 
the process data of 173 students were missing.  

Table 2. Scoring rubric of the exhaustive test. 

Score Rubric 
4 Saved conditions cover all four conditions in Figure 2  
3 Saved conditions do not include the condition of 

Figure 2(a), OR do not include the condition of 
Figure 2(b) or Figure 2(c) 

2 Saved conditions do not include the condition of 
Figure 2(d), OR do not include the conditions of 
Figure 2(b) or Figure 2(c), OR do not include both the 
conditions of Figure 2(a) and Figure 2(d) 

1 Saved conditions do not match the above cases 

2.4 Process-Based Measures 
The NAEP digital assessment system can recorded students’ 
process data in these interactive TE items. Such data consisted of 
a list of activity logs plus their time stamps. Activities included 
user events (e.g., drag-and-drop, save, delete, or correct, etc.) and 
system events (e.g., play instructions or video clips). They allow 
reconstructing submitted answers, tracing sequences of students’ 
drag-and-drop or saving/deletion/correction actions, and durations 
of these activities. Based on such data, we propose and measure 
three temporal measures, namely preparation time, execution time, 
and mean execution time per answering event.  

Preparation time (PT) is defined as the duration between students 
enter the test scene and make their first answer-related event, such 
as drag-and-drop one type of trees, select a fertilizer, or save a 
condition without any fertilizers. Before the test scenes, students 
were given instructions and practice trials on how to set up 
answers in the test scenes. Therefore, PT does not involve the 
time students spent on getting familiar with the system. PT 
reflects the time for students to read and understand instructions, 
as well as think and get ready to formulate their answers.  

Execution time (ET) is defined as the duration between students’ 
first and last answer-related events. The ending time point of ET 
was not when students clicked on the submission button. This is 
because we do not know exactly whether students reviewed their 
answers after making their last drag-and-drop or selection event 
before submission. If they did review and made corrections, the 
measure can certainly capture such reviewing event; if they did 
not make any changes, it is unclear whether the time between the 
last answer-related event and the submission event was spent on 
reviewing. Many students actually clicked on the “Submit” button 
immediately after the last answer-related event. 

ET is the sum of the durations of different numbers of answer 
related events. In the fair test, such events include dragging and 
dropping a type of trees to a mountain or moving one from one 
mountain to another; in the exhaustive test, such events include 
selecting one or two fertilizers, or saving a condition or cancelling 
a saved one. Students having different performances may put 
different efforts when conducting these events, and different tasks 
may require different numbers of events to formulate answers, 
which already lead to different ET. Noting these, we also calculate 

Figure 2. All combinations in the exhaustive test: (a) 
None; (b): A; (c): B; (d): A + B. 
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the mean execution time per answering event (MET). MET is 
operationalized as the execution time divided by the number of 
answering events. ET reflects the total efforts made by students to 
construct answers, including setting up, revising or (possibly) 
reviewing their choices, whereas MET reflects the average effort 
made to construct their answers, and it controls the effect induced 
by different numbers of events.  

Apart from temporal measures, one can also measure the numbers 
of answer related events made by students during the answering 
process. However, for students who conducted the same number 
of answering events, this count-based measure cannot clarify how 
much effort each event costs to these students; more events may 
not always require more efforts, since an efficient test-taker can 
conduct many events in a short period of time; and more events 
alone cannot predict performance in different tests, since some of 
the events could be answer revisions, which simply indicate low 
efficiency. The temporal measures defined in our study avoid 
these confusions and are more informative of students’ degrees of 
efficiency in designing controlled experiments in those tasks. 

2.5 Analyses 
For each dataset, we take a 98% winsorization estimation [27] to 
remove spurious outliers. We also remove the missing values. 

We conduct two types of analyses. First, we check how many 
students appropriately applied the required CVS in the tests based 
on score distributions and illustrate the frequent (top 10) correct 
or incorrect submitted answers. Second, treating score as a ranked 
variable, we conduct the Kruskal-Wallis test [28], a non-
parametric version of ANOVA test, to compare students’ scores 
and the three measures across score groups. If the omnibus test 
produces a significant p-value, we conduct the Wilcoxon signed-
rank test on pair-wised score groups to clarify which two groups 
have different population means of the measures. This test is also 
non-parametric. These two statistical tests provide direct evidence 
on the relation between students’ performance (scores) and the 
process-based measures. The tests are implemented using the 
kruskal.test and wilcox.test functions in the stats package in R 
3.6.1 [29]. For each task, there are three Kruskal-Wallis tests 
respectively on three measures, accordingly, the critical p value 
for identifying significance is set to .05/3 ≈ .0167. 

3. RESULTS 
3.1 Fair Test 
In this test, 41.4% of the students had the lowest score (1), and 
only 29.5% properly applied the CVS and got the full score (3). 
The rest (29.1%) received a partial score (2).  

Figure 3 shows the top 10 frequent answers submitted by 
students. It shows that “Low; Low; Low” is the most frequent 
correct answer, but other correct answers like “Medium; Medium; 
Medium” and “High; High; High” are less so. In addition, “Low; 
Medium; High” is the most common wrong answer. Its variations, 
such as “High; Medium; Low” or “Low; High; Medium”, are also 
frequent, but all of them receive the lowest score (1) (see Table 1). 
Answers receiving a partial score (2) (e.g., “Medium; Low; 
Medium”) are less frequent, compared to other types of answers. 
These results indicate that over 70% of students did not properly 
apply the CVS strategy in this scientific inquiry task. 

Table 3 shows the means and standard errors of the process-based 
measures in each score group. The Kruskal-Wallis tests report 
significant differences in PT (χ2 = 12.2, df = 2, p = .002), ET (χ2 = 

89.916, df = 2, p < .001), and MET (χ2 = 64.776, df = 2, p < .001) 
between score groups. Table 4 shows the Wilcoxon signed-rank 
tests results. It reveals that the full score students had significantly 
shorter PTs, ETs, and METs than the lowest and partial score 
students, but these measures were not significantly different 
between the lowest and partial score students. 

Table 3. PT, ET and MET across score groups. Numbers (in 
seconds) outside brackets are means and those inside are 
standard errors.  

Score PT ET MET 
1 85.571 (1.166) 41.330 (1.098) 5.125 (.091) 
2 85.154 (1.407) 38.807 (1.216) 4.958 (.103) 
3 79.745 (1.172) 29.082 (1.081) 4.138 (.090) 

Table 4. Wilcoxon signed-rank test results in the fair test. “1” 
to “3” in the first column denote score groups. Values outside 
brackets are test statistics, and those inside are p values. 
Significant results are marked in bold.  

 PT ET MET 
1v2 158942 (.527) 163023 (.016) 158766 (.548) 
1v3 176639 (.001) 2038350.5 (.001) 199945.5 (.001) 
2v3 120966.5 (.014) 139637.5 (.001) 136592.5 (.001) 

3.2 Exhaustive Test 
In this test, 25.2% of the students received the lowest score (1), 
and 33.9% properly applied the CVS strategy and received the 
full score (4). The rest received the partially high (3) (34.1%) and 
partially low (2) (6.8%) scores.  

Figure 4 shows the top 10 frequent answers, among which “A; B; 
A + B; None” and its variations “A; A + B; B; None” and “A + B; 
A; B; None” receive the full score (4), but they are not frequent 
compared to the answers “A + B”, “B”, “A”, and “None”, which 
are among the most frequent answers and receive the lowest score 
(1) (see Table 2). The answers having partially high (e.g., “A; A + 
B; None”) or low (e.g., “A; A + B”) scores are less frequent. 
These results show that many students did not have the required 
scientific inquiry skill. 

Figure 3. Top 10 frequent answers in the fair test. 
Numbers on top of bars are numbers of students and 
those inside brackets are proportions of students. 
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Table 5 shows the means and standard errors of the process-based 
measures in each score group. The Kruskal-Wallis test report 
significant differences in PT (χ2 = 127.69, df = 3, p < .001), ET 
(χ2= 332.88, df = 3, p < .001), and MET (χ2 = 238.93, df = 3, p < 
.001) between the score groups. Table 6 shows the Wilcoxon 
signed-rank tests results. It reveals that the lowest score students 
had significantly longer PTs than the students from other score 
groups. Unlike the fair tests, the lowest score students had 
significantly shorter ETs than the full and partial score students. 
Like the fair tests, the lowest score students had significantly 
longer METs than the full score students. 

Table 5. PT, ET, and MET across score groups. Numbers (in 
seconds) outside brackets are means and those inside are 
standard errors.  

Score PT ET MET 
1 9.056 (.325) 24.949 (.922) 5.502 (.144) 
2 6.797 (.439) 41.623 (1.804) 3.520 (.113) 
3 7.105 (.207) 31.700 (.715) 3.899 (.070) 
4 5.714 (.172） 42.523 (.763) 3.140 (.051) 

Table 6. Wilcoxon signed-rank test results in the exhaustive 
test. “1” to “4” in the first column denote score groups. Values 
outside brackets are the test statistics, and those inside are p 
values. Significant results are marked in bold. 

 PT ET MET 
1v2 75018.0 (< .001) 29065 (< .001) 83948 (< .001) 
1v3 372475.5 (< .001) 215673.5 (< .001) 400288.5 (< .001) 
1v4 422941.5 (< .001) 128978.5 (< .001) 458813.5 (< .001) 
2v3 84443.5 (.693) 11656 (< .001) 80219.5 (.147) 
2v4 98433.5 (< .005) 81207 (.284) 100851 (< .001) 
3v4 501936.5 (< .001) 274362.5 (< .001) 531023.5 (< .001) 

4. DISCUSSIONS 
Based on two NAEP science tasks (a fair test and an exhaustive 
test) and three process-based temporal features, we dig out, from 
both response and process data, the differences and similarities 
between the high-/low-performing students in those two typical 
types of scientific inquiry practice.  

As for response, the score distributions illustrate that many (over 
70%) grade 8 or 12 students failed to properly apply the control-
of-variables strategy in the fair and exhaustive tests, consistent 
with the previous literature [9]. In addition, in the fair test (see 
Figure 3), the most commonly wrong strategy is to vary both 
variables’ levels at the same time, e.g., “Low; Medium; High” and 
its variations. This is also shown in previous observations [17]. In 
the exhaustive test (see Figure 4), the most commonly wrong 
strategy is to save only one of the four possible conditions as in 
Figure 2. This indicates that the low-performing students probably 
did not have the intention or the capability to design a controlled 
experiment but simply guessed an answer. 

As for process, rather than specific actions or sequences of drag-
and-drop actions as in recent studies on TE items [30], our study 
defines temporal features and adopts non-parametric statistical 
tests on these stage-level features to reveal quantitative differences 
between the high- and low-performing students.  

The statistical tests collectively show that: in terms of preparation, 
the full score students spent less time before making their first 
answering related activity in both the fair and exhaustive tests, 
which are consistent with other studies [30]. Longer preparation 
time in the lowest score students shows that such low-performing 
students might have difficulty in quickly grasping the instructions 
or need more time to think before taking any action, whereas the 
high-performing students could efficiently grasp the instructions 
and foresee the required conditions. These results suggest that the 
different performances between the full and lowest score students 
have already manifested at the early stage of scientific inquiry 
practice, where no answer is formulated. In other words, whether 
a student can appropriately apply the control-of-variable strategy 
in a fair task could be highly correlated with whether he or she 
can efficiently grasp the instruction at the beginning of the task. 

In terms of execution time, there exist differences between the fair 
and exhaustive tests. In the fair test, the lowest score students 
spent longer time on conducting the drag-and-drop actions to 
construct answers. As shown in Figure 3, their submitted answers 
after such a long execution time still failed to meet the fair test 
requirements. This echoes the fact that these students did not 
follow the instructions nor get well prepared for the fair tests. To 
be specific, in the fair test, the minimum number of events to 
construct an answer was three (dragging and dropping each type 
of trees respectively to the same or different locations of three 
mountains). Two possible situations lead to longer execution time 
in the lowest score students: they conducted many revisions to 
their early choices, or spent more time on conducting each 
activity, indicating their hesitation or uncertainty about their 
choices, or more time needed to come up with a solution due to a 
lack of relevant domain knowledge. Here, the results of mean 
execution time per answering event (see Table 4) reveal that no 
matter how many revisions they conducted, on average, the lowest 
score students spent more time on setting up each of their answers 
than the full score students; i.e., the full score students were more 
efficient than others. 

In the exhaustive test, constructing all possible conditions is not 
trivial and requires more resources and related events. As shown 
in Table 5, the lowest score students spent shorter time in 
constructing or revising their saved conditions, whereas the full 
score students spent longer time in doing so. As in Figure 4, the 
lowest score students (and those having partial scores) did not 
save enough conditions, but the full score students submitted each 

Figure 4. Top 10 frequent answers in the exhaustive 
test. Numbers on top of bars are numbers of students 
and those inside brackets are proportions of students. 
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of the possible conditions as required by the test. Therefore, the 
longer execution time of the full score students reflects the fact 
that these high-performing students had endeavored to set up all 
required conditions before the final submission. By contrast, the 
shorter execution time of the lowest score (and partial score) 
students indicates that: (a) these low-performing students did not 
spend much time on exploring possible conditions but completed 
the test by submitting lack-of-thinking results, indicating their low 
motivation or lack of engagement in problem solving; or (b) 
throughout the test, they might not realize that they needed to save 
and submit all possible conditions, so they simply submitted one 
condition and left the test. Both cases are consistent with the 
response data of frequent wrong answers submitted (see Figure 4), 
but they point to different causes of failing the test.  

Since the numbers of conditions saved are different across score 
groups, comparing the execution time, which is the sum of the 
duration of different numbers of actions, is not enough to reflect 
whether the efficiency of high- or low-performing students is 
similar. We need to further compare the mean execution time per 
answering event. The full score students spent less time (see Table 
6) on conducting each answering related action than the low-
performing students. This implies that although the full score 
students conducted more actions, they were more efficient, by 
putting less effort on each action, than the lowest score students 
(and those having partial scores). In this sense, the results in the 
two tests are consistent: the students who properly apply the 
control-of-variable strategies show more goal-directed and 
efficient behaviors [30] than those who failed to do so.  

The contrasting results of execution time between the fair and 
exhaustive tests reveal the differences between the two types of 
scientific inquiry practice. Although both tests require controlling 
variables under investigation, the nature of control is different, so 
are the required cognitive resources to properly complete the tests. 
In the fair test, to study the effect of a target variable (tree type, 
see Figure 1), students need to keep the other variable (tree 
position) unchanged. In the exhaustive test, students need to 
combine different values (use or not use, see Figure 2) of the 
variables (fertilizers A and B) to set up a set of conditions for 
comparison. Properly completing this test requires mentally 
constructing the conditions not easily foreseen and spending time 
and energy in thinking and setting up each possible condition, 
thus requiring more cognitive resources than the fair test, the latter 
of which only requires adjusting the target variable and holding 
the other one(s) constant. These results indicate that the same 
control-of-variables strategy manifests differently in different 
scientific inquiry practices. Systematic teaching and learning of 
this strategy require task-specific training in different situations.  

All the results reveal the aspects in which high-performing 
students excel low-performing ones, including: (a) grasping 
instructions, (b) extracting requirements, and (c) constructing 
answers. Compared to high-performing students, low-performing 
students had lower efficiency in grasping necessary knowledge 
and applying required strategies in the tests. As a consequence, in 
the fair test, low-performing students struggled in selecting and 
revising answers, and ended up submitting wrong answers; and in 
the exhaustive test, they failed to envision all possible conditions, 
and failed to construct enough conditions as the final answers.  

The above discussions focus primarily on statistical differences 
between the full and lowest score students. This is because that 
our statistical analyses report consistent results between the two 

score groups. However, results are not consistent when partial 
score groups are involved. Such inconsistency could be due to 
several reasons. First, some partial score groups contained fewer 
students than the other two groups. Second, according to the 
scoring rubrics, the response difference between the full (or the 
lowest) score and a partial score is smaller than that between the 
full and lowest scores, which may cause smaller difference in 
answering events and/or their durations. Both factors reduced the 
statistical power of the analyses. Third, lacking empirical basis, 
the predefined score rubrics might not clearly differentiate 
students having different levels of problem solving competency. 
This issue is beyond the scope of the current study. Nonetheless, 
such inconsistency calls for statistically more powerful process-
based features to reveal the differences between students having 
good and poor performances in science inquiry practice and 
understand how they apply required skills in such practice. 

5. CONCLUSIONS 
This study makes use of three process-based, temporal measures 
to analyze how students conduct scientific inquiry in practice. We 
identify both the global (e.g., durations of thinking, and total 
duration of execution) differences and local (e.g., execution 
efficiency) consistency between students who can appropriately 
apply the control-of-variables strategies in scientific inquiry 
practice and those who fail to do so. The findings provide new 
evidence to the general discussions of the relations among 
individual capacity (e.g., control-of-variables strategy), nature of 
test (e.g., fair or exhaustive test), problem-solving process (e.g., 
duration and efficiency of activities), and assessment performance 
(e.g., submitted answers and scores). The process-based features 
have proven values in revealing performance differences in the 
fair and exhaustive tests. Analysis results based on these measures 
reveal the aspects or stages during the problem-solving process in 
which teachers can provide guidance or students can self-improve 
to teach the required inquiry skills or properly apply them, thus 
improving students’ performances in science inquiry practice.  
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