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ABSTRACT 
One of the most challenging issues for online courseware 
engineering is to maintain the quality of instructional components, 
such as written text, video, and assessments. Learning engineers 
would like to know how individual instructional components 
contributed to students’ learning. However, it is a hard task because 
it requires significant expertise in learning science, learning 
technology, and subject matter pedagogy. To address this 
challenge, we propose an innovative application of reinforcement 
learning (RL) as an assessor of instructional components 
implemented in given online courseware. After students activities 
are converted into Markov decision process (MDP), a collection of 
actions (each corresponds to an instructional component) suggested 
as a policy is analyzed. As a consequence, the usefulness of 
individual actions with regards to achieving ideal learning 
outcomes will be suggested. The proposed RL application is 
invented for human-in-the-loop learning engineering method called 
RAFINE. In the RAFINE framework, a machine generates a list of the 
least contributing instructional components on the given online 
courseware by interpreting the whole policy. The courseware 
developers modify those suggested components. As a proof of 
concept, this paper describes an evaluation study where online 
learning was simulated on hypothetical online courseware. The 
results showed that over 90% of ineffective instructional 
components were correctly identified as ineffective on average. 
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1. INTRODUCTION 
With the rapidly growing popularity of online courses, there has 
been a heavy demand for practical learning engineering methods 
for designing effective online courseware [18]. Even though there 
are known design principles that provide theoretical insights into 
designing effective online courses [e.g., 5, 6, 10], such principle-

based approaches still require iterative engineering for practical 
courseware development at scale [8].  

One of the challenges in the principle-based iterative learning 
engineering is to identify issues with the courseware. After an 
initial version of courseware is used by students, instructors (or 
learning engineers) analyze the interaction and learning outcome 
data to improve the quality of the courseware. However, 
interpreting those data to determine actual refinement plans is 
extremely challenging and requires significant expertise in learning 
science, learning technology, and the subject matter pedagogy [5, 
20]. The commonly used analytic techniques are the learning curve 
analysis [14] and the assessment items analysis [16]. However, 
these techniques only apply to assessment items while other types 
of instructional components such as video clips and written texts 
must also be included in the analysis.  

There is therefore a gap between an ideal learning-engineering 
model to efficiently build effective online courseware and the actual 
technology infrastructure available for building online courseware. 
To fill this gap, evidence-based learning engineering method that 
identifies deficits of the given online courseware is needed. 

Our solution is an innovative application of the reinforcement 
learning (RL) technique that we call RAFINE (Reinforcement 
learning Application For INcremental courseware Engineering). 
RAFINE identifies instructional components that have relatively less 
contribution to students’ learning in the given courseware. RAFINE 
is a building block for the evidence-based, human-in-the-loop, 
iterative learning engineering method that we call the RAFINE 
method. Figure 1 shows how a human and a machine collaborate to 
iteratively improve the quality of courseware in the RAFINE method.  

Given a record of individual students’ learning trajectory logs on 
particular online courseware, RAFINE first converts learning 
trajectories into a state transition graph. Here, states represent 
students’ intermediate learning status and the transition is caused 
by taking an instructional component (i.e., watching a video). All 
students’ state transition graphs are then consolidated into a single 
Markov decision process (MDP) by merging the same states. 
RAFINE then applies a variant version of value iteration technique 
commonly used for RL to compute a converse policy that represents 
the least optimal instructional components to be taken at any given 
moment to achieve students’ ideal learning goals. The entire policy 
actions will be then analyzed to identify instructional components 
that have relatively less contributions to students’ learning. The list 
of detected less-effective components is provided to instructors as 
a recommendation for courseware refinement. Any type of 
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instructional components such as lecture videos, assessment 
quizzes and hints can be analyzed by the RAFINE method.  

As a proof of concept, the goal of the current paper is to conduct a 
study to evaluate the validity of implementation of the RAFINE 
method. We conducted a simulation study where learning log data 
were generated by simulating learning activities in mock online 
courseware. The result showed that the RAFINE method correctly 
identified over 90% of ineffective instructional components in the 
given mock courseware. 

The primary contributions of the current work are essentially 
theoretical yet have the potential for practical use: 
(1) We proposed RAFINE as a building block for evidence-based, 
human-in-the-loop, iterative online courseware learning 
engineering method. RAFINE analyzes complicated learning 
trajectory data and suggests deficits of the courseware by 
evaluating a broader range of instructional components. The 
evaluation study showed the theoretical effectiveness of RAFINE. 
(2) We innovated a technique to interpret a policy induced by 
reinforcement learning as a whole to detect a relative weakness 
among available actions (which correspond to instructional 
components) with regard to achieving ideal goals. 

The rest of the paper is structured as follows. Section 2 discusses 
related work on evidence-based learning engineering and the 
applications of reinforcement learning for education. Section 3 
technically elaborates how RL works on learning trajectory data 
and describes how RAFINE interprets the converse policy. Section 4 
introduces research questions. Then, section 5 explains how 
simulation data were created for the evaluation study. Section 6 
reports results of the evaluation study along with the research 
questions, and section 7 discusses the results and limitations. 
Finally, section 8 concludes that RAFINE serves as a building block 
for the evidence-based iterative learning engineering method. 

2. RELATED WORK 
2.1 Evidence-based Learning Engineering 
The process of learning engineering includes cognitive task 
analysis, designing and delivering instructional components, 
measuring students’ understanding, and evaluating the courseware 
design [6]. Quickly cycling through these tasks is a key for 
successful iterative improvement of online courseware. Since each 
of these tasks is considerably labor intensive, the automatization of 
the engineering process is an important research agenda.  

One of the most actively studied areas of learning engineering is 
student modeling [14]. Both a representation (to understand what 
must be modeled) and a recognition (to understand how to gauge 
students’ competency with the proposed representation) are 
important research topics. Cen et al. [3] proposed Learning Factors 
Analysis (LFA) for semi-automated evaluation and improvement 
of knowledge component (KC) models that represent a set of latent 
skills and knowledge that students are supposed to learn [12]. LFA 
performs a combinational search for a KC model that best fits 
students’ learning data across existing KC models. Although LFA 
requires “seed” KC models, some more recent works reported 
automatic discovery of KC models from students’ learning data [9, 
13]. 

Another actively studied area of learning engineering is an 
automated question generation. Du and Cardie [7] proposed a 
method for automatically generating questions. The method 
identifies the question-worthy sentences from a passage using a 
hierarchical neural model with a sentence-level sequence tagging. 
Mazidi and Tarau [15] introduced a method to classify sentences 
based on what the sentence is communicating as a basis for 
generating questions. The type of syntactic and semantic 
constituents of sentences and their arrangement were analyzed in 
the study. 

Automation of assessment grading is also an important part of 
learning engineering in particular for online courses to be scaled. 
Zhang et al. [25] tackled the task of Automatic Short Answer 
Grading (ASAG). Short answer questions ask students to answer in 
natural language with the length of one phrase to one paragraph. 
The authors compared Deep Belief Networks (DBN) against five 
machine learning techniques (Naïve Bayes, Logistic Regression, 
Decision Tree, Artificial Neural Network, and Support Vector 
Machine) for automatically grading short answer questions.  

Yet another essential part of practical learning engineering is to 
identify deficits of courseware content to be revised. RAFINE 
focuses on this aspect of the learning engineering. As far as the 
authors are aware, there have been very few studies in this line of 
research. Bodily et al. [2] mentioned the lack of efforts to use 
learning analytics as a basis for redesigning an online course. The 
authors proposed the RISE framework for redesigning instructional 
components in online courseware. This framework provides a 
metric that combines the usage of instructional components and 
students’ grades to identify instructional components that are good 
candidates for improvement efforts. The goal of the RAFINE method 
is also to detect instructional components that were not very useful 
for learning. Unlike the RISE framework, however, RAFINE 
evaluates a potential contribution of implemented instructional 
components to students’ learning and provides a list of instructional 
components as a recommendation for refinement. 

2.2 RL for Decision Making in Education 
Reinforcement Learning (RL) has been used in education 
applications in particular to compute optimal pedagogical strategies 
for adaptive tutoring. 

Shen and Chi [19] applied RL to induce the policy on whether the 
intelligent tutoring system should propose worked example (WE) 
or problem solving (PS) to students for the next activity. The 
authors induced policies using two different rewards: Immediate 
and Delayed. The policy was computed based on the number of 
problems solved, the average time taken, the difficulty of the 
problem, and students’ performance on the past PS. The result 

 
Figure 1 : Overview of the RAFINE method 
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showed that immediate policies give more WE while delayed 
policies give more PS.  

Rafferty et al. [17] used the partially observable Markov decision 
process (POMDP) framework to formulate the process of teaching. 
The authors applied RL to induce optimal teaching actions such as 
a quiz or an example to minimize the amount of time spent on 
learning materials. They found that students who learned with RL 
induced teaching actions spent less time than students who did not.  

Iglesias et al. [11] applied RL to induce a policy on teaching 
decisions such as which topic students should do next and which 
task students should do on the topic. They conducted an evaluation 
study in a database design course for undergrad students in 
Computer Science. In the evaluation study, they found that students 
with the machine generated policy spent less time on the adaptive 
and intelligent educational system, but they could not find a 
significant difference in the students’ final level of knowledge. 

In addition to inducing the sequence of instructional components, 
RL has been applied to induce dialog moves or narrative events. 
Chi et al. [4] applied RL to induce pedagogical policies that decide 
whether the tutor should ask students to justify the answer, tell the 
next step directly, or elicit the next step information from a student 
in a dialogue-based tutor. Tetreault and Litman [21] estimated the 
reliability of a policy derived from a spoken dialog tutoring system. 
Wang et al. [22] applied deep RL for interactive narrative 
generators that tailor each player’s story in an educational game. 
The authors prepared several events of a story and induced policies 
on how event sequences should unfold based on player interaction 
logs. 

The applications of reinforcement learning to induce pedagogical 
strategies are widely studied in various subjects from middle school 
math to college-level database design, and in various kinds of 
tutoring systems such as task-based, dialog-based, and game-based 
systems. The effects of educational RL policy have been tested both 
with real and simulated data. Some showed positive effects of the 
policy while others did not. 

What makes our study different from these studies is the way we 
use the induced policy. In the previous studies mentioned above, 
the induced policy is directly used to provide an optimal action at 
each learning status. On the other hand, RAFINE does not use the 
policy to make a decision on which instructional component 
students should take next. Instead, RAFINE interprets the induced 
policy as a whole to identify instructional components that have 
relatively less contribution to learning. More specifically, RAFINE 
focuses on how often each instructional component is suggested by 
a policy (we call this the frequency heuristic as described in section 
3.5). In RAFINE, the induced policy is not utilized as an educational 
strategy for students, but an analysis of the policy is used for 
courseware developers to improve courseware. 

3. TECHNICAL DETAILS OF RAFINE 
3.1 Overview of the RAFINE Method 
In the RAFINE method, an initial version of the online courseware 
is used by students and their activities are logged. These activity 
data consist of standard clickstream data including students’ 
responses for formative assessments and their correctness. We call 
these activity data the learning trajectory data. 

The right side of Figure 1 shows how learning trajectory data are 
processed. The learning trajectory data from all students are first 
consolidated into a single state transition graph called learning 
trajectory graph (LTG). The LTG is a Markov decision process 

(MDP) where states represent students’ intermediate learning status 
and actions represent instructional components taken. LTG is 
annotated with predefined rewards that represent quantitative 
benefits of the learning activity that causes transition from one state 
to another in the LTG. Finally, a value iteration technique is applied 
to compute a converse policy that shows the worst action to be 
taken at each state to achieve the expected learning outcome 
(represented as a table in Figure 1). As a consequence, a collection 
of actions suggested by a converse policy corresponds to a set of 
instructional components that have the least likelihood at each state 
to contribute to the ideal learning outcome. We call this collection 
of actions the policy action set.  

To create a recommendation for refinement based on the induced 
policy, RAFINE interprets the policy as a whole. That is, all actions 
in a policy action set is analyzed. Note that in most cases, the 
number of states in the LTG gets larger than the number of 
instructional components available on the given online courseware. 
This implies that all instructional components are likely to be 
included in a policy action set. The relative effectiveness of 
individual instructional components is therefore analyzed based on 
the frequency. We call this heuristic the frequency heuristic, which 
is detailed in section 3.5.  

Given the recommendation for refinement, courseware developers 
revise the courseware. The RAFINE method can be iteratively 
applied to the revised courseware by collecting a new batch of 
learning trajectory data to further improve the courseware. 

3.2 Model Representation 
The unit of analysis of the RAFINE method is an instructional 
component implemented in the online courseware. Instructional 
components include video, quiz, hint, written paragraph or any 
other components used in the courseware. We assume a presence 
of a skill model that contains a set of skills each representing a piece 
of knowledge that students must learn (aka, knowledge 
component), and each instructional component is tagged with a 
single skill. Under this assumption, RAFINE will be applied for each 
skill separately. This constraint is rooted in our design decision for 
a state representation described later that involves a measure of 
proficiency per skill.  

Let 𝐿𝑇#
j be a given learning trajectory for student i regarding skill 

j. Let 𝑎#%be an instructional component taken (e.g., watching a 
video or answering a quiz) by student 𝑖  at time T. A learning 
trajectory for student i on skill j,	𝐿𝑇#

j, is represented with 𝑎#%as 
follows: 

𝐿𝑇#
j =	)𝑎#*, … , 𝑎#

-.
j

/	𝑎#% 	∈ Φj		, 𝑇 = 1,… , 𝑛#
j}. 

𝐿𝑇#
j: learning trajectory for student i regarding skill j	

𝑎#%: an instructional component taken by student i at time T 
Φj: a set of instructional components regarding skill j	
𝑛#
j: number of activities taken by student i regarding skill j 

 

To make the explanations simple, without a loss of generality, let’s 
assume that there is only one skill	j in our target online courseware 
(recall that RAFINE will be applied for individual skills separately). 
We therefore eliminate the skill index from Φj  and 𝐿𝑇#

j  in the 
following descriptions unless otherwise desired.	

All learning trajectories 𝐿𝑇# for all students 𝑖 in the given log data 
are consolidated into a single learning trajectory graph (LTG), 
which is an MDP. In the LTG, states represent learning status and 
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edges represent learning activities taken that caused a change in 
learning status. To consolidate individual students’ learning 
trajectories into a single LTG, each student’s learning trajectory 
𝐿𝑇#	is first converted into a learning trajectory path. This is done 
by chronologically traversing a learning trajectory 𝐿𝑇#  while 
creating states that represent intermediate learning status.  

A learning status consists of a pair of action history and mastery 
level; <ahi,T, 𝑝#,%(j)>. Action history ahi,T is a binary vector <ahi

1, 
…, ahi

K> where ahi
m shows whether student	𝑖 has taken the m-th 

instructional component in 	Φj  by time T (assuming the 
instructional components are ordered and |Φj| = 𝐾) . Mastery 
level 𝑝#,%(j) is a scalar value showing a predicted probability of 
student	𝑖 applying skill j at time T correctly. The value of mastery 
level is rounded to the nearest multiple of 0.05 (e.g., 0.12 becomes 
0.10) to reduce the number of states in the LTG (which will be 
otherwise intractable).  

Mastery level is computed based on the history of learning 
activities. An underlying assumption is that commitment to a 
particular type of learning activity would increase the mastery level 
by a specific amount. There are several known techniques available 
to achieve this goal including Bayesian models and regression 
models. As long as masterly level is monotonically updated, any 
student-modeling technique would work for the RAFINE method. 

While traversing the learning trajectory, ahi,T and 𝑝#,%(j)  are 
updated accordingly. For example, assume there are six 
instructional components; Video1, Video2, Quiz1, Quiz2, Hint1, 
and Hint2. A state 𝑠 <101000, 0.4> indicates that a student had 
watched Video1 and took Quiz1 before reaching the state 𝑠. It also 
indicates that a predicted mastery level for skill j at the time of 
arriving at the state 𝑠 was 0.4. Assume that the student answered 
Quiz1 incorrectly to reach the state 𝑠. Now, the student needed to 
review Hint1, which caused a transition from 𝑠 to 𝑠’ where 𝑠’ is 
<101010, 0.45> with an assumption that reviewing a hint increased 
the master level by 0.05.  

A learning trajectory path is a linear graph. It might have a loop 
back to the same state when a certain instructional component was 
taken more than once with the increase of mastery level less than 
0.05. As a side note, moving between pages in the courseware is 
not encoded in the LTG, because it is not considered as a learning 
activity. 

All individual students’ learning trajectory paths are then 
aggregated into an LTG by merging the same states. As a 
consequence, the states in an LTG generally have multiple 
incoming and outgoing edges. Note that in an LTG, student and 
time (i.e., the parameters i and T in an individual student’s learning 
trajectory path) are abstracted. Therefore, in the following 
explanations, a tuple representing a state is denoted as <ah, p(j)>. 

In an LTG, the states where the value of the mastery level, p(j), is 
greater than a pre-defined threshold (which is usually 0.85) are 
called terminal states—meaning that students became proficient in 
applying skill j . All outgoing edges at terminal states are 
discarded. 

3.3 Reward 
A reward value of a particular state depends on the mastery level, 
p(j), both at the current and successor states. As an example, 
consider two students who landed on the same state s, but then took 
different learning activities. One student reached a successor state 
by answering an assessment quiz incorrectly (i.e., p(j) was not 
increased) whereas the other student watched a video (i.e., p(j) was 

increased). In our model, a reward for state 𝑠 where the student 
took a learning activity a to reach a successor state 𝑠′ is defined as: 

𝑅(𝑠, 𝑎, 𝑠′) = ?
−0.14					(𝑚𝑙(𝑠) = 𝑚𝑙(𝑠E) < 0.85)
−0.05					(𝑚𝑙(𝑠) < 𝑚𝑙(𝑠′) < 0.85)
0.95					J0.85 ≤ 	𝑚𝑙(𝑠E)L										

 

In the equations above, 𝑚𝑙(𝑠) returns the mastery level at the state 
𝑠. A reward at the state 𝑠 becomes the greatest when the successor 
state is a terminal state. Otherwise, the rewards are set to be small 
negative values to reflect students’ time commitment while 
computing a policy as shown in the next section. We assume that 
the mastery level grows monotonic, i.e., students never unlearn. 
Therefore, a reward where ml(s) > ml(s’) is undefined. 

3.4 Converse Policy 
Given the reward function R, a value function for state 𝑠 under a 
policy p is defined as follows, where 𝑺 is a set of all states in a given 
LTG: 

𝑉O(𝑠) = P𝑇(𝑠, 𝜋(𝑠), 𝑠′){R(s, 𝜋(𝑠), sE) +γ𝑉O(𝑠′)}
VE∈𝑺

 

In the current implementation, the discount factor g is arbitrarily set 
to be 0.9. A transition model T(s, a, s’) is derived from the collected 
learning trajectory data of actual students as the probability of 
students reaching state 𝑠′ when they took a learning activity 𝑎 at 
state 𝑠. 

In general, a policy suggests an action to be taken in a certain state 
to maximize the value function [23]. However, considering the 
purpose of RAFINE, we need to know which instructional 
components should not be taken—i.e., we need to know which 
action has the least expected reward. Therefore, through the value 
iteration, the value function is updated as follows where A(s) shows 
a set of actions available at state s (i.e., instructional components 
taken by students at state s): 

𝑉(𝑠) ← min
[∈\(V)

P 𝑇(𝑠, 𝑎, 𝑠′){𝑅(𝑠, 𝑎, 𝑠E) + 𝛾𝑉(𝑠′)}
VE∈𝑺

 

After the value function is converged, the action that minimizes the 
value function for state s is identified. We shall call this policy the 
converse policy: 

𝜋(𝑠) = argmin
[∈\(V)

P 𝑇(𝑠, 𝑎, 𝑠′){𝑅(𝑠, 𝑎, 𝑠E) + 𝛾𝑉O(𝑠E)}
Va∈𝑺

 

3.5 Frequency Heuristic 
Because of the binary vector and mastery level in the state 
representation, the number of states in any given learning trajectory 
graph (LTG) is many times more than the number of available 
actions (i.e., instructional components). Hence it is often the case 
that each of the instructional components in the courseware is 
selected as a policy action many times. Therefore, whether the 
instructional component has been selected as an action is not a 
sufficient criterion to decide the component should be included in 
a recommendation for refinement. 

To create a recommendation from the induced converse policy, 
RAFINE interprets the collection of policy actions over all states in 
the LTG based on a frequency— actions that frequently appear in 
the converse policy action set will be included in a recommendation 
as culprit for poor performance. We call this heuristic the frequency 
heuristic. The frequency heuristic is based on the hypothesis that 
relatively ineffective instructional components tend to appear in a 
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policy action set of a given converse policy more frequently than 
effective ones. We will verify this hypothesis by comparing the 
mean normalized frequency of ineffective and effective 
components in the policy action set. 

The empirical question is then “how frequent is frequent?” We 
examined two frequency cut-offs through an evaluation study as 
described in the results section. 

4. RESEARCH QUESTIONS 
Our central question is whether RAFINE can suggest deficits of the 
courseware based on the students’ learning trajectory data. To 
address this question, we divide it into the following two research 
questions: 

RQ1: How robust is the converse policy as a detector for relatively 
ineffective instructional components against different conditions of 
learning data? 

RQ2: How accurately does the frequency heuristic compose a 
recommendation for courseware refinement?  

To answer these questions, and also as a proof of concept for 
RAFINE, we conducted an evaluation study as described in the next 
section. 

5. EVALUATION STUDY 
For a rigorous evaluation of the RAFINE method, it is necessary to 
conduct a study with learning data collected from students working 
on actual online courseware. As mentioned earlier, the online 
courseware must be structured with a skill model tagged to 
individual instructional components to apply RAFINE. To the 
authors’ knowledge, however, no such online courseware is 
available at this moment and building RAFINE compatible online 
courseware requires a considerable amount of time. Therefore, we 
conducted a simulation study as a proof of concept towards an 
evaluation with actual students. The current evaluation study uses 
hypothetical learning trajectories in mock online courseware.The 
results from the current simulation study justify future efforts of 
building an RAFINE compatible online courseware or tagging a KC 
model to individual instructional components in existing 
courseware. 

In this evaluation study, we address the research questions 
mentioned in section 4. We created mock online courseware where 
there was only one skill involved. As described above, when there 
were multiple skills involved, RAFINE had to be applied separately 
to each skill. Therefore, this assumption does not harm the 
generality of the study.  

All instructional components in mock online courseware were 
tagged as either effective or ineffective. In the current simulation 
study, we included three types of instructional components: (1) 
videos, (2) formative assessments (aka quizzes), and (3) hint 
messages associated with formative assessments. Learning 
trajectories were generated by simulating students’ learning 
activities. For the sake of explanation, we use a phrase ‘simulated 
students’ to refer to hypothetical students in the simulation. 

In the real world, the growth of mastery level depends on the 
learning activities actually taken and students’ latent traits of 
learning. In the current simulation, the masterly level shows a 
probability of answering a quiz correctly and the simulated students’ 
performance on a quiz was determined by the masterly level. The 
growth of the mastery level, 𝑝#,%,	was simulated using a logistic 
regression model as shown below: 

 

𝑝#,% = b
1

1 + 𝑒de.,fg	 

𝑍#,% = 	𝑍#,%d* + 𝛿*J𝑐, 𝑒(𝑎#,%d*)L + 𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))   

The [𝑋]	operator is to round the value X to the nearest multiple of 
0.05 and 𝑎#,%d*	 is an instructional component that a simulated 
student i took at time T-1.  

Logit 𝑍#,%  was directly increased with 𝛿*(𝑐, 𝑒(𝑎#,%d*)) +
𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*)).  𝛿*	and	𝛿k  model learning gain obtained by 
taking an action 𝑎#,%d*.  𝛿*(𝑐, 𝑒(𝑎#,%d*))	 is a rectified random 
variable that follows a normal distribution with mean 𝜇* and 
standard deviations 𝜎*, i. e. ,max	(0,𝒩 (𝜇*	, 𝜎*k)). 	𝜇*  and 𝜎*  are 
given a priori based on 𝑐 and 𝑒(𝑎#,%d*). 

c and 𝑒(𝑎#,%d*) that represent contrast and effectiveness 
respectively were the parameters controlled to create several online 
learning scenarios for research question RQ1. We controlled the 
difference in impact on students’ learning (i.e., masterly level) 
between effective and ineffective instructional components using 
two parameters: (i) c that represents the contrast in the increase of 
logit between effective and ineffective instructional elements—
large vs. moderate vs. small, and (ii) 𝑒(𝑎#,%d* ) that represents the 
effectiveness of the instructional element 𝑎#,%d* —effective vs. 
ineffective.  

The fundamental assumptions were that (1) the larger the contrast, 
the larger the differences of 𝜇*  when effective vs. ineffective 
instructional components were taken, and (2) the larger the contrast, 
the smaller the 𝜎* was. For example, if 𝑐 = “large”, (𝜇*, 𝜎*)	was 
(0.5, 0.01) vs. (-0.1, 0.01) for 𝑒(𝑎#,%d* ) =	  “effective” vs. 
“ineffective.” However, they were (0.3, 0.1) vs. (0.1, 0.1) if 𝑐 = 
“small.” Table 1(a) shows 𝜇*  and 𝜎*	 for different contrast and 
effectiveness. 

𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))	is also a rectified random variable that follows 
a normal distribution with mean 𝜇k and standard deviations 𝜎k. The 
variable 𝛿k was set to be zero if 𝑎#,%d* was not a quiz. Otherwise, 
𝜇k and 𝜎k were determined a priori based on a student’s response 

Table 1: The means 𝜇 and standard deviations 𝜎 used for the 
simulation study to model the growth of mastery level. 

(a)  
The	value	of	(𝜇*	, 	𝜎*)	where 
𝛿*(𝑐, 𝑒(𝑎#,%d*))		~	max	(0,𝒩(𝜇*	, 𝜎*k)) 

 Contrast: c 
Effectiveness: e(𝑎#,%d*) Large Moderate Small 

Effective 0.5   0.01 0.4  0.05 0.3  0.10 
Ineffective -0.1   0.01 0.0  0.05  0.1  0.10 

 

 
(b)	 
The value of (𝜇k	, 	𝜎k) where 
𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))~max(0,𝑁(𝜇k, 𝜎kk)), or 0 if 𝑎#,%d*	was not a 
quiz. 
𝑟𝑠𝑝𝑛𝑠(𝑎#,�d* ∈ 𝑞𝑢𝑖𝑧) 𝜇k		𝜎k 

Correct 0.05  0.01 
Incorrect 0.03  0.01 

 

Table 2: The means and standard deviations used for computing 
the initial logit 𝑍#,�. 

The value of (𝜇�, 𝜎�) where 𝑍#,� ~ max(0, 𝒩(𝜇�	, 𝜎�k)) 
 Contrast: c 
 Large Moderate Small 

𝜇�, 𝜎� -0.95   0.01 -0.95   0.10 -0.95   0.20 
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rate, rspns=correct/incorrect. We assume that when a student was 
able to answer the quiz correctly, logit 𝑍#,%  increases more than 
when the student was not able to answer it. Table 1(b) shows 
𝜇k	and	𝜎k for correct and incorrect responses respectively.  

Student’s initial logit 𝑍#,�  also followed a rectified normal 
distribution with 𝜇�	and 𝜎�k. These were given a priori based on the 
contrast parameter, c, as shown in Table 2. 

In addition to three learning scenarios with different contrasts, we 
also created three versions of mock online courseware with 
different qualities. The quality of courseware was operationalized 
as the ratio of a number of effective to ineffective instructional 
components in the courseware. Three types of qualities are 
implemented in this study: High, Medium and Low. The higher the 
quality, the larger the proportion of effective instructional 
components. In the simulation study, each page in the mock online 
courseware included 3 lecture videos, 3 quizzes, and 3 hint 
messages each associated with a quiz. The low, medium, and high-
quality courseware included 80-90%, 50-60%, and 10-20% 
ineffective instructional components. 

Two instances of mock courseware (with a different number of 
pages) were created for each level of quality. Those six instances 
of courseware were crossed with three levels of contrast, resulting 
in 18 different simulated-learning scenarios. In each scenario, 
simulated students took a total of 10 to 30 instructional components. 

Learning trajectories of students were randomly generated as 
follows. At first, for each simulated student, the number of 
instructional components to be taken was randomly decided. Either 
a video or a quiz was then randomly selected as the first learning 
activity. If it was a quiz, the student might show a hint before trying 
to answer the quiz at 0.05 probability. When the student answered 
a quiz, the correctness of the quiz response was determined 
randomly using the mastery level as the probability distribution. 
When the response was incorrect, either requesting a hint or 
retaking the same quiz (as a next instructional component) was 
randomly determined based on the probability distribution reported 
in [1]. Let quiz�	be a quiz with an ID 𝑥  that student answered 
incorrectly. The probability distribution is as follows: (i) Try quiz� 
at 0.78 probability, (ii) show hint� at 0.20, (iii) give up and move 
to different quiz or video at 0.02 (these two are randomly selected). 
The same distribution is applied when the student showed hint�. 
This process was repeated for the number of instructional 
components to be taken. Simulated students were able to retake the 
same instructional components. 

For each of 18 learning scenarios, 100 course offerings were 
created each with 1,000 simulated students. In other words, this 
simulation study modeled a large-scale field trial as if 1800 
instances of online course offerings were tested each with 1,000 
student participants. 

For each course-offering simulation, the learning trajectory data 
were converted into a learning trajectory graph (LTG). As a 
consequence, 1,800 instances of LTGs were generated. The 
manipulation of logit described above was used to estimate mastery 
level in LTG. For each of the 1,800 LTGs, the value iteration 
technique was applied to compute a converse policy. From each 
converse policy, the frequency heuristic was applied to generate a 
recommendation for refinement for a corresponding instance of 
online courseware. 

6. RESULTS 
6.1 Overview of the Data 
To verify the feasibility of the simulation data, we computed a 
correlation between the ratio of effective to ineffective instructional 
components taken by a student and the final mastery level. The data 
showed a strong positive correlation, r = 0.70, t(1799998) = 
1314.56, p < 0.001, suggesting that the final mastery level was 
significantly higher when simulated students took relatively more 
effective instructional components than ineffective ones.  

6.2 Converse Policy-based Recommendation 
6.2.1 Frequency Heuristic 
The hypothesis under the frequency heuristic is that relatively 
ineffective instructional components tend to appear in a policy 
action set of a given converse policy more frequently than effective 
ones. To verify this hypothesis, we first compare the normalized 
frequency of ineffective components in the policy action set with 
that of effective ones. We also answer RQ1: How robust is the 
converse policy as a detector for ineffective instructional 
components against different conditions of learning data?  

The frequency of an instructional component i selected as a 
converse policy action was normalized as follows. Let p be a 
converse policy and S be the set of states in the LTG. The 
normalized frequency of an instructional component 𝜄 is calculated 
by the following equation. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦(𝜄) = 𝑁𝐹(𝜄) =
|𝐒O(𝜄)|
|𝐒𝒜(𝜄)| 

 

𝐒O(𝜄) = {𝑠|𝜋(𝑠) = 𝜄} : A set of states in the LTG where i is the 
converse policy action. 
𝐒𝒜(𝜄) = {𝑠|𝜄 ∈ 𝒜V} (where 𝒜V is a set of actions available from 
state s): A set of states where the instructional component i was 
taken. 
|𝑋|:	Number	of	elements	in	𝑋 
Also notice that 𝐒O(𝜄) ⊂ 𝐒𝒜(𝜄). 
 
We then tested if there was a significant difference in the mean 
normalized frequencies between effective and ineffective 
instructional components. Table 3 shows the mean normalized 
frequencies of ineffective and effective instructional components 
and those standard deviations. The effect size is a ratio of the 
difference between two means to the standard deviation. Table 3 
suggests that regardless of the quality and contrast, ineffective 
instructional components were selected as a converse policy action 
notably many times more than effective ones. The differences were 
all statistically significant using t-test (p<<0.01). The data also 
suggest that the difference in the frequencies between ineffective 
and effective components becomes the smallest (as indicated by the 
smallest effect size) when contrast is small and quality is high, as 
we expected. 

These results support the hypothesis that relatively ineffective 
instructional components tend to appear in a converse policy 
action set more frequently than effective instructional components. 
It is also shown that the converse policy is robust enough to 
discriminate the effectiveness of the instructional component 
regardless of the quality (operationalized as the ratio of effective 
vs. ineffective components) and the contrasts (operationalized as 
the difference in the growth of logit between effective and 
ineffective components).  
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6.2.2 Accuracy of recommendation 
We next evaluate the precision and recall scores of 
recommendations created by frequency heuristic to answer RQ2: 
How accurately does the frequency heuristic compose a 
recommendation? 

To compose a recommendation, we need to define a cut-off value. 
As a reminder, those instructional components whose normalized 
frequency is more than a pre-defined cut-off are labeled as 
“ineffective” and included in the recommendation. What the cut-
off value should be is an empirical call.  

In the current study, we compared two cut-off values using mean 
(M) and standard deviation (SD) of the normalized frequency: 
M+SD vs. M–SD. To evaluate the accuracy of recommendation, 
we computed Precision and Recall as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|Φ�����

� |
|Φ�|  

𝑅𝑒𝑐𝑎𝑙𝑙 =
|Φ�����

� |
|Φ#����|

 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

|Φ�����
� |:	Number of ineffective instructional components included 

in a recommendation 
|Φ�| : Number of total instructional components included in a 
recommendation 
|Φ#����|:  Number of ineffective instructional components in 
courseware 
 
We investigated how precision and recall scores vary depending on 
the cut-off and the condition of the learning data (contrast, quality). 
Figure 2 shows precision and recall scores comparing M-SD and 
M+SD cut-offs for each quality of the courseware. For each data 
point, three levels of contrasts are aggregated, because there was no 
notable difference among them. The figure show that when the 
quality of courseware is low to medium, the M-SD cut-off had 
better recall and precision scores than M+SD. F1 score for M-SD 
was 0.99 and 0.92 for low and medium qualities respectively. On 
the other hand, when the quality is high, the M+SD cut-off 
outperformed M-SD. F1 scores of M+SD for high quality 
courseware was 0.88.  

In sum, the frequency heuristic adequately works to determine 
which instructional components must be taken into a 
recommendation for courseware refinement. In the current 
simulation study, over 90% of ineffective instructional components 

were correctly taken into a recommendation when an appropriate 
cut-off was used based on the maturity of the courseware. When 
the courseware is newly built (which is usually in a low to medium 
quality), the M–SD cut-off should be used, whereas the M+SD cut-
off should be used for matured (high-quality) courseware. In the 
current study, even with the high-quality courseware where only 
10-20% of all instructional components in the courseware are 
ineffective, RAFINE was able to correctly include ineffective 
components in the recommendation with the M+SD cut-off.  

7. DISCUSSION AND LIMITATIONS 
In the evaluation study, we had two research questions. RQ1: How 
robust is the converse policy as a detector for relatively ineffective 
instructional components against different conditions of learning 
data? RQ2: How accurately does the frequency heuristic compose 
a recommendation? 

First, the comparison of the normalized frequency revealed that 
relatively ineffective instructional components tend to appear in a 
policy action set significantly more frequently than effective ones 
regardless of the contrast and the quality of courseware. This 
suggests that the converse policy as a detector for relatively 
ineffective instructional components is robust enough against 
different conditions of learning data (RQ1) 

Second, we evaluated the accuracy of the recommendation created 
by the frequency heuristic to answer RQ2. The results showed that 
when we use a different cut-off depending on the maturity of 
courseware, the recommendation created by the frequency heuristic 
accurately includes ineffective instructional components. 

The results from the evaluation study showed that RAFINE can find 
deficits of the existing courseware by analyzing learning trajectory 
data on behalf of human experts. Although videos, quizzes and 
hints are evaluated in the evaluation study, RAFINE could also 
analyze other types of instructional components such like written 
paragraphs, tables, figures, etc. However, accurately tracking how 
students review these instructional components while learning is 
not straightforward—e.g., the ordinal clickstream data do not 
convey whether a student was reading a text instruction or not. 

Table 3: Comparison of the mean normalized frequency between 
ineffective (Inef.) and effective (Ef.) instructional components. A 

number in the parentheses shows an effect size. 
  Contrast 

  Large  Moderate  Small 

Quality  Inef.  Ef.  Inef.  Ef.  Inef.  Ef. 

High  0.7±0.2  0.2±0.1  0.7+0.1  0.1±0.1  0.5±0.1  0.2±0.1 
  (4.0)  (5.7)  (3.1) 

Med.  0.4±0.1  0.1±0.05  0.4±0.1  0.1±0.04  0.4±0.1  0.2±0.1 
  (7.9)  (8.5)  (3.6) 

Low  0.4±0.1  0.04±0.04  0.4±0.1  0.04±0.03  0.4±0.1  0.1±0.1 
  (9.2)  (10.0)  (4.5) 

 

 
Figure 2 : Precision and recall of a recommendation. The X-axis 
represents the quality of the courseware. Red dashed lines show 

results from M+SD and blue solid lines show M–SD. 
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One limitation of this study is that there are several assumptions 
about learning trajectory data. First, we assume the presence of the 
KC model. Instructional components should be tagged with a KC 
to apply the RAFINE method. Therefore, the recommendation 
created by RAFINE changes depending on a KC model. Methods to 
build a good cognitive model that captures the fine KC model are 
studied as mentioned in the related works.  

Second, we also assume that the students’ masterly level is 
measured correctly. Since the reward function depends on the 
change of masterly level from the current state to the next state, it 
is essential that the measured masterly level is not far from the 
actual level of students’ understanding on a skill.  

Third, variations in the learning trajectory graph are critical when 
applying the RAFINE method. To get better performance, RAFINE 
must be fed a learning trajectory graph that contains diverse 
learning activities. If there is only one path in a learning trajectory 
graph, for example, the converse policy has no choice but to select 
an instructional component that appears in the path as a converse 
policy action. 

One question that is not addressed in the current study is about the 
students’ differences—how much the students’ individual 
differences affect the “effectiveness” of each instructional 
component. Instructional components that are quite effective for 
one group of students may not be as effective for another group of 
students. Although it is out of the scope of the current paper, we 
have two working hypotheses for future studies. One hypothesis is 
about the majority rule—the big data overrides the individual 
human factors and detects the latent trends. Another hypothesis is 
about the individualized student model—entering individual 
student factors into the student model used to compute the mastery 
level, e.g., the individualized additive factor model [24]. Further 
studies will be necessary to address these issues in detail. 

8. CONCLUSION 
We found that the RAFINE method could serve as a building block 
for the evidence-based, human-in-the-loop, iterative online 
courseware learning engineering method by detecting the deficits 
of the courseware. RAFINE analyzes learning trajectory data 
collected from existing online courseware using the reinforcement 
learning technique and identifies ineffective instructional 
components. The detected components are provided to courseware 
developers as a recommendation for refinement. Given the 
recommendation, courseware developers can efficiently improve 
the courseware by modifying the listed instructional components. 

In addition to providing a new evidence-based learning engineering 
method, we also proposed a technique called the frequency 
heuristic and contributed to the community of applications of 
reinforcement learning (RL). The frequency heuristic is a novel 
way of interpreting the policy for evaluating the actions in MDP. It 
operates differently from the conventional applications of RL in 
which the policy is used for optimization. In RAFINE, the frequency 
heuristic is applied to the converse policy to detect ineffective 
instructional components (i.e., action) that had relatively less 
contribution to learning. In the evaluation study, we demonstrated 
that the frequency heuristic over the converse policy is potentially 
a powerful analytic tool to detect a relative weakness among 
available actions. 

For future studies, it is crucial to measure the actual effectiveness 
of the proposed method in authentic learning settings and apply the 
method to real students’ learning data. 
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