
Learning a Policy Primes Quality Control:
Towards Evidence-Based Automation of

Learning Engineering
Machi Shimmei

North Carolina State University
Raleigh, NC 27695

mshimme@ncsu.edu

Noboru Matsuda
North Carolina State University

Raleigh, NC 27695
noboru.matsuda@ncsu.edu

ABSTRACT
One of the most challenging issues for online courseware
engineering is to maintain the quality of instructional components,
such as written text, video, and assessments. Learning engineers
would like to know how individual instructional components
contributed to students’ learning. However, it is a hard task because
it requires significant expertise in learning science, learning
technology, and subject matter pedagogy. To address this
challenge, we propose an innovative application of reinforcement
learning (RL) as an assessor of instructional components
implemented in given online courseware. After students activities
are converted into Markov decision process (MDP), a collection of
actions (each corresponds to an instructional component) suggested
as a policy is analyzed. As a consequence, the usefulness of
individual actions with regards to achieving ideal learning
outcomes will be suggested. The proposed RL application is
invented for human-in-the-loop learning engineering method called
RAFINE. In the RAFINE framework, a machine generates a list of the
least contributing instructional components on the given online
courseware by interpreting the whole policy. The courseware
developers modify those suggested components. As a proof of
concept, this paper describes an evaluation study where online
learning was simulated on hypothetical online courseware. The
results showed that over 90% of ineffective instructional
components were correctly identified as ineffective on average.

Keywords

Automated Learning Engineering, Evidence-based learning
Engineering, Iterative Courseware development, Reinforcement
Learning

1. INTRODUCTION
With the rapidly growing popularity of online courses, there has
been a heavy demand for practical learning engineering methods
for designing effective online courseware [18]. Even though there
are known design principles that provide theoretical insights into
designing effective online courses [e.g., 5, 6, 10], such principle-

based approaches still require iterative engineering for practical
courseware development at scale [8].

One of the challenges in the principle-based iterative learning
engineering is to identify issues with the courseware. After an
initial version of courseware is used by students, instructors (or
learning engineers) analyze the interaction and learning outcome
data to improve the quality of the courseware. However,
interpreting those data to determine actual refinement plans is
extremely challenging and requires significant expertise in learning
science, learning technology, and the subject matter pedagogy [5,
20]. The commonly used analytic techniques are the learning curve
analysis [14] and the assessment items analysis [16]. However,
these techniques only apply to assessment items while other types
of instructional components such as video clips and written texts
must also be included in the analysis.

There is therefore a gap between an ideal learning-engineering
model to efficiently build effective online courseware and the actual
technology infrastructure available for building online courseware.
To fill this gap, evidence-based learning engineering method that
identifies deficits of the given online courseware is needed.

Our solution is an innovative application of the reinforcement
learning (RL) technique that we call RAFINE (Reinforcement
learning Application For INcremental courseware Engineering).
RAFINE identifies instructional components that have relatively less
contribution to students’ learning in the given courseware. RAFINE
is a building block for the evidence-based, human-in-the-loop,
iterative learning engineering method that we call the RAFINE
method. Figure 1 shows how a human and a machine collaborate to
iteratively improve the quality of courseware in the RAFINE method.

Given a record of individual students’ learning trajectory logs on
particular online courseware, RAFINE first converts learning
trajectories into a state transition graph. Here, states represent
students’ intermediate learning status and the transition is caused
by taking an instructional component (i.e., watching a video). All
students’ state transition graphs are then consolidated into a single
Markov decision process (MDP) by merging the same states.
RAFINE then applies a variant version of value iteration technique
commonly used for RL to compute a converse policy that represents
the least optimal instructional components to be taken at any given
moment to achieve students’ ideal learning goals. The entire policy
actions will be then analyzed to identify instructional components
that have relatively less contributions to students’ learning. The list
of detected less-effective components is provided to instructors as
a recommendation for courseware refinement. Any type of

Machi Shimmei and Noboru Matsuda "Learning a Policy Primes
Quality Control: Towards Evidence-Based Automation of
Learning Engineering" In: Proceedings of The 13th International
Conference on Educational Data Mining (EDM 2020), Anna N.
Rafferty, Jacob Whitehill, Violetta Cavalli-Sforza, and Cristobal
Romero (eds.) 2020, pp. 224 - 232

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 224

instructional components such as lecture videos, assessment
quizzes and hints can be analyzed by the RAFINE method.

As a proof of concept, the goal of the current paper is to conduct a
study to evaluate the validity of implementation of the RAFINE
method. We conducted a simulation study where learning log data
were generated by simulating learning activities in mock online
courseware. The result showed that the RAFINE method correctly
identified over 90% of ineffective instructional components in the
given mock courseware.

The primary contributions of the current work are essentially
theoretical yet have the potential for practical use:
(1) We proposed RAFINE as a building block for evidence-based,
human-in-the-loop, iterative online courseware learning
engineering method. RAFINE analyzes complicated learning
trajectory data and suggests deficits of the courseware by
evaluating a broader range of instructional components. The
evaluation study showed the theoretical effectiveness of RAFINE.
(2) We innovated a technique to interpret a policy induced by
reinforcement learning as a whole to detect a relative weakness
among available actions (which correspond to instructional
components) with regard to achieving ideal goals.

The rest of the paper is structured as follows. Section 2 discusses
related work on evidence-based learning engineering and the
applications of reinforcement learning for education. Section 3
technically elaborates how RL works on learning trajectory data
and describes how RAFINE interprets the converse policy. Section 4
introduces research questions. Then, section 5 explains how
simulation data were created for the evaluation study. Section 6
reports results of the evaluation study along with the research
questions, and section 7 discusses the results and limitations.
Finally, section 8 concludes that RAFINE serves as a building block
for the evidence-based iterative learning engineering method.

2. RELATED WORK
2.1 Evidence-based Learning Engineering
The process of learning engineering includes cognitive task
analysis, designing and delivering instructional components,
measuring students’ understanding, and evaluating the courseware
design [6]. Quickly cycling through these tasks is a key for
successful iterative improvement of online courseware. Since each
of these tasks is considerably labor intensive, the automatization of
the engineering process is an important research agenda.

One of the most actively studied areas of learning engineering is
student modeling [14]. Both a representation (to understand what
must be modeled) and a recognition (to understand how to gauge
students’ competency with the proposed representation) are
important research topics. Cen et al. [3] proposed Learning Factors
Analysis (LFA) for semi-automated evaluation and improvement
of knowledge component (KC) models that represent a set of latent
skills and knowledge that students are supposed to learn [12]. LFA
performs a combinational search for a KC model that best fits
students’ learning data across existing KC models. Although LFA
requires “seed” KC models, some more recent works reported
automatic discovery of KC models from students’ learning data [9,
13].

Another actively studied area of learning engineering is an
automated question generation. Du and Cardie [7] proposed a
method for automatically generating questions. The method
identifies the question-worthy sentences from a passage using a
hierarchical neural model with a sentence-level sequence tagging.
Mazidi and Tarau [15] introduced a method to classify sentences
based on what the sentence is communicating as a basis for
generating questions. The type of syntactic and semantic
constituents of sentences and their arrangement were analyzed in
the study.

Automation of assessment grading is also an important part of
learning engineering in particular for online courses to be scaled.
Zhang et al. [25] tackled the task of Automatic Short Answer
Grading (ASAG). Short answer questions ask students to answer in
natural language with the length of one phrase to one paragraph.
The authors compared Deep Belief Networks (DBN) against five
machine learning techniques (Naïve Bayes, Logistic Regression,
Decision Tree, Artificial Neural Network, and Support Vector
Machine) for automatically grading short answer questions.

Yet another essential part of practical learning engineering is to
identify deficits of courseware content to be revised. RAFINE
focuses on this aspect of the learning engineering. As far as the
authors are aware, there have been very few studies in this line of
research. Bodily et al. [2] mentioned the lack of efforts to use
learning analytics as a basis for redesigning an online course. The
authors proposed the RISE framework for redesigning instructional
components in online courseware. This framework provides a
metric that combines the usage of instructional components and
students’ grades to identify instructional components that are good
candidates for improvement efforts. The goal of the RAFINE method
is also to detect instructional components that were not very useful
for learning. Unlike the RISE framework, however, RAFINE
evaluates a potential contribution of implemented instructional
components to students’ learning and provides a list of instructional
components as a recommendation for refinement.

2.2 RL for Decision Making in Education
Reinforcement Learning (RL) has been used in education
applications in particular to compute optimal pedagogical strategies
for adaptive tutoring.

Shen and Chi [19] applied RL to induce the policy on whether the
intelligent tutoring system should propose worked example (WE)
or problem solving (PS) to students for the next activity. The
authors induced policies using two different rewards: Immediate
and Delayed. The policy was computed based on the number of
problems solved, the average time taken, the difficulty of the
problem, and students’ performance on the past PS. The result

Figure 1 : Overview of the RAFINE method

Learning Data
Collection

Learning Trajectory
data

Video1

Hint1

Hint1
Video2

Quiz2

Quiz2

Video2

Video11

2

3

4

5

Video2

Converse Policy
State Activity
1 video2
2 video2
3 quiz2Courseware

Developer

RAFINEData
Consolidation

RL
Value IterationRecommendation

Frequency
Heuristic

Modification

[video2,hint1,quiz3…]

...

Human-in-the-loop
Iterative

Learning Engineering

Online
Courseware

Policy action set

Markov Decision
Process

225 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

showed that immediate policies give more WE while delayed
policies give more PS.

Rafferty et al. [17] used the partially observable Markov decision
process (POMDP) framework to formulate the process of teaching.
The authors applied RL to induce optimal teaching actions such as
a quiz or an example to minimize the amount of time spent on
learning materials. They found that students who learned with RL
induced teaching actions spent less time than students who did not.

Iglesias et al. [11] applied RL to induce a policy on teaching
decisions such as which topic students should do next and which
task students should do on the topic. They conducted an evaluation
study in a database design course for undergrad students in
Computer Science. In the evaluation study, they found that students
with the machine generated policy spent less time on the adaptive
and intelligent educational system, but they could not find a
significant difference in the students’ final level of knowledge.

In addition to inducing the sequence of instructional components,
RL has been applied to induce dialog moves or narrative events.
Chi et al. [4] applied RL to induce pedagogical policies that decide
whether the tutor should ask students to justify the answer, tell the
next step directly, or elicit the next step information from a student
in a dialogue-based tutor. Tetreault and Litman [21] estimated the
reliability of a policy derived from a spoken dialog tutoring system.
Wang et al. [22] applied deep RL for interactive narrative
generators that tailor each player’s story in an educational game.
The authors prepared several events of a story and induced policies
on how event sequences should unfold based on player interaction
logs.

The applications of reinforcement learning to induce pedagogical
strategies are widely studied in various subjects from middle school
math to college-level database design, and in various kinds of
tutoring systems such as task-based, dialog-based, and game-based
systems. The effects of educational RL policy have been tested both
with real and simulated data. Some showed positive effects of the
policy while others did not.

What makes our study different from these studies is the way we
use the induced policy. In the previous studies mentioned above,
the induced policy is directly used to provide an optimal action at
each learning status. On the other hand, RAFINE does not use the
policy to make a decision on which instructional component
students should take next. Instead, RAFINE interprets the induced
policy as a whole to identify instructional components that have
relatively less contribution to learning. More specifically, RAFINE
focuses on how often each instructional component is suggested by
a policy (we call this the frequency heuristic as described in section
3.5). In RAFINE, the induced policy is not utilized as an educational
strategy for students, but an analysis of the policy is used for
courseware developers to improve courseware.

3. TECHNICAL DETAILS OF RAFINE
3.1 Overview of the RAFINE Method
In the RAFINE method, an initial version of the online courseware
is used by students and their activities are logged. These activity
data consist of standard clickstream data including students’
responses for formative assessments and their correctness. We call
these activity data the learning trajectory data.

The right side of Figure 1 shows how learning trajectory data are
processed. The learning trajectory data from all students are first
consolidated into a single state transition graph called learning
trajectory graph (LTG). The LTG is a Markov decision process

(MDP) where states represent students’ intermediate learning status
and actions represent instructional components taken. LTG is
annotated with predefined rewards that represent quantitative
benefits of the learning activity that causes transition from one state
to another in the LTG. Finally, a value iteration technique is applied
to compute a converse policy that shows the worst action to be
taken at each state to achieve the expected learning outcome
(represented as a table in Figure 1). As a consequence, a collection
of actions suggested by a converse policy corresponds to a set of
instructional components that have the least likelihood at each state
to contribute to the ideal learning outcome. We call this collection
of actions the policy action set.

To create a recommendation for refinement based on the induced
policy, RAFINE interprets the policy as a whole. That is, all actions
in a policy action set is analyzed. Note that in most cases, the
number of states in the LTG gets larger than the number of
instructional components available on the given online courseware.
This implies that all instructional components are likely to be
included in a policy action set. The relative effectiveness of
individual instructional components is therefore analyzed based on
the frequency. We call this heuristic the frequency heuristic, which
is detailed in section 3.5.

Given the recommendation for refinement, courseware developers
revise the courseware. The RAFINE method can be iteratively
applied to the revised courseware by collecting a new batch of
learning trajectory data to further improve the courseware.

3.2 Model Representation
The unit of analysis of the RAFINE method is an instructional
component implemented in the online courseware. Instructional
components include video, quiz, hint, written paragraph or any
other components used in the courseware. We assume a presence
of a skill model that contains a set of skills each representing a piece
of knowledge that students must learn (aka, knowledge
component), and each instructional component is tagged with a
single skill. Under this assumption, RAFINE will be applied for each
skill separately. This constraint is rooted in our design decision for
a state representation described later that involves a measure of
proficiency per skill.

Let 𝐿𝑇#
j be a given learning trajectory for student i regarding skill

j. Let 𝑎#%be an instructional component taken (e.g., watching a
video or answering a quiz) by student 𝑖 at time T. A learning
trajectory for student i on skill j,	𝐿𝑇#

j, is represented with 𝑎#%as
follows:

𝐿𝑇#
j =)𝑎#*, … , 𝑎#

-.
j

/	𝑎#% 	∈ Φj		, 𝑇 = 1,… , 𝑛#
j}.

𝐿𝑇#
j: learning trajectory for student i regarding skill j	

𝑎#%: an instructional component taken by student i at time T
Φj: a set of instructional components regarding skill j	
𝑛#
j: number of activities taken by student i regarding skill j

To make the explanations simple, without a loss of generality, let’s
assume that there is only one skill	j in our target online courseware
(recall that RAFINE will be applied for individual skills separately).
We therefore eliminate the skill index from Φj and 𝐿𝑇#

j in the
following descriptions unless otherwise desired.	

All learning trajectories 𝐿𝑇# for all students 𝑖 in the given log data
are consolidated into a single learning trajectory graph (LTG),
which is an MDP. In the LTG, states represent learning status and

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 226

edges represent learning activities taken that caused a change in
learning status. To consolidate individual students’ learning
trajectories into a single LTG, each student’s learning trajectory
𝐿𝑇#	is first converted into a learning trajectory path. This is done
by chronologically traversing a learning trajectory 𝐿𝑇# while
creating states that represent intermediate learning status.

A learning status consists of a pair of action history and mastery
level; <ahi,T, 𝑝#,%(j)>. Action history ahi,T is a binary vector <ahi

1,
…, ahi

K> where ahi
m shows whether student	𝑖 has taken the m-th

instructional component in 	Φj by time T (assuming the
instructional components are ordered and |Φj| = 𝐾) . Mastery
level 𝑝#,%(j) is a scalar value showing a predicted probability of
student	𝑖 applying skill j at time T correctly. The value of mastery
level is rounded to the nearest multiple of 0.05 (e.g., 0.12 becomes
0.10) to reduce the number of states in the LTG (which will be
otherwise intractable).

Mastery level is computed based on the history of learning
activities. An underlying assumption is that commitment to a
particular type of learning activity would increase the mastery level
by a specific amount. There are several known techniques available
to achieve this goal including Bayesian models and regression
models. As long as masterly level is monotonically updated, any
student-modeling technique would work for the RAFINE method.

While traversing the learning trajectory, ahi,T and 𝑝#,%(j) are
updated accordingly. For example, assume there are six
instructional components; Video1, Video2, Quiz1, Quiz2, Hint1,
and Hint2. A state 𝑠 <101000, 0.4> indicates that a student had
watched Video1 and took Quiz1 before reaching the state 𝑠. It also
indicates that a predicted mastery level for skill j at the time of
arriving at the state 𝑠 was 0.4. Assume that the student answered
Quiz1 incorrectly to reach the state 𝑠. Now, the student needed to
review Hint1, which caused a transition from 𝑠 to 𝑠’ where 𝑠’ is
<101010, 0.45> with an assumption that reviewing a hint increased
the master level by 0.05.

A learning trajectory path is a linear graph. It might have a loop
back to the same state when a certain instructional component was
taken more than once with the increase of mastery level less than
0.05. As a side note, moving between pages in the courseware is
not encoded in the LTG, because it is not considered as a learning
activity.

All individual students’ learning trajectory paths are then
aggregated into an LTG by merging the same states. As a
consequence, the states in an LTG generally have multiple
incoming and outgoing edges. Note that in an LTG, student and
time (i.e., the parameters i and T in an individual student’s learning
trajectory path) are abstracted. Therefore, in the following
explanations, a tuple representing a state is denoted as <ah, p(j)>.

In an LTG, the states where the value of the mastery level, p(j), is
greater than a pre-defined threshold (which is usually 0.85) are
called terminal states—meaning that students became proficient in
applying skill j . All outgoing edges at terminal states are
discarded.

3.3 Reward
A reward value of a particular state depends on the mastery level,
p(j), both at the current and successor states. As an example,
consider two students who landed on the same state s, but then took
different learning activities. One student reached a successor state
by answering an assessment quiz incorrectly (i.e., p(j) was not
increased) whereas the other student watched a video (i.e., p(j) was

increased). In our model, a reward for state 𝑠 where the student
took a learning activity a to reach a successor state 𝑠′ is defined as:

𝑅(𝑠, 𝑎, 𝑠′) = ?
−0.14					(𝑚𝑙(𝑠) = 𝑚𝑙(𝑠E) < 0.85)
−0.05					(𝑚𝑙(𝑠) < 𝑚𝑙(𝑠′) < 0.85)
0.95					J0.85 ≤ 	𝑚𝑙(𝑠E)L										

In the equations above, 𝑚𝑙(𝑠) returns the mastery level at the state
𝑠. A reward at the state 𝑠 becomes the greatest when the successor
state is a terminal state. Otherwise, the rewards are set to be small
negative values to reflect students’ time commitment while
computing a policy as shown in the next section. We assume that
the mastery level grows monotonic, i.e., students never unlearn.
Therefore, a reward where ml(s) > ml(s’) is undefined.

3.4 Converse Policy
Given the reward function R, a value function for state 𝑠 under a
policy p is defined as follows, where 𝑺 is a set of all states in a given
LTG:

𝑉O(𝑠) = P𝑇(𝑠, 𝜋(𝑠), 𝑠′){R(s, 𝜋(𝑠), sE) +γ𝑉O(𝑠′)}
VE∈𝑺

In the current implementation, the discount factor g is arbitrarily set
to be 0.9. A transition model T(s, a, s’) is derived from the collected
learning trajectory data of actual students as the probability of
students reaching state 𝑠′ when they took a learning activity 𝑎 at
state 𝑠.

In general, a policy suggests an action to be taken in a certain state
to maximize the value function [23]. However, considering the
purpose of RAFINE, we need to know which instructional
components should not be taken—i.e., we need to know which
action has the least expected reward. Therefore, through the value
iteration, the value function is updated as follows where A(s) shows
a set of actions available at state s (i.e., instructional components
taken by students at state s):

𝑉(𝑠) ← min
[∈\(V)

P 𝑇(𝑠, 𝑎, 𝑠′){𝑅(𝑠, 𝑎, 𝑠E) + 𝛾𝑉(𝑠′)}
VE∈𝑺

After the value function is converged, the action that minimizes the
value function for state s is identified. We shall call this policy the
converse policy:

𝜋(𝑠) = argmin
[∈\(V)

P 𝑇(𝑠, 𝑎, 𝑠′){𝑅(𝑠, 𝑎, 𝑠E) + 𝛾𝑉O(𝑠E)}
Va∈𝑺

3.5 Frequency Heuristic
Because of the binary vector and mastery level in the state
representation, the number of states in any given learning trajectory
graph (LTG) is many times more than the number of available
actions (i.e., instructional components). Hence it is often the case
that each of the instructional components in the courseware is
selected as a policy action many times. Therefore, whether the
instructional component has been selected as an action is not a
sufficient criterion to decide the component should be included in
a recommendation for refinement.

To create a recommendation from the induced converse policy,
RAFINE interprets the collection of policy actions over all states in
the LTG based on a frequency— actions that frequently appear in
the converse policy action set will be included in a recommendation
as culprit for poor performance. We call this heuristic the frequency
heuristic. The frequency heuristic is based on the hypothesis that
relatively ineffective instructional components tend to appear in a

227 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

policy action set of a given converse policy more frequently than
effective ones. We will verify this hypothesis by comparing the
mean normalized frequency of ineffective and effective
components in the policy action set.

The empirical question is then “how frequent is frequent?” We
examined two frequency cut-offs through an evaluation study as
described in the results section.

4. RESEARCH QUESTIONS
Our central question is whether RAFINE can suggest deficits of the
courseware based on the students’ learning trajectory data. To
address this question, we divide it into the following two research
questions:

RQ1: How robust is the converse policy as a detector for relatively
ineffective instructional components against different conditions of
learning data?

RQ2: How accurately does the frequency heuristic compose a
recommendation for courseware refinement?

To answer these questions, and also as a proof of concept for
RAFINE, we conducted an evaluation study as described in the next
section.

5. EVALUATION STUDY
For a rigorous evaluation of the RAFINE method, it is necessary to
conduct a study with learning data collected from students working
on actual online courseware. As mentioned earlier, the online
courseware must be structured with a skill model tagged to
individual instructional components to apply RAFINE. To the
authors’ knowledge, however, no such online courseware is
available at this moment and building RAFINE compatible online
courseware requires a considerable amount of time. Therefore, we
conducted a simulation study as a proof of concept towards an
evaluation with actual students. The current evaluation study uses
hypothetical learning trajectories in mock online courseware.The
results from the current simulation study justify future efforts of
building an RAFINE compatible online courseware or tagging a KC
model to individual instructional components in existing
courseware.

In this evaluation study, we address the research questions
mentioned in section 4. We created mock online courseware where
there was only one skill involved. As described above, when there
were multiple skills involved, RAFINE had to be applied separately
to each skill. Therefore, this assumption does not harm the
generality of the study.

All instructional components in mock online courseware were
tagged as either effective or ineffective. In the current simulation
study, we included three types of instructional components: (1)
videos, (2) formative assessments (aka quizzes), and (3) hint
messages associated with formative assessments. Learning
trajectories were generated by simulating students’ learning
activities. For the sake of explanation, we use a phrase ‘simulated
students’ to refer to hypothetical students in the simulation.

In the real world, the growth of mastery level depends on the
learning activities actually taken and students’ latent traits of
learning. In the current simulation, the masterly level shows a
probability of answering a quiz correctly and the simulated students’
performance on a quiz was determined by the masterly level. The
growth of the mastery level, 𝑝#,%,	was simulated using a logistic
regression model as shown below:

𝑝#,% = b
1

1 + 𝑒de.,fg	

𝑍#,% = 	𝑍#,%d* + 𝛿*J𝑐, 𝑒(𝑎#,%d*)L + 𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))

The [𝑋]	operator is to round the value X to the nearest multiple of
0.05 and 𝑎#,%d*	 is an instructional component that a simulated
student i took at time T-1.

Logit 𝑍#,% was directly increased with 𝛿*(𝑐, 𝑒(𝑎#,%d*)) +
𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*)). 𝛿*	and	𝛿k model learning gain obtained by
taking an action 𝑎#,%d*. 𝛿*(𝑐, 𝑒(𝑎#,%d*))	 is a rectified random
variable that follows a normal distribution with mean 𝜇* and
standard deviations 𝜎*, i. e. ,max	(0,𝒩 (𝜇*	, 𝜎*k)). 	𝜇* and 𝜎* are
given a priori based on 𝑐 and 𝑒(𝑎#,%d*).

c and 𝑒(𝑎#,%d*) that represent contrast and effectiveness
respectively were the parameters controlled to create several online
learning scenarios for research question RQ1. We controlled the
difference in impact on students’ learning (i.e., masterly level)
between effective and ineffective instructional components using
two parameters: (i) c that represents the contrast in the increase of
logit between effective and ineffective instructional elements—
large vs. moderate vs. small, and (ii) 𝑒(𝑎#,%d*) that represents the
effectiveness of the instructional element 𝑎#,%d* —effective vs.
ineffective.

The fundamental assumptions were that (1) the larger the contrast,
the larger the differences of 𝜇* when effective vs. ineffective
instructional components were taken, and (2) the larger the contrast,
the smaller the 𝜎* was. For example, if 𝑐 = “large”, (𝜇*, 𝜎*)	was
(0.5, 0.01) vs. (-0.1, 0.01) for 𝑒(𝑎#,%d*) =	 “effective” vs.
“ineffective.” However, they were (0.3, 0.1) vs. (0.1, 0.1) if 𝑐 =
“small.” Table 1(a) shows 𝜇* and 𝜎*	 for different contrast and
effectiveness.

𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))	is also a rectified random variable that follows
a normal distribution with mean 𝜇k and standard deviations 𝜎k. The
variable 𝛿k was set to be zero if 𝑎#,%d* was not a quiz. Otherwise,
𝜇k and 𝜎k were determined a priori based on a student’s response

Table 1: The means 𝜇 and standard deviations 𝜎 used for the
simulation study to model the growth of mastery level.

(a)
The	value	of	(𝜇*	, 	𝜎*)	where
𝛿*(𝑐, 𝑒(𝑎#,%d*))		~	max	(0,𝒩(𝜇*	, 𝜎*k))

 Contrast: c
Effectiveness: e(𝑎#,%d*) Large Moderate Small

Effective 0.5 0.01 0.4 0.05 0.3 0.10
Ineffective -0.1 0.01 0.0 0.05 0.1 0.10

(b)	
The value of (𝜇k	, 	𝜎k) where
𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))~max(0,𝑁(𝜇k, 𝜎kk)), or 0 if 𝑎#,%d*	was not a
quiz.
𝑟𝑠𝑝𝑛𝑠(𝑎#,�d* ∈ 𝑞𝑢𝑖𝑧) 𝜇k		𝜎k

Correct 0.05 0.01
Incorrect 0.03 0.01

Table 2: The means and standard deviations used for computing
the initial logit 𝑍#,�.

The value of (𝜇�, 𝜎�) where 𝑍#,� ~ max(0, 𝒩(𝜇�	, 𝜎�k))
 Contrast: c
 Large Moderate Small

𝜇�, 𝜎� -0.95 0.01 -0.95 0.10 -0.95 0.20

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 228

rate, rspns=correct/incorrect. We assume that when a student was
able to answer the quiz correctly, logit 𝑍#,% increases more than
when the student was not able to answer it. Table 1(b) shows
𝜇k	and	𝜎k for correct and incorrect responses respectively.

Student’s initial logit 𝑍#,� also followed a rectified normal
distribution with 𝜇�	and 𝜎�k. These were given a priori based on the
contrast parameter, c, as shown in Table 2.

In addition to three learning scenarios with different contrasts, we
also created three versions of mock online courseware with
different qualities. The quality of courseware was operationalized
as the ratio of a number of effective to ineffective instructional
components in the courseware. Three types of qualities are
implemented in this study: High, Medium and Low. The higher the
quality, the larger the proportion of effective instructional
components. In the simulation study, each page in the mock online
courseware included 3 lecture videos, 3 quizzes, and 3 hint
messages each associated with a quiz. The low, medium, and high-
quality courseware included 80-90%, 50-60%, and 10-20%
ineffective instructional components.

Two instances of mock courseware (with a different number of
pages) were created for each level of quality. Those six instances
of courseware were crossed with three levels of contrast, resulting
in 18 different simulated-learning scenarios. In each scenario,
simulated students took a total of 10 to 30 instructional components.

Learning trajectories of students were randomly generated as
follows. At first, for each simulated student, the number of
instructional components to be taken was randomly decided. Either
a video or a quiz was then randomly selected as the first learning
activity. If it was a quiz, the student might show a hint before trying
to answer the quiz at 0.05 probability. When the student answered
a quiz, the correctness of the quiz response was determined
randomly using the mastery level as the probability distribution.
When the response was incorrect, either requesting a hint or
retaking the same quiz (as a next instructional component) was
randomly determined based on the probability distribution reported
in [1]. Let quiz�	be a quiz with an ID 𝑥 that student answered
incorrectly. The probability distribution is as follows: (i) Try quiz�
at 0.78 probability, (ii) show hint� at 0.20, (iii) give up and move
to different quiz or video at 0.02 (these two are randomly selected).
The same distribution is applied when the student showed hint�.
This process was repeated for the number of instructional
components to be taken. Simulated students were able to retake the
same instructional components.

For each of 18 learning scenarios, 100 course offerings were
created each with 1,000 simulated students. In other words, this
simulation study modeled a large-scale field trial as if 1800
instances of online course offerings were tested each with 1,000
student participants.

For each course-offering simulation, the learning trajectory data
were converted into a learning trajectory graph (LTG). As a
consequence, 1,800 instances of LTGs were generated. The
manipulation of logit described above was used to estimate mastery
level in LTG. For each of the 1,800 LTGs, the value iteration
technique was applied to compute a converse policy. From each
converse policy, the frequency heuristic was applied to generate a
recommendation for refinement for a corresponding instance of
online courseware.

6. RESULTS
6.1 Overview of the Data
To verify the feasibility of the simulation data, we computed a
correlation between the ratio of effective to ineffective instructional
components taken by a student and the final mastery level. The data
showed a strong positive correlation, r = 0.70, t(1799998) =
1314.56, p < 0.001, suggesting that the final mastery level was
significantly higher when simulated students took relatively more
effective instructional components than ineffective ones.

6.2 Converse Policy-based Recommendation
6.2.1 Frequency Heuristic
The hypothesis under the frequency heuristic is that relatively
ineffective instructional components tend to appear in a policy
action set of a given converse policy more frequently than effective
ones. To verify this hypothesis, we first compare the normalized
frequency of ineffective components in the policy action set with
that of effective ones. We also answer RQ1: How robust is the
converse policy as a detector for ineffective instructional
components against different conditions of learning data?

The frequency of an instructional component i selected as a
converse policy action was normalized as follows. Let p be a
converse policy and S be the set of states in the LTG. The
normalized frequency of an instructional component 𝜄 is calculated
by the following equation.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦(𝜄) = 𝑁𝐹(𝜄) =
|𝐒O(𝜄)|
|𝐒𝒜(𝜄)|

𝐒O(𝜄) = {𝑠|𝜋(𝑠) = 𝜄} : A set of states in the LTG where i is the
converse policy action.
𝐒𝒜(𝜄) = {𝑠|𝜄 ∈ 𝒜V} (where 𝒜V is a set of actions available from
state s): A set of states where the instructional component i was
taken.
|𝑋|:	Number	of	elements	in	𝑋
Also notice that 𝐒O(𝜄) ⊂ 𝐒𝒜(𝜄).

We then tested if there was a significant difference in the mean
normalized frequencies between effective and ineffective
instructional components. Table 3 shows the mean normalized
frequencies of ineffective and effective instructional components
and those standard deviations. The effect size is a ratio of the
difference between two means to the standard deviation. Table 3
suggests that regardless of the quality and contrast, ineffective
instructional components were selected as a converse policy action
notably many times more than effective ones. The differences were
all statistically significant using t-test (p<<0.01). The data also
suggest that the difference in the frequencies between ineffective
and effective components becomes the smallest (as indicated by the
smallest effect size) when contrast is small and quality is high, as
we expected.

These results support the hypothesis that relatively ineffective
instructional components tend to appear in a converse policy
action set more frequently than effective instructional components.
It is also shown that the converse policy is robust enough to
discriminate the effectiveness of the instructional component
regardless of the quality (operationalized as the ratio of effective
vs. ineffective components) and the contrasts (operationalized as
the difference in the growth of logit between effective and
ineffective components).

229 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

6.2.2 Accuracy of recommendation
We next evaluate the precision and recall scores of
recommendations created by frequency heuristic to answer RQ2:
How accurately does the frequency heuristic compose a
recommendation?

To compose a recommendation, we need to define a cut-off value.
As a reminder, those instructional components whose normalized
frequency is more than a pre-defined cut-off are labeled as
“ineffective” and included in the recommendation. What the cut-
off value should be is an empirical call.

In the current study, we compared two cut-off values using mean
(M) and standard deviation (SD) of the normalized frequency:
M+SD vs. M–SD. To evaluate the accuracy of recommendation,
we computed Precision and Recall as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|Φ�����

� |
|Φ�|

𝑅𝑒𝑐𝑎𝑙𝑙 =
|Φ�����

� |
|Φ#����|

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

|Φ�����
� |:	Number of ineffective instructional components included

in a recommendation
|Φ�| : Number of total instructional components included in a
recommendation
|Φ#����|: Number of ineffective instructional components in
courseware

We investigated how precision and recall scores vary depending on
the cut-off and the condition of the learning data (contrast, quality).
Figure 2 shows precision and recall scores comparing M-SD and
M+SD cut-offs for each quality of the courseware. For each data
point, three levels of contrasts are aggregated, because there was no
notable difference among them. The figure show that when the
quality of courseware is low to medium, the M-SD cut-off had
better recall and precision scores than M+SD. F1 score for M-SD
was 0.99 and 0.92 for low and medium qualities respectively. On
the other hand, when the quality is high, the M+SD cut-off
outperformed M-SD. F1 scores of M+SD for high quality
courseware was 0.88.

In sum, the frequency heuristic adequately works to determine
which instructional components must be taken into a
recommendation for courseware refinement. In the current
simulation study, over 90% of ineffective instructional components

were correctly taken into a recommendation when an appropriate
cut-off was used based on the maturity of the courseware. When
the courseware is newly built (which is usually in a low to medium
quality), the M–SD cut-off should be used, whereas the M+SD cut-
off should be used for matured (high-quality) courseware. In the
current study, even with the high-quality courseware where only
10-20% of all instructional components in the courseware are
ineffective, RAFINE was able to correctly include ineffective
components in the recommendation with the M+SD cut-off.

7. DISCUSSION AND LIMITATIONS
In the evaluation study, we had two research questions. RQ1: How
robust is the converse policy as a detector for relatively ineffective
instructional components against different conditions of learning
data? RQ2: How accurately does the frequency heuristic compose
a recommendation?

First, the comparison of the normalized frequency revealed that
relatively ineffective instructional components tend to appear in a
policy action set significantly more frequently than effective ones
regardless of the contrast and the quality of courseware. This
suggests that the converse policy as a detector for relatively
ineffective instructional components is robust enough against
different conditions of learning data (RQ1)

Second, we evaluated the accuracy of the recommendation created
by the frequency heuristic to answer RQ2. The results showed that
when we use a different cut-off depending on the maturity of
courseware, the recommendation created by the frequency heuristic
accurately includes ineffective instructional components.

The results from the evaluation study showed that RAFINE can find
deficits of the existing courseware by analyzing learning trajectory
data on behalf of human experts. Although videos, quizzes and
hints are evaluated in the evaluation study, RAFINE could also
analyze other types of instructional components such like written
paragraphs, tables, figures, etc. However, accurately tracking how
students review these instructional components while learning is
not straightforward—e.g., the ordinal clickstream data do not
convey whether a student was reading a text instruction or not.

Table 3: Comparison of the mean normalized frequency between
ineffective (Inef.) and effective (Ef.) instructional components. A

number in the parentheses shows an effect size.
 Contrast

 Large Moderate Small

Quality Inef. Ef. Inef. Ef. Inef. Ef.

High 0.7±0.2 0.2±0.1 0.7+0.1 0.1±0.1 0.5±0.1 0.2±0.1
 (4.0) (5.7) (3.1)

Med. 0.4±0.1 0.1±0.05 0.4±0.1 0.1±0.04 0.4±0.1 0.2±0.1
 (7.9) (8.5) (3.6)

Low 0.4±0.1 0.04±0.04 0.4±0.1 0.04±0.03 0.4±0.1 0.1±0.1
 (9.2) (10.0) (4.5)

Figure 2 : Precision and recall of a recommendation. The X-axis
represents the quality of the courseware. Red dashed lines show

results from M+SD and blue solid lines show M–SD.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low Medium High

M-SD: Precision

M+SD: Precision

M-SD: Recall

M+SD: Recall

M – SD: Recall
M + SD: Recall

M – SD: Precision

M + SD: Precision

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 230

One limitation of this study is that there are several assumptions
about learning trajectory data. First, we assume the presence of the
KC model. Instructional components should be tagged with a KC
to apply the RAFINE method. Therefore, the recommendation
created by RAFINE changes depending on a KC model. Methods to
build a good cognitive model that captures the fine KC model are
studied as mentioned in the related works.

Second, we also assume that the students’ masterly level is
measured correctly. Since the reward function depends on the
change of masterly level from the current state to the next state, it
is essential that the measured masterly level is not far from the
actual level of students’ understanding on a skill.

Third, variations in the learning trajectory graph are critical when
applying the RAFINE method. To get better performance, RAFINE
must be fed a learning trajectory graph that contains diverse
learning activities. If there is only one path in a learning trajectory
graph, for example, the converse policy has no choice but to select
an instructional component that appears in the path as a converse
policy action.

One question that is not addressed in the current study is about the
students’ differences—how much the students’ individual
differences affect the “effectiveness” of each instructional
component. Instructional components that are quite effective for
one group of students may not be as effective for another group of
students. Although it is out of the scope of the current paper, we
have two working hypotheses for future studies. One hypothesis is
about the majority rule—the big data overrides the individual
human factors and detects the latent trends. Another hypothesis is
about the individualized student model—entering individual
student factors into the student model used to compute the mastery
level, e.g., the individualized additive factor model [24]. Further
studies will be necessary to address these issues in detail.

8. CONCLUSION
We found that the RAFINE method could serve as a building block
for the evidence-based, human-in-the-loop, iterative online
courseware learning engineering method by detecting the deficits
of the courseware. RAFINE analyzes learning trajectory data
collected from existing online courseware using the reinforcement
learning technique and identifies ineffective instructional
components. The detected components are provided to courseware
developers as a recommendation for refinement. Given the
recommendation, courseware developers can efficiently improve
the courseware by modifying the listed instructional components.

In addition to providing a new evidence-based learning engineering
method, we also proposed a technique called the frequency
heuristic and contributed to the community of applications of
reinforcement learning (RL). The frequency heuristic is a novel
way of interpreting the policy for evaluating the actions in MDP. It
operates differently from the conventional applications of RL in
which the policy is used for optimization. In RAFINE, the frequency
heuristic is applied to the converse policy to detect ineffective
instructional components (i.e., action) that had relatively less
contribution to learning. In the evaluation study, we demonstrated
that the frequency heuristic over the converse policy is potentially
a powerful analytic tool to detect a relative weakness among
available actions.

For future studies, it is crucial to measure the actual effectiveness
of the proposed method in authentic learning settings and apply the
method to real students’ learning data.

9. ACKNOWLEDGEMENTS
This study was partially supported by National Science Foundation
grant Award No. 1623702.

10. REFERENCES
[1] Aleven, V., & Koedinger, K. R. (2000). Limitations of

student control: Do students know when they need help? In
G. Gauthier, C. Frasson, & K. VanLehn (Eds.), Proceedings
of 5th International Conference on Intelligent Tutoring
Systems (pp. 292-303): Springer Verlag.

[2] Bodily, R., Nyland, R., & Wiley, D. (2017). The RISE
Framework: Using Learning Analytics to Automatically
Identify Open Educational Resources for Continuous
Improvement. . The International Review of Research in
Open and Distributed Learning, 18(2).

[3] Cen, H., Koedinger, R. K., & Junker, B. W. (2006). Learning
Factors Analysis - A General Method for Cognitive Model
Evaluation and Improvement. In International Conference on
Intelligent Tutoring Systems (pp. 12).

[4] Chi, M., VanLehn, K., Litman, D., & Jordan, P. (2011). An
evaluation of pedagogical tutorial tactics for a natural
language tutoring system: A reinforcement learning
approach. International Journal of Artificial Intelligence in
Education, 21(1-2), 83-113.

[5] Clark, R., & Mayer, R. E. (2003). e-Learning and the
Science of Instruction: Proven Guidelines for Consumers
and Designers of Multimedia Learning. San Francisco, CA:
John Wiley & Sons.

[6] Dede, C., Richards, J., & Saxberg, B. (2018). Learning
Engineering for Online Education: Theoretical Contexts and
Design-based Examples: Routledge.

[7] Du, X., & Cardie, C. (2017). Identifying where to focus in
reading comprehension for neural question generation. In
Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pp. 2067-2073.

[8] Fishman, B., Marx, R. W., Blumenfeld, P., Krajcik, J., &
Soloway, E. (2004). Creating a Framework for Research on
Systemic Technology Innovations. The Journal of the
Learning Sciences, 13(1), 43-76. doi:10.2307/1466932

[9] González-Brenes, J. P., & Mostow, J. (2012). Dynamic
Cognitive Tracing: Towards Unified Discovery of Student
and Cognitive Models. International Educational Data
Mining Society.

[10] Guàrdia, L., Maina, M., & Sangrà, A. (2013). MOOC design
principles: A pedagogical approach from the learner’s
perspective. elearning papers(33).

[11] Iglesias, A., Martínez, P., Aler, R., & Fernández, F. (2009).
Reinforcement learning of pedagogical policies in adaptive
and intelligent educational systems. Knowledge-Based
Systems, 22(4), 266-270.

[12] Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The
Knowledge-Learning-Instruction Framework: Bridging the
Science-Practice Chasm to Enhance Robust Student
Learning. Cognitive Science, 36, 757-798.
doi:10.1111/j.1551-6709.2012.01245.x

[13] Lindsey, R. V., Khajah, M., & Mozer, M. C. (2014).
Automatic discovery of cognitive skills to improve the

231 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

prediction of student learning. In Advances in neural
information processing systems, 1386-1394.

[14] Martin, B., Mitrovic, A., Koedinger, K. R., & Mathan, S.
(2011). Evaluating and improving adaptive educational
systems with learning curves. User Modeling and User-
Adapted Interaction, 21(3), 249-283. doi:10.1007/s11257-
010-9084-2

[15] Mazidi, K., & Tarau, P. (2016). Automatic question
generation: from NLU to NLG. International Conference on
Intelligent Tutoring Systems, pp.23-33.

[16] Milligan, S. K., & Griffin, P. (2016). Understanding learning
and learning design in MOOCs: A measurement-based
interpretation. Journal of Learning Analytics, 3(2), 88-115.

[17] Rafferty, A. N., Brunskill, E., Griffiths, T. L., & Shafto, P.
(2015). Faster Teaching via POMDP Planning. Cogn Sci,
40(6), 1290-1332. doi:10.1111/cogs.12290

[18] Shapiro, H. B., Lee, C. H., Wyman Roth, N. E., Li, K.,
Çetinkaya-Rundel, M., & Canelas, D. A. (2017).
Understanding the massive open online course (MOOC)
student experience: An examination of attitudes, motivations,
and barriers. Computers & Education, 110, 35-50.
doi:http://dx.doi.org/10.1016/j.compedu.2017.03.003

[19] Shen, S., & Chi, M. (2016). Reinforcement Learning: the
Sooner the Better, or the Later the Better? Proceedings of the

2016 Conference on User Modeling Adaptation and
Personalization. ACM, pp.37-44.

[20] Slavich, G., & Zimbardo, P. (2012). Transformational
Teaching: Theoretical Underpinnings, Basic Principles, and
Core Methods. Educational Psychology Review, 24(4), 569-
608. doi:10.1007/s10648-012-9199-6

[21] Tetreault, J. R., & Litman, D. J. (2008). A reinforcement
learning approach to evaluating state representations in
spoken dialogue systems. Speech Communication, 50(8-9),
683-696.

[22] Wang, P., Rowe, J. P., Min, W., Mott, B. W., & Lester, J. C.
(2017). Interactive Narrative Personalization with Deep
Reinforcement Learning. Paper presented at the IJCAI.

[23] Wiering, M., & van Otterlo, M. (Eds.). (2012).
Reinforcement Learning. Heidelbereg, Berlin: Springer.

[24] Yudelson, M., Koedinger, K., & Gordon, G. (2013).
Individualized Bayesian Knowledge Tracing Models. In H.
C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial
Intelligence in Education (Vol. 7926, pp. 171-180): Springer
Berlin Heidelberg.

[25] Zhang, Y., Shah, R., & Chi, M. (2016). Deep Learning+
Student Modeling+ Clustering: A Recipe for Effective
Automatic Short Answer Grading. International Educational
Data Mining Society.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 232

