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ABSTRACT
Eye gaze movements analysis are being increasingly used in
many researches within learning context. Most of those re-
searches analyses the eye movements fixations inside some
areas of interest, the saccades trajectory and the scanpath.
The eye gaze data are spatiotemporal sequences represent-
ing the dynamic of the eye fixations in the visual space over
the time. In addition, they contain noises caused by differ-
ent factors. The task of developing predictive model based
on those raw spatiotemporal eye gazes’ sequences is chal-
lenging. In this research, we present machine learning ap-
proaches that we have successfully used to address those
challenges with high accuracy mainly with the deep convo-
lutional LSTM architecture.
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1. INTRODUCTION
In some medical field such as anesthesiology, the visual per-
ception is just a tip of the iceberg known as the “situational
awareness.” In fact, the clinician needs to develop the skills
to see adequately the patient vital signs evolution over the
time in order to build their understanding and interpreta-
tion of the clinical situation to perform their clinical rea-
soning. In this paper, we explore the following question:
Can we tell novice and expert clinicians apart by analyzing
only their eye-gaze movements to perform their clinical rea-
soning? Eye gaze data often contains noise which can be
caused by many factors [10]. In addition, the consecutive
data points generated by the eye movements trajectory over

the time within the area of interest are spatiotemporal con-
sidering their order and their positions in the visual space.
Ultimately, our experiments aim to understand key differ-
ences between novice and expert clinicians eye movements
behavior during their clinical reasoning. Taken together,
they will provide us insights to build an Intelligent Tutor-
ing System (ITS) aiming to reinforce gradually the learning
curve of novice clinicians with some cues from the experts
behavioral implicit knowledge in terms of visual attention to
perform a clinical reasoning in critical anesthesiology case.

2. RELATED WORKS
The researches using eye-tracking and ITS can be summaries
in two main axes according to Conati et al [6]. The first axe
is the investigation of eye-tracking data as source of infor-
mation for student modelling and personalized instructions.
The second axe is leveraging the gaze data to attempt to un-
derstand relevant student behaviors. For that purpose, data
mining techniques are often used to retrieve similarities, dif-
ferences, etc. using the eye movements characteristics such
us the fixations, the saccades and the scanpaths. Some re-
searches also focus on mining eye-tracking patterns [18] . As
a contribution, in this paper we propose predictive models
using the sequence of the eye fixations positions over the
time. These model will be used by the envisaged ITS to
proactively classify eye fixations patterns as Novice vs Ex-
pert behavior in order to provide adequate eye movement
tutoring services.

3. EXPERIMENTS AND DATASET
3.1 Experiments
An experiment has been conducted to collect eye gaze data
for the research using an authentic task involving visual per-
ception and clinical reasoning. Seven Novices and seven ex-
perts clinicians were asked to visualize a simulated clinical
scenario to perform their clinical reasoning. A [Novice] is a
resident clinician within the first or second year of the resi-
dency program (PGY1 or PGY2).1 An [Expert] is a hospi-
tal staff member with more than 8 years experience. Each

1PGY refers to a North American scheme denoting the
progress of postgraduates in their residency programs.
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participant looked at a 23” HD monitor (1920x1080 px) on
which the simulation was broadcasted. A Tobii TX300 eye
tracker was attached to the monitor to record their eye-gaze
movements. The simulation is based on the Cannot Intu-
bate/Cannot Oxygenate (CICO) algorithm from the Diffi-
cult Airway Society to manage unanticipated difficult intu-
bation in adults [9]. The simulation was scripted to inte-
grate various unanticipated and realistic complications. It
was recorded using high-fidelity settings and the video had
a total duration of 13 minutes.

As a task, the participants were asked to verbalize their clin-
ical reasoning using a think-aloud protocol (recorded with
the eye tracker built-in microphone) while watching the sim-
ulation video. Specifically, they had to explain what they
see in the different areas of interest (Figure 1) to perform
their reasoning. In addition, the participants must explain
what they would have done as clinician in charge in some key
medical and situational awareness events (Table 1) identified
throughout the simulation.

Figure 1: Areas of interest in the simulation

The display screen was divided in seven zones; each repre-
senting an area of interest (AOI).

3.2 Dataset
The eye tracker has an accuracy of 0.4 deg and was set to
a sampling rate of 60 Hz. This means that a data point
is collect each 17 ms. Each “data point” in the dataset is
identified with a {x,y,t} tuple by the eye tracker. Overall,
our eye-tracking dataset contains about 645k data points;
i.e., 14 time series of around 46k points each. Each time
series T = {p(1) · · ·p(n)} is a sequence of 2D vectors, where

each vector p(i) = [xi, yi] represents the eye-gaze position at
a given timestamp ti.

4. PRELIMINARY ANALYSIS
4.1 Eye movements fixation analysis
First, we conducted preliminary analysis, aimed at provid-
ing exploratory insights. For that, we compare novices vs.
experts using descriptive statistics on the fixation. For ex-
ample, the result for the total fixation count and the total
fixation duration within each AOI are shown in Figure 2.

These preliminary analysis results showed that both experts
and novices have their highest total fixation duration on
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Figure 2: Event count (2a) and mean fixation duration (2b).
Error bars denote 95% confidence intervals.

the Technical view (AOI 3) and the General view (AOI 1).
This result is further confirmed by the fixation count. Sec-
ond, novices spent a significantly shorter amount of time at
the Saturation view (AOI 5) than the experts (M = 59 vs
M = 107 s, p = .002).Inversely, novices spent a significantly
higher amount of time at the Technical view (AOI 3) than
experts (M = 382 vs M = 266 s, p = .042). All other
comparisons were not found to be statistically significant.

4.2 Eye movements behavior around the key
events

The video recordings were annotated at different timestamps
in terms of clinical keys events. The Table 1 provides an
overview of such key event annotations.

Focus Area AOIs Time Description

Healthcare 1,3 02:41 Call for help
provider 1,2,3 03:35 Mask ventilation

3 06:41 Installation of oropharyngeal cannula
3 07:35 Use of video-laryngoscope
1,3 08:33 Use of supra-glottic device
1,3 09:39 Blue Code initiation
3 10:32 Initiation of surgical airway

Patient 2 01:10 Impaired verbal response
3 01:25 Eye closure
1 02:09 Hypoventilation

Vital signs 5,7 01:37 Desaturation
monitor 4,6 08:33 Bradycardia

5 10:22 Loss of the saturation signal

Table 1: Key events through the simulation video, together
with their relation to the eye tracker AOIs.

With this video annotations, we rendered the heatmaps from
raw eye-gaze coordinates corresponding to each key event.
We considered eye movement data corresponding to 2 sec-
onds of duration, 1 second before and 1 second after each key
event timestamp, given that both eye fixations and reaction
times occur typically around 500 ms [8, 15, 19]. Therefore,
it allows to capture the eye gaze behaviour before and after
each key event.

With this fine-grained video annotations and the observa-
tion of the incremental heatmaps around each key events,
we observed more salient differences between novices and
experts. For instance at 06:41 (Installation of oropharyn-
geal cannula) we observed a divergent eye movements behav-
ior: both novices and experts focused on AOIs 3 and 5, but
novices also focused in AOI 1 (Figure 3). These observations
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suggest that both novices and experts have subtle different
eye-gaze movement patterns most of the time, while some-
times they are similar. What is most important, these eye-
gaze patterns vary over time, suggesting that both novices
and experts tend to focus on different AOIs over time.

(a) Experts (b) Novices

Figure 3: Heatmap of the eye-gaze coordinates taking into
account 1 second before and after the key events at 06:41

5. EXPERTISE CLASSIFICATION BASED
ON EYE GAZE SEQUENCE COORDINATES

Taken together, the preliminary and the behavioral analysis
suggest that we could build a classification model consider-
ing the eye-gaze movements coordinates over time. Based
the outcome and observations from the preliminary analysis,
we wondered if we could automatically learn these eye-gaze
behaviors and discriminate clinicians’ expertise accordingly;
i.e., given a particular sequence of eye movements with their
coordinates, can we predict if it is a novice or an expert eye
movements behavior? That research objective is a two-class
(binary) classification problem on spatiotemporal eye gaze
data.

5.1 The challenges of sequential data classifi-
cation

As discussed by Xing et al. [26], there are three major chal-
lenges in sequence classification. First, the vast majority
of classifiers can only take input data as a vector of fea-
tures. However, there are no explicit features in sequence
data. Second, even with various features selection methods
to transform a sequence into a set of features, the feature
selection is far from trivial. The dimensionality of the fea-
ture space for the sequence data can be very high and the
computation can be costly. Third, besides accurate classifi-
cation results, in some applications, we may also want to get
an “interpretable” classifier. As previously stated, building
an interpretable sequence classifier is difficult since there are
no explicit a priori features.

There are many approaches that have been proposed to ad-
dress the problem of sequence classification. We will briefly
discuss the two main categories: vector-based and model-
based classification. In vector-based classification, a data
sequence is transformed into a vector of features through
feature selections. Then, we need a distance function to
measure the similarity between a pair of sequences. The
choice of distance measures is critical to the performance of
these classifiers. For simple time series classification, Eu-
clidean distance is a widely adopted option [26]. Since Eu-
clidean distance is sensitive to distortions in time dimen-
sion, dynamic time warping (DTW) is proposed to over-
come this problem and does not require two time series to

be of the same length [13]. Dynamic time warping is usually
computed by dynamic programming and has the quadratic
time complexity. Therefore, it is computationally costly on
a large data set. Using that vector representation of the
data, sequences can be classified by a conventional classifica-
tion method, such as support vector machines [24], decision
trees [4], etc.

In model-based classification, given a class of sequences, an
underlying model learns the probability distribution of each
sequence. The simplest approach is the Naive Bayes se-
quence classifier [7]. It assumes that, given a class, the fea-
tures in the sequences are independent of each other. How-
ever, this assumption is often violated in practice. A hidden
Markov model (HMM) can learn the dependence among el-
ements in sequences [1, 22], assuming that the system being
modelled is a Markov process with unobserved states, where
the state is described by a single discrete random variable.
In contrast, neural networks do not have these assumptions.
Moreover, HMMs can only deal with a limited number of
step dependencies, while LSTMs can deal with long-term
dependencies.

5.2 Machine Learning Models
Since the objective is to predict the expertise given a par-
ticular eye movements sequence, the full-length eye-gaze se-
quence are sliced in smaller parts. Each instance is a fixed-
size time series consisting of the raw eye-gaze coordinates;
i.e., (x,y) points (a 2D vector). For our experiment, we used
sequence slices of length s = 1000, which represent eye-gaze
sequences (time series) of about 17 seconds each. Finally,
because of the small number of participants, we choose the
LOOCV (Leave-one-out Cross Validation) as a resampling
technique.

Two machine learning architectures were developed to per-
form the eye gaze spatiotemporal data classification : a
WKM-kNN architecture and a DeepConv-LSTM architec-
ture

5.2.1 WKM-kNN architecture
The WKM-kNN architecture is a composition of warped K-
means (WKM) with k-nearest neighbor (k-NN). WKM is a
fast algorithm for clustering data sequences based on dis-
tances, and has outperformed comparable approaches in the
task of sequence classification [17]. In addition to providing
a compact representation of data sequences, WKM makes
them robust to noise or distortions in such data. The input
to this model is a time series (a sequence of 2D vectors), and
the output is either novice or expert, according to the k-NN
classifier.

The WKM algorithm capitalizes in the sequentiality of the
data and starts with a suitable initial partition [16], by using
piecewise linear interpolation, which results in a non-linearly
distributed initial partition of the data. Then, WKM iter-
ates over the data points using a K-means-like optimization
procedure. Finally, the k-NN classifier is a non-parametric
instance-based learning method, which is among the sim-
plest of all machine learning algorithms. In this work we
use k = 1 for classification.
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To sum up, the WKM-kNN architecture proceeds as fol-
lows: first WKM compresses a time series of length n into c
disjoint homogeneous segments (or “elementary units”) with
1 < c � n, then the centroid of each segment is used as
input to a 1-NN classifier. As in any other clustering algo-
rithm, the number of sequence chunks c should be provided
as input. Therefore, because the optimum c for classifica-
tion is unknown in advance, we tested different values of c,
increasingly from 1 (each time series is reduced to a single
2D vector) to 500 (half of the original sequence length).

5.2.2 DeepConv-LSTM architecture
The DeepConv-LSTM architecture is a neural network con-
sisting of a convolutional block followed by a recurrent block
(Figure 4).

The recurrent block is a deep long short-term memory (LSTM)
network. LSTMs are a type of recurrent neural networks
(RNNs) capable of learning long-term dependencies in time
series by selectively remembering patterns for long duration
and were developed to deal with the exploding and vanishing
gradient problems of traditional RNNs [2, 20]. LSTMs have
outperformed many other approaches in a variety of tasks,
such as handwriting [11] and speech recognition [12], there-
fore we adopted this model to analyze eye-gaze sequences.
In addition, inspired by recent work that has applied convo-
lutional neural networks (CNNs) to sequence modeling with
great success [3], we add a one-dimensional convolutional
layer (temporal convolution) to the network input followed
by a max pooling layer, which then feed the consolidated
features to the LSTM. In other words, a CNN layer learns
spatial features which are then learned as sequences by an
LSTM layer. This way, we combine the spatial structure
learning properties of CNNs with the sequence learning of
LSTMs. On the other hand, the max pooling layer is a
sample-based discretization process, with 3 goals in mind:
(1) reduce the input dimensionality, by filtering the initial
data representation; (2) avoid over-fitting, by providing an
abstracted form of the data representation; and (3) lower the
computational cost, by reducing the number of parameters
to learn.

Input
n = 1000

CNN
n = 500

Max Pooling
n = 500

Dropout
n = 500

LSTM
n = 100

Dropout
n = 100

Output
n = 2

Convolutional block Recurrent block

Figure 4: Deep learning network topology. Notes: The
drawing is simplified to avoid visual clutter. Each layer di-
mensionality (n) is denoted below their title.

Overall, the chosen network has 41311 trainable parameters
with the topology shown in Figure 4. The network input is
the sequence slices (a sequence of 2D vectors), whereas the
network output is either novice or expert. Both the CNN
and max pooling layers have a kernel size of 2. The LSTM
layer is fully connected with 100 neurons. The dropout lay-
ers have a probability of 0.2, since it is the recommended

value for most machine learning scenarios; see e.g. [21, 23].
These layers have the effect of reducing overfitting and im-
proving model performance.

We trained the neural network with 60 epochs and a batch
size of 256 (mini-batch training) on an i5 CPU @ 3.30 GHz
with 16 GB of RAM. After each epoch, the model is eval-
uated against the testing partition, to get an idea of how
well the model is performing during training, after which
the data is shuffled for the next epoch. The model was fit
using the efficient ADAM optimization algorithm [14] with
binary crossentropy as loss function.

5.3 Results
The Table 2 summarizes the results, in terms of classification
accuracy. Together with the confidence intervals, we report
the Area Under the ROC Curve (AUC), which is a one of
the standardized measure of a classifier’s performance. Since
the WKM-kNN architecture was tested at different segmen-
tation values c, we report the best classification accuracy
result, which was achieved with c = 4 segments.

Model Accuracy (%) 95% Conf. Int. AUC

WKM-kNN 72.6 [71.1, 74.2] 0.74
DeepConv-LSTM 84.2 [84.9, 86.4] 0.86

Table 2: Summary of the classification results. Confidence
intervals are calculated according to the Wilson method for
binomial distributions [25].

6. CONCLUSION AND FUTURE WORKS
This research objective is to collect factual eye gaze data
from clinicians during a clinical reasoning task. Given a par-
ticular sequence of eye movements, with their coordinates;
can we predict if it is a novice or an expert clinician eye
movements behavior ? To answer that question, we built two
machine learning models for the binary classification. The
deep learning architecture provides an overall better results
achieving a very competitive level of accuracy (84.2%) on
eye-gaze spatiotemporal data. These results are particularly
striking given the fact that we used the raw gaze coordinates
coming from the eye tracker. The key for the success of a
deep neural network classifier is the ability to automatically
learn hidden features or intermediates representations in the
input data.

The future work is to use the eye-gaze spatiotemporal data
classifier outcome and the recorded expert clinical reasoning
during the key events as one of the key milestone for the
ITS domain model. Also, we have not studied the impact
that eye-gaze sequence length may have on model accuracy,
though in general shorter sequences should be harder to clas-
sify. Some studies argue that humans make informed deci-
sions in a matter of milliseconds [5] although we suspect this
is strongly correlated to the application at hand. Therefore,
analyzing this possible impact of sequence length on accu-
racy is another interesting avenue for future work, which in
turn opens many research questions. For example: What
is the minimum sequence length that maximizes classifica-
tion accuracy? Is there any upper bound from which we
can devise useful eye-gaze information? Does more segment
context overlap lead to better model generalization?
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