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ABSTRACT 

Effective teachers recognize the importance of transitioning 

students into learning activities for the day and accounting for the 

natural drift of student attention while creating lesson plans. In 

this work, we analyze temporal patterns of gaming behaviors 

during work on an intelligent tutoring system with a broader goal 

of detecting temporal trends in students’ motivation. Findings 

demonstrate that observing gaming the system behaviors in the 

near beginning or end of a working session correspond with 

predictions made by self-regulation theories of ego-depletion and 

task-switching. Furthermore, analyses provide initial evidence 

these gaming behaviors are indicative of partial cognitive 

engagement and session-level influences on student motivation. 

These findings provide evidence for how temporal fluctuations in 

students motivations might be inferred through self-regulated 

behaviors like gaming the system, and how such information 

could inform better more intelligent tutoring systems that are 

responsive to cognitive and motivational dynamics during student 

work.  

Keywords 

Motivation, Self-Regulation, Measurement, Gaming the system, 

Ego-depletion, Task-switching, Intelligent tutoring system 

1. INTRODUCTION 
Many teachers can relate to the struggle of keeping an entire class 

engaged as the end of the day approaches. Some students may be 

listening raptly while other have started packing their belongings. 

Many teachers use class management techniques, such as specific 

activities in the beginning of class, in anticipation of the 

difficulties in ramping up the engagement of the entire class [9]. 

Student motivation appears to vary systematically over the course 

of a class period. Many good teachers adapt to this reality. It 

seems appropriate that intelligent tutoring systems should as well. 

Student procrastination, the failure to engage in a task in a timely 

fashion, has a well-established link to student motivations [16]. 

The nature of the tasks that students have difficulty engaging 

themselves in can be revealing about their individual goals [15], 

their perceptions of the value of the task [5], and their beliefs 

about their abilities to complete the task [21]. Similarly, the 

context of what drives students to quit can be equally telling about 

the same facets of student motivation [20]. 

Measures of quitting and procrastination leverage the easily 

observable dichotomy of student engagement, but are there other 

within-task student behaviors that might similarly indicate 

motivation? Quitting and procrastination are evidence of students’ 

failure to exercise their self-regulation. In these moments, students 

are failing to direct their attention towards a less desirable but 

beneficial learning task, and instead opting to engage in more 

desirable non-learning tasks. Applying this self-regulation lens, it 

may be possible to understand student motivation by identifying 

and analyzing other observable moments during student work 

where students engage in less desirable behaviors for learning.  

1.1 Temporal Dynamics of Self-Regulation 
Self-regulation is the capacity to control or direct one’s attention, 

thoughts, emotions, and actions [27]. One of the leading models 

of self-regulation poses the construct as a reward-based decision-

making process [2]. In this model, self-regulation is treated as a 

series of decisions that seeks to optimize some expected value 

based on anticipated rewards and costs. Motivation is defined as 

“the orienting and invigorating impact, on both behavior and 

cognition, of prospective reward” [2]. Through this theoretical 

lens, self-regulation decisions are a reflection of student’s 

motivation. 

For instance, solving an extra credit problem on the homework 

may likely push the student’s grade from a B to an A for the year. 

However, the problem will likely take an hour to solve and the 

student may have to skip soccer practice to find time to complete 

the problem. Observing the student’s choices and behaviors in 

these critical moments of self-regulation can reveal student’s 

underlying motivation. Prior models of self-regulated learning 

behavior have focused on the cognitive facets of a given task: its 

difficulty level [4,7], its domain topic[10], its time cost[6], and its 

expected value to the student[19]. However, research on self-

regulation point to temporal factors that influence decision 

making.  

Task switching research indicates that the exercise of self-

regulation imposes a cognitive cost. Once an individual chooses to 

engage in a task, they do not always appear to be applying 

themselves with full effort [8]. Additionally, when a person is 

forced to change tasks rapidly, they are not able to perform at the 

same level as those given more consolidated spans of time to 

perform on the same task [11]. These studies imply that students 

are likely to perform at a reduced capacity when initially 

beginning work to perform on a task upon initially beginning 

work,  

Ego-depletion models of self-regulation posit that the ability to 

regulate attention over time may tend to deplete as some time-

driven function of an internal and limited resource [23]. Thus, 
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motivation may also tend to wane over time leading to an eventual 

failure to self-regulate.  

In this work, we seek to investigate whether these temporal 

properties of self-regulation are evident in the prevalence of 

student’s failures to self-regulate. 

2. Related Works 
Measuring self-regulation related constructs is not a new concept 

in the intelligent tutoring system literature. Prior work has 

developed a range of models for detecting self-regulation related 

behaviors. 

2.1 Off-task Detection 
Some of the earliest work in this space identified off-task student 

behaviors by identifying large gaps of time between interactions 

in the log data of student interactions [26]. Inferences on student 

skill improvement, in addition to whether the students asked for 

help or attempted a problem correctly/incorrectly following a long 

gap between interactions determined whether students were off-

task while idle. 

[18] developed models of mind-wandering, when students’ 

attention and thoughts move off-task, which enabled detection of 

off-task behavior over much shorter time spans. These models 

leveraged information from videos and human labels of short time 

segments to train a supervised model to classify when mind 

wandering occurs. The features fed into the model included a 

range of low-level image processing features, facial features, 

inferred emotions, and temporal features that describe the 

dynamics of facial features and emotions during a short time 

interval. [17] extended this work given user self-reports of mind-

wandering and included body position information. 

2.2 Persistence and Quitting 
[4] developed a model of student persistence by analyzing 

patterns of behavior that included observed student actions 

contingent on properties of the problems being worked and the 

student’s skill on those problems. In this work, two types of 

students emerged, where the authors posited that trait level 

differences in students’ capacity for sustained attention lead to 

differences in learning strategies and persistence during problem 

solving.  

[3] designed a game-based measure of trait level persistence and 

validated the measure against other existing survey and standard 

psychometric behavioral tasks. The measure looked at average 

time on unsolved versus solved problems given a wide range of 

difficulty levels. 

In [7], the authors built models of quitting an educational game. 

They leverage many features including features of each level of 

the game, the current state of game progress of the student, and 

the time in the current level. The final model that emerged from 

the supervised machine learning process were focused around 

actions of the student and the state of progress and counts of 

actions at each level across and within attempts at the level, thus 

not including any of the limited temporal features given at model 

training time. 

[10] attempted to predict when students would quit reading a 

given passage. In this work, the authors used semantic features of 

the reading passages, the recent context of what passage is being 

read, which passages have been read recently, and both current 

page and total reading time. Total reading time, a similar proxy to 

ego-depletion, was found to be a significant contributor to models 

of quitting with respect to the first page of a passage. The authors 

also implicitly investigated the role of task switching by 

predicting quitting at the beginning of a new passage compared to 

some other new page within a passage. While some of the data 

supports a differential impact of task switching and time on 

quitting, the authors do not explicitly explore how quitting 

behaviors vary over time. 

2.3 Gaming the System 
With intelligent tutoring systems that provide scaffolding supports 

through progressively informative hints and feedback, another 

behavior tends to arise called “gaming the system” [24]. These 

behaviors have been identified using information about a series of 

recent actions such as time spent or the number of recent hint 

requests and errors, and the characteristics of the problems 

worked, such as problem section and difficulty in those 

interactions [12]. Extensive work has attempted to determine what 

drives gaming behaviors. While some initial work determined that 

problem context better explained gaming behaviors over trait-like 

individual propensities to game [25], later work presented the 

opposite result using a different intelligent tutoring system [22]. A 

large multi-environment analysis was conducted that compared 

the types of gaming behaviors observed across urban, suburban, 

and rural contexts using three different intelligent tutoring systems 

[13]. The study found that across tutoring environments, students 

displayed different predominant gaming behaviors, which implies 

that the lure of certain types of gaming may be different given 

tutoring environment or problem-type affordances. Similarly, 

within tutoring environments, students from areas of different 

population density (eg: rural versus urban) display different 

predominant patterns of gaming. These differences point to how 

variation in work environment may have differential anticipated 

costs to gaming, while the variation within environment but across 

geographic regions point to possible cultural and thus 

motivational differences. 

2.4 Research Questions 
Prior work has developed extensive models of self-regulation 

behaviors that demonstrate the importance of cognitive, 

contextual factors, and local temporal factors for influencing 

student’s self-regulation decisions. However, these models have 

not investigated how self-regulation behaviors might vary 

systematically over time and how such trends relate to student 

learning. In this work, we seek to investigate whether the within-

session temporal properties of self-regulation are evident in 

student behaviors and whether these temporal trends are 

predictive of similar negative impacts on student learning. 

Models of the cognitive cost of task switching imply that self-

regulation related behaviors such as gaming the system are more 

likely to occur in the beginning of a work session. Similarly 

models ego-depletion imply that self-regulation related behaviors 

such as gaming are more likely to occur after students have been 

working for some time. We propose to investigate whether models 

of task-switching and ego-depletion are evident in some changes 

over time of the probability of gaming the system, a behavioral 

instance of self-regulation. We then investigate whether lower 

cognitive engagement as predicted by task-switching theory co-

occurs with gaming the system. We follow this with an analysis to 

determine if failures in self-regulation during critical time periods 

are indicative of session-level motivation.  

3. The Dataset 
We utilize an observational dataset [1] including 214 students 

across 22 classrooms using the Carnegie Learning Cognitive 

Tutor (CT) in Pre-Algebra, Algebra 1, and Geometry. The tutor 
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was used approximately two class-periods per week for a full 

school year. The dataset includes over 2.3M user transactions 

covering 55, 33, and 26 curricular units divided into 173, 98, and 

44 sections across the three courses respectively. 

The CT leverages computational cognitive models to provide 

adaptive problem selection and hint support and correctness 

feedback to the students. Problems are broken down into a multi-

step process, which allows the system to identify independent 

skills and trace skill improvement over a fine-grained skill model 

of the domain. On each step, the system is able to provide 

multiple levels of hint support, with the final level containing the 

answer to the problem step. The system logs all interactions with 

the system including problem attempts, hint requests, response 

accuracy, and problem step time. In this study, transactions for all 

students over the course of an entire academic year are utilized. 

3.1 Measuring Gaming the System 
We leverage the model of gaming developed by [14] to annotate 

transactions as gamed. This model identifies a set of patterns of 

transactions that experts identify as gamed patterns. A student is 

determined to be gaming at some time if a series of transactions 

matches an identified transaction. For instance, a common pattern 

is when students enter the same or a very similar answer into 

multiple places without answering correctly, effectively guessing 

where a calculation result belongs without understanding the 

organization of the problem.  Another common pattern is when 

students ask for help without taking much time to consider the 

problem, followed shortly after by an incorrect input. In this case, 

the student appears to be using the help facility to get an answer 

but is not taking enough time to use the information provided to 

derive an answer. The dataset consists of 4.1% of transactions as 

being labeled as part of a gaming behavior, where the majority of 

students are labeled as gaming between 3.2 to 4.3% of all 

observed transactions.  

3.2 Aligning Session Time 
The data described above only includes transactions after 

eliminating certain transactions from the original dataset. In order 

to see temporal patterns, data was excluded from short sessions 

with length in the bottom 5% of all student session lengths, which 

was determined to be about 5 minutes. The resulting observed 

student sessions ranged from 5 minutes to 58 minutes, with a 

median length of 32 minutes.  

One difficulty in measuring ego-depletion with observational data 

is in controlling for differences in the depleting effects of context. 

In ego-depletion studies, the task is controlled for and thus can be 

ruled out to explain observed differences in behavior. In 

intelligent tutoring contexts. The adaptive instruction will provide 

variably challenging and types of content and may differentially 

deplete students across the experiences within the same period of 

time. To overcome this issue, we leverage the insight that when 

two students begin working, they might be in similar states 

relative to their internal thresholds for self-regulation. We also 

assume that when two students stop working, they are in 

comparable states. If these two students stop working at different 

times, it implies similar start and finish attention states, but 

different depleting effects of context that were experienced over 

time. In order to account for these differences in uncontrolled 

contextual factors, we created an additional time measure that 

aligned individual student transactions within sessions by the 

percentage of the session time that has elapsed. This alignment 

facilitates comparison of transactions relative to the start and end 

of a session, scaled to the session length.  

4. Modeling the Effect of Time 
Theories of self-regulation imply different models of the effect of 

time on self-regulation. Attentional shift models posit a cognitive 

cost of task switching. These costs may cause some tasks to seem 

more difficult near the beginning of a session. Ego-depletion 

models imply a reduction of a limited capacity to self-regulation 

resource over time. These models suggest students may eventually 

find it difficult to continue in a task and signs of fatigue, such as 

gaming, may be revealed by an increased tendency to engage in 

gaming behaviors before finishing working. To test these model 

implications, we compare five random effect logistic regression 

models to determine how self-regulation may vary over the course 

of a session.  

We introduce M1 as the baseline model for comparison to 

determine if any temporal models are significantly more 

predictive than current best practices as suggested by prior 

gaming research. This model includes random effects for both 

student and curricular section to control for the previously 

established impacts of student and context on student’s tendency 

to game. The remaining four subsequent models similarly control 

for student and contextual factors while introducing additional 

factors representing temporal effects. 

To define the remaining four models, time is represented along 

two dimensions. In the first dimension, time is represented as 

either time elapsed since the student began working or percentage 

of total working time elapsed, as described section 3.2. Time 

elapsed models represent the default model informed by both ego-

depletion and task switching theories. Percentage of time elapsed 

models test the hypothesis that such a representation better 

captures motivation as temporally relative to the most informative 

moments of student behavior. In the second dimension, time is 

represented linearly or quadratically. Linear models allow only 

one main temporal effect to be captured by the model, either a 

constant increase or decrease in motivation over the course of a 

session. Quadratic models can capture different effects at the start 

and end of the session that differ from each other and the middle 

of the session. All temporal variables are normalized over the full 

dataset for model interpretation. 

M4.1: Baseline – Baseline model for comparison controlling for 

differences in student’s tendency to game and contextual factors 

across curricular sections, such as average difficulty, that 

influence gaming. 

Eq 4.1: Gaming ~ (1|Student) + (1|Section) 

M4.2: Linear Session Time – Extending the baseline model M4.1 

by adding a linear term for time-elapsed since the student has 

begun working 

Eq 4.2: Gaming ~ time-elapsed + M4.1 

M4.3: Linear Percent Time – Extending the baseline model M4.1 

by adding a linear term for proportion of session time elapsed as a 

percentage of total time observed working. 

Eq 4.0: Gaming ~ pct-time-elapsed + M4.1 

M4.4: Quadratic Session Time – This model extends model M4.2 

by adding a quadratic term 

Eq 4.0: Gaming ~ time-elapsed2 + M4.2 

M4.5: Quadratic Percent Session Time – In addition to the 

random effects in Eq 4.1, this model tests the hypothesis that 

students self-regulation resources are  

Eq 4.0: Gaming ~ pct-time-elapsed2 + M4.3 
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4.1 Comparing Models 
 

Table 1. Comparing models of temporal trajectories of 

student gaming behaviors 

Model BIC AIC LogLik 

M4.1 434741 434703 -217348 

M4.2 434682 434632 -217312 

M4.3 434668 434619 -217305 

M4.4 434454 434392 -217191 

M4.5 454503 434441 -217215 

 

The results of fitting each of the five models are shown in Table 1, 

including model performance as assessed by AIC, BIC, and log-

likelihood. In general, all models with temporal factors 

outperform the baseline model, M4.1. This implies that temporal 

information has a significant effect on student’s self-regulation 

behaviors. Additionally, both quadratic models, M4.4 and M4.5, 

are significantly better than their linear counterparts (Chisq = 179 

(p<0.001) for M4.2 vs M4.4, and Chisq = 242 (p<0.001) for M4.3 

vs M4.5). Likewise, M4.4 and M4.5 are significantly better than 

baseline with Chisq = 315 (p<0.001) and Chisq = 266 (p<0.001) 

respectively. 

 Figure 1. Number of observations over time in session 

 Figure 2. Proportion of Gaming Actions by minute 

 

Exploratory plots of proportion of gaming the system transactions 

over the session support these interpretations. Figure 2 and 4 plot 

the proportion of transactions identified as gaming the system 

behaviors across the session over minutes passed or proportion of 

total session time respectively. As expected from the quadratic fit 

models, each figure shows an increased proportion of gaming 

behaviors near the start and end of sessions.  

 
Figure 3. Number of observations over proportion of session 

time 

 
Figure 4. Proportion of Gaming Actions by Proportion of 

Session Time Passed 

 

A closer look at the data in Figure 1 reveals that there is a large 

student participation drop-off near the 43 minute mark. While 

whole class sessions seem to regularly measure about 60 minutes, 

students’ login and logout times are quite staggered such that 99% 

of observed student sessions are less than 43 minutes in length. 

Only 82 out of more than 9800 sessions are observed where 

students worked continuously for between 43 and 60 minutes. 

Furthermore, analyzing gaming averaged over each minute of the 

hour, Figure 2, shows that this dramatic reduction in data is 

associated with very large and volatile estimates of average 

students gaming per unit time. Because of the low amount of data 

observed in the last 17 minutes of sessions longer than 43 

minutes, it is hard to draw stronger conclusions about whether 

students are much more likely to display gaming behaviors if they 

are able to stay on task longer than 43 minutes, or if the volatility 

is due to random sampling bias.  

A closer inspection of data in Figure 3 also shows some peculiar 

variability in data at the start and end of sessions. Because session 

time is divided evenly across the proportion of sessions, there is 
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no a-priori reason to believe students have more or less frequent 

transactions at any time in the session. The small decrease in 

quantity of transactions near the start of sessions implies students 

take longer on average to complete actions near the start of work. 

The large spike of activity near the end implies students are taking 

less time per action shortly before stopping work. In both cases, 

the data sparsity issue seen in Figure 1 is not likely driving the 

changes in proportion of gaming seen in Figure 4. The small 

decrease in activity near the start is associated with the start of a 

broader downward trend in proportion of gaming behaviors that 

continues even after activity frequency flattens.  The sudden 

increased frequency of transactions near the end of sessions is 

associated with a comparable spike in prevalence of gaming the 

system behaviors. However, because some gaming behaviors are 

defined by rapid actions in succession, this relationship is 

expected. 

Taking the model comparisons and exploratory data analysis 

together, this evidence supports the interpretation that there are 

non-monotonic differences in gaming the system behaviors 

between the start, middle, and end of sessions. 

 

Table 2. Model coefficients for M4.4 and M4.5 

Term M4.4 - ß Term M4.5 - ß 

Intercept -4.215 Intercept -4.217 

Percent time 

elapsed 
-0.265 Time elapsed -0.283 

(Percent time 

elapsed) 2 
0.231 (Time elapsed) 2 0.252 

 

Comparing the two quadratic models, M4.4 is the best fit model 

by all 3 measures, BIC, AIC, and Log Likelihood. The model 

details can be seen in Table 2. The variance in gaming attributable 

to curricular sections is 0.87. This translates to average gaming 

attributable to tutor context level factors to range between 0.23% 

and 8.4% for 95% of sections. The variance attributable to 

students is much smaller, 0.088. This translates to average gaming 

attributable to trait-level student factors to range between 0.82% 

to 2.57%. An inspection of the model coefficients shows that the 

model predicts the average gaming level at the start of a session, 

P(gaming|t=0), is 4.1%. Average gaming at the end of the session, 

P(gaming|t=60 minute), is 18.7%. The quadratic model reaches a 

minimum observed gaming of 1.3% at 23 minutes into the 

session.  

An 18.7% average probability of gaming after working for 60 

minutes appears to be very high given that gaming only occurs 

overall in the dataset in about 4.5% of all actions. As discussed in 

the previous exploratory data analysis, the very high gaming 

proportion observed in the last 17 minutes of sessions is 

potentially related to the increased volatility created from 

estimates drawn from small amounts of data. These estimates 

spike upwards as high as 25%, which corresponds with the 

dramatic difference between start and end gaming predicted by 

M4.4. Therefore, the model is reflecting this same artifact of the 

data. 

Inspecting M4.5, the model predicts that gaming is more likely in 

the start and end of the session. The average probability of gaming 

decreases to 1.35% by the time the student has worked 67% of the 

total time. According to the model, we are 3.34 times more likely 

to observe students game the system near the start of work than 

near their peak level of focus. Likewise, it is 1.32 times more 

likely to observe gaming the system in the moments shortly before 

students stop work. This model appears to make less dramatic 

predictions that are more inline with expectations based on overall 

average frequencies of gaming while not reflecting the same 

uncertainties as M4.4.   

These results support the hypothesis that self-regulation processes 

have an impact on the average occurrence of gaming the system 

behaviors over the course of a work session. Students in this data 

appear to experience decreased motivation near the start of work 

as would be predicted by the cognitive costs of task switching. 

Likewise, students appear to show some decreased motivation 

before stopping work as predicted by ego-depletion theories.  

5. Leveraging Gaming for Prediction 
The previous analysis has demonstrated that observing instances 

of weaker self-regulation, such as gaming the system behaviors, 

support a view of student’s dynamic self-regulation capacities 

over time as predicted by ego-depletion and task-switching 

theories. This raises the natural question of exactly what 

observing such lapses in self-regulation implies about a student’s 

internal capacities.  

5.1 Gaming Indicates Cognitive Effort 
If students are not observed to game the system early in a session, 

we expect that student motivation is likely higher around this time 

despite the brief slightly negative impact of task switching. This 

greater motivation allows students to bring greater cognitive 

resources to the work relative to days when gaming is observed 

near the start. When comparing assistance rates in the beginning 

of a session, the proportion of questions either answered 

incorrectly or with a request for help on first attempt, a student 

who is more cognitively engaged should be less likely to make 

errors or ask for help. Likewise, similar patterns should be 

associated with assistance rates near the end of students work.  

We compared the assistance rates for sessions where a student is 

observed gaming in the first 10% of the session time (the first 3 

minutes for the median session) to assistance rates where no 

gaming is observed in the first 10% of the session time. To 

calculate the assistance rate, the raw student transactions are 

aggregated by problem-step. The outcome of each step is 

determined by the first attempt at the step. The step is labeled as 

gaming the system if any of the aggregated transactions are 

labeled as gaming. Because patterns of gaming generally involve 

either incorrect or help-seeking behaviors, steps that were labeled 

as gaming the system are removed before calculating the 

proportion of incorrect and help-request steps to overall steps 

observed in the portion of the session.  

The assistance rates in the start of sessions are shown in Figure 5 

and were found to be significantly lower (t=-15.22, p < 0.001). 

The average assistance rate where gaming is observed is 30% 

(sd=25) while the average rate when gaming is not observed is 

21% (sd=26). Similarly, Figure 6 shows boxplots for assistance 

rates in the last 10% of sessions. Rates were found to be to be 

significantly lower (t=-11.6, p<0.001) with the average session 

where gaming is observed having a rate of 25.3% (sd=22) 

compared to the average non-gaming session having a rate of 

18.6% (sd=24).  

This simple analysis does not take into account factors such as 

question difficulty. It is possible that if students are working on 

difficult content near the start, then they are more likely to make 

errors and request hints. It also implies that more challenging 

material may impact how students evaluate the likelihood of 
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prospective reward given their perceived abilities. This may lead 

students to believe that applying effort is unlikely to result in 

experiencing the reward or attempting to apply effort may have 

greater depleting effects that impact future actions. In either case, 

it is possible that more challenging material instead of task-

switching or ego-depletion explains the relationship between 

increased assistance score and gaming behaviors near the start and 

end of work. However, these tests do provide compelling 

evidence for a possible impact of decreased cognitive engagement 

on some practice opportunities that can inform future modeling 

work. 

 

Figure 5. Comparing assistance rate at the start of sessions  

 

Figure 6. Comparing assistance rate at the end of sessions 

5.2 Gaming Indicates Motivation Levels 
Student’s day-to-day average motivation level is affected by 

factors in the school, in the classroom, and in the student’s life 

more broadly. A death in the family, a fight with a significant 

other, or a poor grade in another class might be weighing on a 

student’s mind while that begin working. These factors may have 

a negative effect on student’s ability to self-regulate throughout 

the entire session. If this is the case, these factors will act in 

combination with the additional impacts of task-switching or ego-

depletion at the start and end of the session to impact a student’s 

capacity to self-regulate. Thus, observing gaming the system 

behaviors at the start or end of a session may also be informative 

about a student’s more general motivational level. In this section, 

we analyze gaming behaviors throughout the session using 

information about whether students gamed at the beginning or end 

of a session to improve predictions of gaming in the rest of the 

session. 

Gaming at the start and end are defined the same as in the 

previous section. In the data, 29.7% of sessions are observed with 

gaming at the start while 32.0% of sessions have gaming at the 

end. Together 49.9% of sessions have instances of gaming the 

system in the start or end, while only 11.8% of sessions are 

observed with gaming in the start and end of the session. While 

gaming near the start or end might be indicative of session level 

motivational impacts, in this analysis we test whether seeing any 

gaming at the start or end is sufficiently informative or if start and 

end are differently informative.  

To perform this analysis, we use the best model from the Section 

4 analysis, M4.4 the quadratic percent-time-elapsed model. This 

model will control for the variance due to student and tutor 

contextual factors, removing concerns about confounds such as 

gaming at the start may be due to generally more difficult material 

that makes gaming more likely throughout the session. We 

compare models that add main effects for whether gaming was 

observed at the start or at the end as well as linear and quadratic 

interaction effects. The models are elaborated as follows: 

M5.1: Baseline Quadratic Model – the baseline model from 

Section 4 analysis for comparison. 

Eq 5.1: Gaming ~ pct_elapsed + pct_elapsed2 + (1|Stu) + (1|Sect) 

M5.2: Gaming at start/end main effect – M5.1 with a binary 

indicator variable of whether gaming is observed near the 

beginning of the session and a binary indicator variable of 

whether gaming is observed near the end of the session 

Eq 5.2: Gaming ~ M5.1 + g_start + g_end 

M5.3: Combined Gaming at start or end main effect – M5.1 

with a binary indicator of whether gaming is observed at either the 

beginning or the end of the session 

Eq 5.3: Gaming ~ M5.1 + g_start_end 

M5.4: Gaming at start and end with linear interactions – M5.4 

elaborates on top of M5.2 adding linear interactions with time. 

Eq 5.4: Gaming ~ M5.2 + g_start:pct_elpsed + g_end:pct_elpsed 

M5.5: Gaming at start and end with quadratic interactions – 

M5 elaborates on top of M5.4 adding interactions with quadric 

time terms. 

Eq 5.5: Gaming ~ M5.4 + g_start:pct_elpsed2 + g_end:pct_elpsed2 

Comparing M5.2 and M5.3, we see that including separate main 

effects for gaming at the start and gaming at the end leads to 

better models rather than combining the information into a single 

indicator of whether there were any self-regulation failures at 

either the start of the end of the session. This particular result is 

worth further investigation to understand how and why self-

regulation at the start of a session is differently indicative of 

student motivation levels compared to gaming at the end of the 

session. 

The results in Table 3 indicate the best fit model is M5.5, the 

model with start/end gaming information and interactions with 

linear and quadratic terms. This model is significantly different 

from the baseline quadratic model (Chisq=49.42, p<0.001) and 

establishes the informativeness of gaming in the start or end of a 

session on student’s motivation levels through the time that 

students are working. Details about the model are given in table 4. 
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Table 3. Comparing Gaming Predictions using Start/End 

Gaming  

Model AIC BIC LogLik 

M5.1 434441 434503 -217295 

M5.2 422316 422403 -211151 

M5.3 427322 427397 -213655 

M5.4 419913 420045 -209958 

M5.5 418266 418402 -209122 

 

The variance accounted for by section and student level random 

effects are reduced in comparison to the baseline quadratic model 

reported in Section 4. The variance attributable to student factors 

was found to be 0.0789, which translates to an average gaming 

level of 0.64% to 1.91% for 95% of students. The variance 

attributable to section level factors was found to be 0.7527, which 

translates to an average gaming frequency of 0.20% to. 5.79% for 

95% of sections. This implies that a significant fraction of 

observations of gaming that were previously explained by section-

level factors appears to now be explained by motivational factors 

indicated by gaming at the start or end of a session. 

 

Table 4: Coefficients for start/end gaming with quadratic 

interaction terms 

Term ß 

Intercept -4.489 

Percent time elapsed 1.129 

(Percent time elapsed) 2 -1.251 

Gamed at start 0.301 

(Gamed at start) * Percent time elapsed) -1.480 

(Gamed at start) * Percent time elapsed)2 1.170 

Gamed at end 0.356 

(Gamed at end) * Percent time elapsed) -0.490 

(Gamed at end) * Percent time elapsed)2 0.900 

 

Table 5 contains the predicted gaming attributable to the main 

effect terms in model M5.5. The first column describes average 

predicted gaming at the start of work. The third column describe 

average predicted gaming at the end of work. Because the model 

includes quadratic terms, the second column is included to 

describe the optimum (minimum or maximum) probability of 

gaming throughout the session. The fourth column describes the 

odds ratio the chance of gaming at the start relative to the 

optimum point. The fifth column describes the odds ratio of the 

chance of gaming at the end compared to gaming at the optimum 

point. The complexity of the model can make it challenging to 

interpret, however there are some important trends indicated by 

the model. If gaming is observed only in the start of a session, 

gaming is most likely to occur similarly near the start and will 

reduce over the course of the session as evidenced by the odds of 

gaming being greatest at the start relative to the end. Likewise, 

observing gaming only at the end of the session implies that 

students tend to be well regulated near the beginning of the 

session and will appear to fatigue over the session until near the 

end where the odds fall slightly. When students are not observed 

gaming at the start or end, there is a corresponding low probability 

of observing gaming near the start and end. However, over the 

course of the session, the model predicts that these students 

become more likely to have slightly reduced motivation until the 

latter half of the session where attention on the time pressure of 

the end of class might increase motivation through the end of 

class. In the limited sessions where students are observed gaming 

at the start and end, the model predicts a much greater propensity 

to game throughout, with a 53% chance in the start and a 5% 

chance near the end. 

 

Table 5: P(Gaming) Main effect predictions given start/end 

gaming observations 

Context Game 

(t=0) 

Game 

(t=opt) 

Game 

(t=100) 

Start 

Odds 

End 

Odds 

No Gaming 

start or end 

0.35% 1.43% 0.21% 0.24 0.15 

Start 

Gaming 

2.14% 2.14% 0.66% 1 0.31 

End 

Gaming 

0.18% 2.10% 1.71% 0.086 0.81 

Start + End 

Gaming 

53.1% 1.72% 5.1% 30.9 2.98 

 

Taken together, these results support the conclusion that gaming 

at the start and end of work are indicative of session-level 

motivational factors influencing student behavior. It also provides 

initial evidence for separable constructs indicated by gaming at 

the start versus at the end. Each of these constructs appears to 

have different degrees of impact on underlying student motivation 

factors and the resulting decision processes that lead to observable 

behaviors. 

6. Discussion 
We have treated gaming the system behaviors as indicators of 

student’s self-regulation. Task switching and ego-depletion 

theories of self-regulation predict a temporal pattern to student’s 

abilities to self-regulate over the course of a class period. 

Predictive model comparisons are supportive of the hypothesis 

that both task switching and ego-depletion are evident in the 

patterns of student behaviors over each class session. Further  

analysis indicates that observations of self-regulation behaviors in 

the start and end of class might be indicative of both temporally 

immediate degrees of cognitive engagement as well as more 

session or day-level influences on motivation.  

Open questions remain about how student models could 

operationalize task switching or ego-depletion. The work 

presented, uses information about the full student session to 

represent time, though such information is not available to real-

time models. This raises the question of how should student’s 

prior behaviors inform a predictive models of student ability to 

task switch or ego deplete? To what degree do students display 

consistency in their ability to task switch quickly or manage ego-

depletion more effectively across sessions? Over the course of 

months or years? To what degree are these capacities independent 

or can correlations be attributable to other latent motivational 

causes?  

We believe these findings highlight the importance of leveraging 

student models that incorporate temporal variables in the design 
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of learning activities. Problem selection algorithms may want to 

be biased for lower challenge or greater interest to overcome 

negative effects of task switching. Similarly, activities may want 

to incorporate changes in the rhythm of the activity in order to 

periodically re-engage student attention as it wains over time. This 

work exposes an unexplored design space for how educational 

activities could incorporate temporal effects of student motivation 

to better enable student learning. 

In this work, we introduce the importance of considering temporal 

factors in addition to content-related cognitive factors to more 

effectively support students’ motivational trajectories within a 

work session. These findings extend the rich body of work on 

modeling student motivational and cognitive processes with self-

regulated learning. Students are not machines, and they do not 

always jump immediately into tasks full throttle or have the 

endurance to work as long as they are asked. Hopefully, a future 

that recognizes these dynamics can take intelligent tutoring 

systems one step closer to emulating the capabilities of effective 

teachers. 
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