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ABSTRACT
A challenge in digital learning games is assessing students’
learning behaviors, which are often intertwined with game
behaviors. How do we know whether students have learned
enough or needed more practice at the end of their game
play? To answer this question, we performed post hoc anal-
yses on a prior study of the game Decimal Point, which
teaches decimal numbers and decimal operations to mid-
dle school students. Using Bayesian Knowledge Tracing, we
found that students had the most difficulty with mastering
the number line and sorting skills, but also tended to over-
practice the skills they had previously mastered. In addition,
using students’ survey responses and in-game measurements,
we identified the best feature sets to predict test scores and
self-reported enjoyment. Analyzing these features and their
connections with learning outcomes and enjoyment yielded
useful insights into areas of improvement for the game. We
conclude by highlighting the need for combining traditional
test measures with rigorous learning analytics to critically
evaluate the effectiveness of learning games.

Keywords
Decimal, Digital Learning Game, Bayesian Knowledge Trac-
ing, Over-practice

1. INTRODUCTION
Digital learning games are typically regarded as a power-
ful tool to promote learning by engaging students with a
novel and interactive game environment. While there have
been concerns about the lack of empirical results on learn-
ing games’ effectiveness [21,32], recently we have seen more
research that addresses this issue by showing students’ learn-
ing gains from pretest to posttest in rigorous randomized ex-
periments [9, 41, 52]. More generally, a meta-analysis of 69

studies by [10] showed that game conditions promoted signif-
icantly more learning than non-game conditions with equiv-
alent knowledge content, and that augmented game designs
with more learning-oriented features were more instruction-
ally effective than standard designs.

While this prior research has demonstrated that digital learn-
ing games can enhance learning, the next step is to exam-
ine how they do so. In particular, even though the common
measures of pretest and posttest scores are necessary to eval-
uate students’ transferable learning, they are inadequate to
address many questions about how learning takes place dur-
ing the game. For example, did students get just enough
practice from the game, or more practice than necessary?
How does in-game learning correlate with test performance?
These questions have been explored in great detail in Intel-
ligent Tutoring Systems (ITS), but not as much in digital
learning games, primarily because of the differences in design
approaches between these two platforms. ITS are typically
very structured environments where students are frequently
evaluated on their knowledge and, in the mastery learning
settings [28], move to a new skill as soon as the system de-
termines they have mastered the current skill. In contrast,
digital learning games emphasize students’ freedom in shap-
ing their own learning experience without concern about the
consequences of failure [15]; as a result, the game’s learning
objectives are not always obvious to the students [4]. The
question, then, is how can we combine the traditional pretest
and posttest measures in learning game studies with learn-
ing analytics methods from ITS to paint a better picture of
students’ learning, both inside and outside of the game con-
text? Furthermore, given the game’s dual goal of promoting
both learning and enjoyment, do in-game learning metrics
also relate to students’ enjoyment in any meaningful way?

Our work explores these questions in the context of Decimal
Point, a game that teaches decimal numbers and operations
to middle-school students. Here we present a post hoc analy-
sis of the data from a prior study [22]. First, we investigated
how well students mastered the in-game skills, how long it
took them to master each skill, and whether students con-
tinued practicing after mastery. Next, we used student data
from before and during game play to predict their learning
outcomes and enjoyment after the game. Based on this re-
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sult, we derived lessons for improving learning support in
Decimal Point as well as in a more general learning game
context.

2. RELATED WORK
2.1 Learning Analytics in Games
In-game formative assessment can be a powerful comple-
mentary tool for capturing students’ learning progress [59].
Traditional formative measures typically make use of game-
based metrics, such as the number of completed levels or
the highest level beaten [2, 11], but these metrics may not
always align with actual learning. Prior studies on Deci-
mal Point, for instance, reported that students who played
more mini-game rounds did not learn more than those who
played fewer [18, 39]. An alternative approach is to employ
learning analytics methods from ITS studies. For exam-
ple, learning curve analysis, which visualizes students’ error
rates over time, has been applied in several learning games
and yielded valuable insights that range from instructional
redesign lessons to discovery of unforeseen strategy by stu-
dents [17,29,42].

Learning analytics techniques can also connect formative as-
sessment with external performance. For example, Bayesian
networks have been applied to predict posttest responses
from students’ in-game data in several learning games [30,
48,54]. Similarly, [27] employed feature engineering and gra-
dient boosted random forest algorithm to identify struggling
students in real-time in a physics learning game. Recently
we have also seen more usage of deep learning for this predic-
tion task [24,51]. In general, research work in this direction
can illustrate how well students’ learning aligns with the
game’s learning objectives, while also guiding the develop-
ment of adaptive support game features.

2.2 Decimal Point
Decimal Point is a web-based single-player digital learning
game that helps middle-school students learn about decimal
numbers and their operations (e.g., adding and comparing).
The game features an amusement park metaphor, with a
map of the park used to guide students (Figure 1). There
are 8 theme areas with 24 mini-games, connected by a line
that is designed to interleave skill types and theme areas.
Each mini-game is aimed at helping students solve one of
the common decimal misconceptions: Megz (longer decimals
are larger), Segz (shorter decimals are larger), Pegz (the two
sides of a decimal number are separate and independent)
and Negz (decimals smaller than 1 are treated as negative
numbers) [25]. Also, each mini-game calls for one of the
following skills:

1. Addition: add two decimals by entering the carry dig-
its and the sum.

2. Bucket: compare given decimals to a threshold num-
ber and place each decimal in a “less than” or “greater
than” bucket.

3. Number Line: locate the position of a decimal number
on the number line.

4. Sequence: fill in the next two numbers of a sequence
of decimal numbers.

5. Sorting: sort a list of decimal numbers in ascending
or descending order.

(a) Goal (b) Space Raider

Figure 1: Screenshots of the main map screen and
two example mini-games. Goal is a Number Line game
and Space Raider is a Sorting game.

In each mini-game, students solve a number of decimal prob-
lems related to the game’s targeted skill and receive imme-
diate feedback about the correctness of their answers. Stu-
dents don’t face penalty on incorrect responses and can re-
submit answers as many times as needed; however, they are
not allowed to move forward without solving all the prob-
lems in the mini-game. More details about the instructional
content of the mini-game problems can be found in [35].

The original study of Decimal Point showed that the game
led to more learning and enjoyment than a conventional tu-
tor with the same instructional content [35]. Subsequent
studies have integrated the element of agency into the game,
by endorsing students to select their preferred mini-games
to play and stopping time [18, 39]. Based on their find-
ings, students who were provided agency acquired equiva-
lent learning gains in less time than those who were not.
Most recently, a study by [22] compared two versions of the
game, one that encourages students to play to learn, and one
that encourages them to play for fun. Their results indicated
that the learning-oriented group focused on re-practicing the
same mini-games, while the enjoyment-oriented group did
more exploration of different mini-games. In general, while
all of these previous works reported that students learned
from the game across all study conditions, it is not yet clear
which game factors contributed to these findings. Further-
more, no connection between students’ learning and their
enjoyment has been identified. Our work aims at acquiring
more insights into these areas.
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Table 1: Survey items before and after game play.

Pre-intervention surveys

Dimension (item count) Example statement Cronbach’s α

Decimal efficacy (3) [44] I can do an excellent job on decimal number math assignments. .83

Computer efficacy (3) [31] I know how to find information on a computer. .71

Identification agency (2) [50] I work on my classwork because I want to learn new things. .60

Intrinsic agency (2) [50] I work on my classwork because I enjoy doing it. .86

External agency (3) [50] I work on my classwork so the teacher won’t be upset with me. .61

Perseverance (3) [12] Setbacks don’t discourage me. I don’t give up easily. .79

Math utility (3) [13] Math is useful in everyday life. .63

Math interest (2) [14] I find working on math to be very interesting. .75

Expectancy (1) [23] I plan to take the highest level of math available in high school. -

Post-intervention surveys

Dimension (item count) Example statement

Affective engagement (3) [5] I felt frustrated or annoyed. .78

Cognitive engagement (3) [5] I tried out my ideas to see what would happen. .54

Game engagement (5) [7] I lost track of time. .74

Achievement emotion (6) [43] Reflecting on my progress in the game made me happy. .89

3. DATASET
Our work uses data from 159 fifth and sixth grade students
in our prior study [22], where students could select and play
the mini-games from the map in Figure 1 in any order, and
were allowed to stop playing at any time after finishing 24
mini-game rounds. They could also play more rounds of
the completed mini-games, with the same game mechanics
but different question content. For example, the first round
of the mini-game Goal asks students to locate 0.76 on the
number line, while the second round features the same game
interactions but involves locating 0.431. Before playing, stu-
dents did a pretest and answered demographic survey ques-
tions. After game play, they completed another survey to
evaluate their experience and did a posttest, followed by a
delayed posttest one week later. Here we outline the mea-
sures which are relevant to our analyses. A more detailed
description of the experimental design can be found in [22].

Pretest, Posttest, and Delayed Posttest: Each test
consisted of 43 items, for a total of 52 points. The items were
designed to probe for specific decimal misconceptions, and
involved either the five decimal skills targeted by the game or
conceptual questions (e.g., “is a longer decimal larger than a
shorter decimal?”). There are three test versions (A, B and
C), which are isomorphic to one another and counterbal-
anced across students (e.g., ABC, ACB, BAC, etc. for pre,
post, and delayed). Our prior analysis showed no differences
in difficulty between the three versions [22].

Questionnaires: Before game play, students reported their
age and gender, as well as their ratings to survey items about
their background information, from 1 (“Strongly Disagree”)
to 5 (“Strongly Agree”). After playing, students rated their

enjoyment (also from 1 to 5) via survey questions that ad-
dress four enjoyment dimensions (Table 1). If a dimension
comprises several items, we compute the average ratings of
all items in that dimension to derive its representative rat-
ing score. According to [16], a measure should have α ≥ .60
to be considered reliable; therefore, based on Table 1 we re-
moved the cognitive engagement dimension (with α = .54)
from further analyses.

The full log data from the study is archived in the DataShop
repository [55], in dataset number 3086. We present our
analysis of this data in the following section.

4. RESULTS
4.1 Investigating in-game learning
In our prior work on Knowledge Component (KC) model-
ing in Decimal Point, based on data from a separate study,
we used the correctness of the student’s first attempt in an-
swering each mini-game problem to update their mastery
of the KC covered by that mini-game. With this mapping
from in-game action to KC, we found that students’ learn-
ing can be better captured by a KC model based on skill
types (e.g., Addition, Bucket) than on decimal misconcep-
tions (e.g., Segz, Negz) [40]. Therefore, in this work we used
the five skill types as our KCs, and tracked students’ learn-
ing progress of these skills by Bayesian Knowledge Tracing
(BKT) [60]. The BKT parameters were set as p(L0) = 0.4,
p(T ) = 0.05, p(S) = p(G) = 0.299 [3], and the mastery
threshold is 0.9.

First, we looked at how well students mastered each of the
five skills in the game. Comparing the students’ final mas-
tery probabilities in each skill and our mastery threshold,
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we observed that: there were 4 students who did not master
any skill, 20 students who mastered one skill, 33 students
who mastered two skills, 42 students who mastered three
skills, 34 students who mastered four skills, and 26 students
who mastered all five skills. Next, we counted how many op-
portunities each student who mastered a skill took to reach
mastery in that skill. An opportunity is defined as one com-
plete decimal exercise; each mini-game round consists of one
opportunity, except for those in Sequence, which contain
three opportunities (i.e., students have to fill in three deci-
mal sequences per round). The distributions of opportunity
count until mastery are plotted in Figure 2, which shows
that Number Line and Sorting took the longest to master,
at around 5 opportunities on average. For Number Line, one
student even needed 26 opportunities to reach mastery.

Figure 2: Opportunity counts until mastery for each
skill. The number next to each skill indicates the
count of students who mastered that skill and were
included in the violin plot.

Next, we examined how well students regulated their learn-
ing, i.e., after mastering a skill, did they tend to continue
practicing the same skill, or switch to a different skill? For
each student, following [8], once they mastered a skill (≥
90% mastery probability), we considered their subsequent
opportunities as over-practice. Then, for each student who
mastered a particular skill, we computed the ratio between
their over-practice count and total opportunity count in that
skill. Plotting these ratios for all the mastered students in
each skill (Figure 3), we observed that between 20-80% of
a student’s practice opportunities in a skill could be con-
sidered over-practice, i.e., they took place after the student
had mastered the skill.

4.2 Investigating factors related to posttest and
delayed posttest performance

Having examined students’ in-game learning, we then looked
at how it related to test performance after the game. In or-
der to predict posttest and delayed posttest scores, we col-
lected features that reflected students’ in-game learning and
also included demographic measures that account for indi-
vidual student differences. In total, we considered 19 fea-
tures: pretest score, decimal efficacy, gender, computer effi-
cacy, identification agency, intrinsic agency, external agency,
perseverance, utility, math interest, expectancy, final in-
game mastery probabilities of the five skills (Addition, Bucket,
Sequence, Number Line, Sorting), total opportunity count,
over-practice opportunity count and total incorrect answer
counts. To identify the most important features, we (1) per-

Figure 3: Over-practice ratio in each skilll. The
number next to each skill indicates the count of stu-
dents who mastered that skill and were included in
the violin plot.

formed feature selection with linear regression, and (2) ran
another linear regression model with the selected features on
the full dataset to inspect the coefficient and significance of
each feature. In step (1), we use the mlxtend library [45] to
run a forward feature selection procedure that returns the
feature subset with the best cross-validated performance,
measured in terms of mean squared error (MSE).

In predicting posttest scores, our feature selection identi-
fied three features: Bucket mastery, Sorting mastery and
pretest score. A linear regression model with these three fea-
tures, when trained and evaluated on the entire dataset, had
an MSE of 26.167 and an adjusted R2 of .735. Based on the
regression table, the coefficient and significance of each fea-
ture was as follow: pretest score with β = 0.734, p < .001,
Bucket mastery with β = 6.833, p < .001, Sorting mastery
with β = 5.100, p = .001. In other words, pretest scores,
Bucket mastery and Sorting mastery each had a positive
and significant association with posttest scores.

The delayed posttest model incorporated two additional fea-
tures – Number Line mastery and gender – and yielded an
MSE of 24.218, as well as an adjusted R2 of .747. Based on
the regression table, the coefficient and significance of each
feature was as follows: pretest score with β = 0.730, p <
.001, Bucket mastery with β = 4.276, p = .018, Sort-

ing mastery with p = 4.270, p = .003, Number Line with
β = 3.099, p = .029, and gender with β = 1.426, p = .074.
In other words, the three skill mastery values – Bucket,
Sorting, Number Line – as well as pretest score each had
a positive and significant association with delayed posttest
score, while gender (male = 0, female = 1) had a positive
and marginally significant association

4.3 Investigating factors related to enjoyment
For each enjoyment dimension measured in post-intervention
surveys (achievement emotion, game engagement, affective
engagement - see Table 1), we computed the per-student
average Likert scores to the statements in that dimension.
Then, we performed the same feature selection procedure as
in 4.2 and reported our results in Table 2.

We observed that the adjusted R2 values of the game en-
gagement and affective engagement models were much lower
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Table 2: Results of feature selection for predicting game enjoyment. The Overall performance row indicates
the selected model’s scores when trained and evaluated on the entire dataset.

Achievement Emotion Game Engagement Affective Engagement

Selected features computer efficacy, identification
agency, intrinsic agency, math inter-
est, pretest score, total opportunity
count

math interest, com-
puter efficacy, gender

decimal efficacy, gender, intrinsic
agency, Sorting mastery, Bucket

mastery, total incorrect attempt
count, identification agency

Overall

performance

MSE = 0.520

Adjusted R2 = 0.386

MSE = 0.602

Adjusted R2 = 0.225

MSE = 0.660

Adjusted R2 = 0.218

than those of the test score models. Even when trained
and evaluated on the entire dataset, Linear Regression could
only explain about 20% of the variance in game engagement
and affective engagement. On the other hand, the achieve-
ment emotion model did have reasonable performance (ad-
justed R2 = .386), so we focused on analyzing the fea-
tures in this model. The linear regression table showed
the coefficient and significance of each feature as follows:
computer efficacy with β = 0.047, p = .063, identification
agency with β = 0.099, p = .024, intrinsic agency with
β = 0.116, p = .002, math interest with β = 0.114, p = .001,
pretest score with β = −0.017, p = .011, opportunity count
with β = 0.009, p = .033. In other words, computer efficacy
had a positive and marginally significant association, while
pretest score had a negative and significant association; the
remaining features (identification agency, intrinsic agency,
math interest and opportunity count) each had a positive
and significant association.

5. DISCUSSION
5.1 Investigating in-game learning
Based on the opportunity count until mastery in each skill
(Figure 2), we identified Sorting and Number Line as the
most difficult skills in the game. Our prior learning curve
analysis [40] on a different Decimal Point study reported a
consistent finding – that the learning curves of these two
skills were mostly flat and reflected small learning rates.
Based on previous research in decimal learning, a plausible
explanation is that there are several misconceptions which
can lead to students making a mistake in Sorting or Num-

ber Line problems, including (1) treating decimals as whole
numbers, (2) treating decimals as fractions, and (3) ignoring
the zero in the tenths place [46]. Furthermore, even when
students recognize their misconception, they may shift to
a different misconception instead of arriving at the correct
understanding [56]. This phenomenon likely also occurred
in Decimal Point, as the game provides corrective feedback
(whether an answer is right or wrong) but does not empha-
size the underlying reasoning; consequently, as an example,
a student realizing it is wrong to assume longer decimals are
larger may end up concluding that shorter decimals must be
larger, thereby adopting a new misconception. This high-
lights the need for more refined tracing of the student’s
dynamic learning states in a digital learning environment.
While the standard KC modeling technique can track when
students make an intended mistake (e.g., longer decimals
are larger), it does not investigate their specific input to
see whether a new misconception (e.g., shorter decimals are
larger) has emerged. To address this issue, future itera-

tions of the game should provide more instructional support
that can react to various misconceptions from students, for
example via explanatory feedback [19] or predefined error
messages for different types of error [36].

Once students have mastered a skill, however, our analy-
sis showed that over-practice was very common, i.e., stu-
dents kept playing more mini-games in the mastered skill.
At the same time, there were only 26 out of 159 students
who mastered all five skills, suggesting that the majority
of students still had room for improvement in the unmas-
tered skills but chose not to practice them. One possible
reason is that the game environment did not explicitly indi-
cate when the student has reached mastery or force them to
switch to practicing a different skill. Consequently, young
students, who were likely to be weak at self-regulated learn-
ing [37,53], simply played the mini-games that they thought
were engaging, which in this case involved the skills they had
already mastered. A prior study by [29] similarly found that,
in a game about locating fractions on number line, students
were more engaged when the game was easier, contradicting
game design theories that optimal engagement would occur
at moderate difficulty level.

5.2 Investigating factors related to posttest and
delayed posttest performance

We saw that our linear regression models were able to pre-
dict posttest and delayed posttest performance well, cap-
turing about 75% of the variance in test scores with only
3-5 features. The three features present in both models are
pretest score, Sorting mastery and Bucket mastery. The
inclusion of pretest score is not surprising, as it is consistent
with the standard practice of controlling for prior knowledge
when analyzing posttest score [58]. On the other hand, both
Sorting mastery and Bucket mastery suggest that the abil-
ity to compare decimal numbers plays a large role in test per-
formance. This is likely due to the game and test materials
focusing on the four most common decimal misconceptions
(Megz, Segz, Pegz, Negz), three of which are related to dec-
imal comparison [25]. Based on the distribution of practice
opportunities until mastery, however, students took much
more attempts to master Sorting problems than Bucket

problems, which may explain why they did not achieve high
scores on the posttest and delayed posttest, averaging at
only around 30 out of 52 points [22]. Therefore, improv-
ing students’ performance on Sorting problems, potentially
by incorporating hints and error messages as we previously
discussed, is crucial in future studies of the game.
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At the same time, we saw that Number Line mastery had a
significant positive association with delayed posttest score,
but was not selected in the posttest model. An interpreta-
tion of this result is that Number Line tasks, which we identi-
fied as among the most difficult in the game, could be at a de-
sirable difficulty level, which can promote deeper and longer-
lasting learning than the more straightforward tasks [61].
For instance, a prior study on comparing erroneous exam-
ples and problem-solving decimal tasks found that erroneous
examples, which are more aligned with the desirable diffi-
culty, led to significantly higher delayed posttest scores but
similar posttest scores [34]. In our case, we also saw that
Number Line is an important feature for predicting delayed
posttest but not for predicting posttest performance.

Similar to Number Line mastery, gender (male = 0, female
= 1) was not a feature in the posttest model, but had a posi-
tive association with delayed posttest scores. In other words,
with other factors being equal, females could achieve higher
delayed posttest scores than males. While this association is
only marginally significant (p = .074), similar findings about
females’ tendency to outperform males in retention and de-
layed posttest have been reported in previous mathematics
intervention studies [1, 20]. Using the same dataset as in
this work, [22] also found that females demonstrated signif-
icantly higher pre-post and pre-delayed learning gains than
males, with a larger effect size in pre-delayed learning gains.
Therefore, an important next step is to conduct future stud-
ies of Decimal Point on a larger sample size to draw more
conclusive findings about whether the game promotes more
retention in females and what could lead to this effect.

5.3 Investigating factors related to enjoyment
Our enjoyment prediction models did not perform as well
as the learning models and could explain only about 20% of
the variance in game engagement and affective engagement.
These poor model fits likely result from the lack of appropri-
ate features in our data. To track student engagement, pre-
vious work has emphasized the use of fine-grained measures
such as time spent on decision making [47], social engage-
ment profile [49] and interaction traces [6]; in contrast, our
feature set consists mainly of quantitative scores (e.g., Likert
responses) and aggregate data (e.g., error count). Related to
this direction, a previous study of Decimal Point by [57] has
clustered students based on their mini-game selection orders
and found that the cluster which demonstrated more agency
reported higher enjoyment. Adopting their method of en-
coding students’ mini-game sequences is a good first step in
building more fine-grained features for our prediction tasks.
On the other hand, the lack of association between our in-
game learning measures (e.g., skill mastery, over-practice op-
portunity count, error count) and game engagement or affec-
tive engagement implies that students’ game performance,
whether good or bad, were unlikely to yield any negative
emotion such as confusion or frustration. This is a positive
outcome, indicating that our game environment does not
impose any performance pressure on students – one of the
primary principles of learning games [15].

At the same time, we did find that a linear regression model
was able to predict achievement emotion reasonably well
from student’s identification agency, intrinsic agency, math
interest, computer efficacy, pretest score and opportunity

count. Identification and intrinsic agency indicate that, with
all other factors being equal, the more students identified
their learning as coming from intrinsic motivation (rather
than external pressures), the more achievement they felt
after learning. Math interest and computer efficacy sug-
gest that students’ acquaintance with the learning domain
or medium could also be positively associated with achieve-
ment emotion [26]. On the other hand, pretest score had
a negative association, likely because students with lower
prior knowledge were able to learn more from the game
and therefore felt more achievement than those with high
prior knowledge. Similarly, for opportunity count, a plau-
sible reason for students choosing to play more mini-game
rounds is that they felt the mini-games were helpful, which
contributed to their achievement emotion after game play.
Overall, the features we identified could serve as a guideline
for promoting achievement emotion in learning games and
in more general instructional contexts.

6. CONCLUSIONS
From our analyses, we gained several insights into students’
learning outcomes and enjoyment in Decimal Point. First,
we found that Sorting and Number Line are important skills
for posttest and delayed posttest performance, but students
required more instructional support to effectively master
them. Second, very few students mastered all five deci-
mal skills from the game, while the majority engaged in
over-practice, likely due to their preference for playing easy
mini-games, i.e., those they had already mastered. Third,
expanding on prior findings about gender effect in Decimal
Point [22,33], we identified a trend of females outperforming
males in the delayed posttest, which should be investigated
on a larger sample size. Fourth, we learned that students’
achievement emotion can be reasonably captured by their
level of computer efficacy, learning motivation, prior knowl-
edge and number of mini-game rounds. All of these insights
can be derived from log data alone and would serve as useful
metrics to assist digital learning game researchers in evalu-
ating and improving their own games. For Decimal Point,
in particular, an important next step is to perform similar
analyses in other studies of the game to see which of our
findings can be replicated. Identifying consistent trends in
student data could allow us to construct a more generalized
model of students’ game play that combines existing theories
with novel exploratory analyses [38].

In a broader context, we have seen the rapid growth of digi-
tal learning games in recent years, from being conceived as a
novel learning platform [15,21] to having their effectiveness
validated by rigorous studies [10]. The game Decimal Point,
in particular, has been shown to significantly improve stu-
dents’ learning through several research works [18,22,35,39].
When viewing from a learning analytics perspective, how-
ever, one could identify room for improvement that would
otherwise not be reflected in pretest and posttest scores
alone. For instance, a game may not adequately support
all of its learning objectives, or students may engage in non-
optimal learning behavior due to a lack of self-regulation.
At the heart of these issues is the question of how digital
learning games can optimize student learning while retain-
ing its core value as a playful environment, where players
are free to exercise their agency. Addressing this question is
an important step for future works in the field.
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