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ABSTRACT
Effective peer assessment requires students to be attentive
to the deficiencies in the work they rate. Thus, their reviews
should identify problems. But what ways are there to check
that they do? We attempt to automate the process of decid-
ing whether a review comment detects a problem. We use
over 18,000 review comments that were labeled by the re-
viewees as either detecting or not detecting a problem with
the work. We deploy several traditional machine-learning
models, as well as neural-network models using GloVe and
BERT embeddings. We find that the best performer is the
Hierarchical Attention Network classifier, followed by the
Bidirectional Gated Recurrent Units (GRU) Attention and
Capsule model with scores of %93.1 and %90.5 respectively.
The best non-neural network model was the support vector
machine with a score of 89.71%. This is followed by the
Stochastic Gradient Descent model and the Logistic Regres-
sion model with 89.70% and 88.98%.
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1. INTRODUCTION
Peer assessment—students giving feedback on each other’s
work—has been a common educational practice for at least
50 years [1, 2] It provides students more copious and rapid
feedback than an instructor would give, as well as reac-
tions from a more authentic audience (the student’s peers).
By concentrating on a limited number of works, peers can
produce assessments with similar validity and reliability to
those of instructors, whose time is spread more thinly over
many students’ submissions [3]. Students who perform peer

assessment show a substantial increase in performance [4].
Moreover, studies uniformly report that students learn more
by being reviewers than they learn from the reviews they re-
ceive [5, 6, 7, 8].

The need for peer assessment was felt more acutely after
the rise of massive open online courses (MOOCs). With
students paying little to no fees, MOOCs are not able to hire
enough staff to asses all submitted work. Thus, MOOCs rely
heavily on peer assessment [9, 10].

For students to gain from peer assessment, students must
take the process seriously. They must think carefully and
metacognitively about the works they are reviewing. To
foster an atmosphere where students assess conscientiously,
the instructor must train the students in reviewing—and
follow up by assessing how well they perform this task [11].
But instructor assessment of students’ reviewing suffers from
the same shortcomings as instructor assessment of students’
submitted work: it consumes much instructor time, is likely
to be rushed, and is mostly summative; that is it evaluates
how well the students have done, but does not directly help
them improve their reviewing. Thus, considerable research
has looked at other methods for assessing review quality [12].

Fundamentally, the quality of a review is related to whether
it identifies ways for the author to improve the work. Thus,
the review should point out shortcomings or problems the re-
viewer perceives in the reviewed work. This paper describes
several approaches to automatically identifying whether re-
view comments, which are responses to individual rubric
items, do point out (alleged) problems with the work.

2. RELATED WORK
Previous approaches to evaluating peer-assessment reviews
include calibration [13, 10, 14], reputation systems [15, 16],
”back-reviews” (rejoinders) [17], natural language process-
ing [18, 19, 20], logistic regression [21], and neural-network
techniques [22]. Peer assessment has much in common with
peer review, as used to vet scientific work for publication.
Hua et al. [23] used NLP to automatically detect arguments
in these reviews. Negi [24] used several AI techniques to de-
tect suggestions in product reviews. Space does not permit
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elaboration of these methods, but a fuller discussion can be
found in our extended paper.

3. EXPERIMENTAL METHODOLOGIES
3.1 Data
The data used for our experiments comes from Expertiza
[25], a peer-assessment platform for reviewing work devel-
oped by collaborative teams. For each review, the reviewer
fills out a rubric, which consists of several criteria. Sample
rubric items are, ”How well does the code follow good Ruby
and Rails coding practices?” ”Is the user interface intuitive
and easy to use?” Most criteria ask for a numeric rating as
well as textual feedback. It is the textual feedback that we
analyze in this work.

Our study is based on reviews of coding and documentation
assignments from NCSU CSC 517, Object-Oriented Design
and Development. To obtain labeled data for our research,
we offered students a small amount of extra credit for tag-
ging review comments they received, as either mentioning a
problem or not. We spot-checked the student-assigned tags
for the purpose of quality control. An example comment
that does not mention a problem (tagged as 0) is, ”The in-
terface is easy to use and it is well described in the Readme
file.” One mentioning a problem (tagged as 1) is, ”The im-
plementation can only log one type of user on.”

Several students had the opportunity to tag the same review
comments. If multiple students tagged the same comment,
inter-rater reliability (IRR) could be calculated. We used
Krippendorff’s α [26] as the metric for IRR. By dropping
observations with conflicting tags, we have raised the Kirp-
pendorff’s α associated with our dataset from 0.696 to 1.

The dataset was de-duplicated and balanced, resulting in a
total of 18,354 observations. It was separated into training,
validation, and testing sets in the ratio of 80:10:10. This
split was used to find optimized hyperparameters with 5-
fold cross-validation. Unless the dataset is large, the com-
bination of observations used in the training and test sets
can have an impact on how well the classifier performs. We
compensated for this by using 20-fold cross-validation on our
finalized classifiers with tuned hyperparameters and saving
the resulting 20 scores for analysis.

3.2 Baseline Models
We set up our baseline using traditional machine-learning
models, such as Support Vector Machine (SVM), SVM us-
ing Stochastic Gradient Descent (SGD), Multinomial Näıve
Bayes (MNB), Logistic Regression (LR), Random Forest
(RF), Gradient Boosting (GB), and AdaBoost (AB).

3.2.1 Input Embedding
The input to our baseline models was first processed by the
TF-IDF vectorizer in scikit-learn [27]. TF-IDF vectorization
is a common way to convert raw text and documents into
embeddings suitable for machine-learning models. The vec-
torizer generates a document-vocabulary matrix for each of
the documents (in our case, review comments that averaged
2.2 sentences per comment). Then, using inverse document
frequency, it normalizes (”lowers”) the weight of the words
by checking how often a word appears in other documents

(comments, in this case). This helps lessen the impact of
frequent yet unimportant words, so that common words like
”the” that convey little semantic meaning do not affect the
classification of a comment. The model architecture and
dataflow for traditional classifiers is shown in Figure 1.

3.2.2 Support Vector Machine
Support vector machines are commonly used for classifica-
tion in machine learning. A SVM establishes a decision
boundary as well as a positive plane and a negative plane
between classes. Statistical features for each review com-
ment represented in TF-IDF-normalized vectors are put into
the vector space for all comments, then the model learns a
hyper-plane (support vector) to best divide them into two
categories: comments containing problem statements, and
comments without problem statements.

Figure 1: Data pipeline for machine learning model

3.2.3 SVM with Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) was developed early on
and popularly adopted to optimize neural-network models
[28], while applying SGD on linear classifiers is not unheard
of. [29] We compared the performance of the SVM model
with and without SGD.We applied a combination of L1 and
L2 regularization to the loss function, with the hope of cor-
recting over-fitting problems.

3.2.4 Multinomial Naive Bayes
A näıve Bayes model assumes that each of the features it
uses for classification is independent the others. To deter-
mine whether a review comment identifies a problem, the
model examines the TF-IDF normalized word-count vectors
for that comment, using the conditional probability of each
of these features/vectors, and makes a judgment, based on
conditional probabilities learned from the training set.

3.2.5 Logistic Regression
The logistic-regression (LR) classifier uses a regression equa-
tion to produce discrete binary outputs. Similar to linear
regression, it learns the coefficients of each input feature
through training; however it uses a logistic function instead
of linear activation to determine the class to which an in-
put belongs by fitting coefficients of each n-gram through
comments in the given training set.

3.2.6 Random Forest
The Random Forest (RF) classifier is an ensemble method
that fits multiple decision trees and uses averaging to im-
prove the accuracy of predictions and to avoid over-fitting.

3.2.7 Gradient Boosting
Gradient boosting (GB) is an ensemble machine-learning al-
gorithm that utilizes a number of weak models, such as small

705 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

http://research.csc.ncsu.edu/efg/expertiza/papers/Problem_Detection_Complete.pdf


decision trees. In training, these small decision trees are fit-
ted in a negative gradient direction in order to reduce the
loss calculated from the cost function.

3.2.8 AdaBoost
AdaBoost, or adaptive boosting, is a meta-algorithm that
alters weights of entries for base models. When an entry
is misclassified, the algorithm increases the weight of that
entry and decreases the weights of entries that have been
correctly classified. The algorithm terminates upon meeting
the confidence threshold. Through doing this, the booster
identifies the features that have greater impact on the re-
sults, and improves prediction accuracy.

3.3 Neural Network Models
Our other experiments use neural networks, and Keras [30]
was the framework of choice for implementation. Compared
with our baseline models, the input of each model is gener-
ated in two different ways: through a GloVe embedding and
BERT embedding.

3.3.1 Input Embedding
Global Vectors for Word Representation, or GloVe embed-
ding [31], is an embedding model that converts words into
multidimensional vectors based on their meaning. Its func-
tion is similar to Word2Vec, which transforms words to em-
beddings in a limited vector space, though the underlying
principle is different.

Bidirectional Encoder Representations from Transformers
(BERT) is a multi-layer bidirectional transformer encoder
[32] developed by Google. The BERT network we used in
our experiment is published by Google and is pre-trained
on Wikipedia and BooksCorpus data. We used the open-
source project ”Bert-as-service” to create sentence embed-
dings. Specifically, we limited the maximum sentence length
to 25 words, and extracted embeddings with outputs from
the second-last layer in the pretrained network. The Bert-
Base-Uncased model [32] has 12 attention layers, and 768
neurons in each layer with 12 attention heads. Using this
network has given us 768 dimensions as sentence embed-
dings. We also used a version with word level embeddings.
Figure 2 demonstrates the model architectures in order of
the next subsection.

3.3.2 Multilayer Perceptron
A multilayer perceptron (MLP) model [33] is a typical arti-
ficial neural network. It utilizes multiple layers of neurons,
and uses back-propagation for training. Errors calculated
by a loss function are propagated back through the layers
using the chain rule of gradient descent derivation.

3.3.3 Convolutional Neural Network
A convolutional neural network (CNN) utilizes convolution
kernels that pool data with a defined window size on given
dimensions to generate summaries from input data [34].

When dealing with comment classification, this model uses
convolutions on the feature dimension to reduce the com-
plexity of each word vector, different dropout percentages,
and pooling methods.

Figure 2: Data pipeline for neural network Models

3.3.4 Recurrent Neural Network
Recurrent neural networks (RNNs) are neural networks that
take time-sequence information into consideration. For each
time-step, the network takes the inputs and updates its in-
ternal memory cells with new information. Different RNN
models implement memory updates differently. For exam-
ple, long short-term memory (LSTM) networks not only re-
member inputs, but also ”forget” unimportant information.

When we pass an embedded sentence to the network, each
word is seen as an item emerging in one time step, and the
sequence of words in a sentence becomes a sequence of vec-
tors transitioning along with time steps. The neural network
learns from the transition what information is important to
keep and what is not, then applies the same judgment when
a new sentence is given to it for classification.

Here we also implemented a GRU network and a bidirec-
tional GRU network in parallel.

3.3.5 Hierarchical Attention Network
Hierarchical attention networks (HANs) are neural networks
that take into consideration the document structure and sen-
tence structure [35]. A document normally consists of a
number of sentences, and a sentence is formed by a number
of words. Not all sentences in a document are important to
the classification of a document, and similarly, not all words
are important for sentence-level classification. HANs utilize
this information through attention layers that capture words
and sentences that are important towards the classification.

In classifying comments, a HAN can capture information
with greater impact on the results. For example in sample
comment ”The writeup does not include a Test Plan sec-
tion,” the words ”does not include” contributes a lot more
to implying there is a problem stated in this comment than
other parts of the comment do.
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3.3.6 CNN with Long Short Term Memory
Previous models showed that each type of the neural net-
work or neural network layer could be efficient on specific
tasks, for example CNN for dimension reduction and HAN
for extracting words that are more important to the result.
In this subsection we combine some models and explore the
benefits of mixing different types of neural networks.

A model with CNN and LSTM layers is implemented in the
hope of securing benefits from both models. With CNN as
a dimension reducer, the LSTM layer might be able to find
useful information from the aggregated features. Another
attempt tests whether a CNN is needed to reduce dimen-
sions, by removing it while boosting the performance of re-
current layer by putting it in a bidirectional wrapper.

4. EXPERIMENTAL RESULTS
Figure 3 displays a boxplot of the 20 f1-scores obtained us-
ing the traditional machine-learning classifiers and neural
networks from the 20-fold cross validation. The lowest-
performing classical machine learning classifiers, multino-
mial näıve Bayes and AdaBoost, achieved similar accuracy,
with respective sample median f1-scores of 0.855 and 0.861.
The gradient boosting and random-forest classifiers achieved
sample median f1-scores of 0.870 and 0.871. The highest
performing classifiers included logistic regression, stochas-
tic gradient descent, and support vector machines. They
achieved sample median f1-scores of 0.890, 0.897, and 0.897
respectively.

Figure 3: Models’ F-1 Scores

These results show that classifiers can classify review com-
ments as mentioning problems with an accuracy range of
approximately 84% to 95%.

The HAN and BiGRU-Attn-Caps models that used GloVe
embeddings achieved the best performance among all the
models. The CNN model that used GloVe embeddings achieved
the next best performance with a sample median f1-score of
0.886. The Bidirectional GRU had a very close sample me-
dian f1-score of 0.882, followed by the Bidirectional LSTM
model with 0.872, then the LSTM CNN model at 0.865. The
lowest-scoring models were the ones with word-level (WL-

Bert) and sentence-level (SL-Bert) BERT embeddings with
sample median f1-scores of 0.862 and 0.844 respectively.

To gain insight into the phrases that contributed towards
determining a suggestion, we extract coefficient weights of
some features from two of the models. Table 1 displays a list
of the logistic regression model’s top 10 positive and nega-
tive features in determining if a comment has mentioned a
problem in the author’s work. The features that increase the
likelihood that a comment will mention a problem (positive
coefficients) include phrases that may constitute a sugges-
tion by the reviewer. For instance, phrases such as ”could”,
”should”, ”could have”, and ”more” indicate that the reviewer
is likely giving advice to the author about improving the
work, thus noting a problem by implication. Features with
negative coefficients include phrases that likely demonstrate
positive sentiment, such as ”yes”, ”good”, ”well”, and ”great”.

Table 1: Logistic Regression Coefficients
Coefficient Value Coefficient Value

yes -8.0233 not 10.5227
good -3.9472 but 8.8498
and -3.1690 however 7.8254

they have -3.1193 more 6.2155
well -3.0567 could 5.6703

yes the -2.9953 should 5.3498
all the -2.7422 would 5.0391
clearly -2.6269 no 5.0183
project -2.5331 missing 4.9864
passed -2.4645 some 4.9160

Table 2 displays the stochastic gradient descent model’s top
10 positive and negative features in determining if a com-
ment mentioned a problem in the author’s work. The coef-
ficient values are lower than those of the logistic regression
model, but they comprise similar positive and negative fea-
tures.

Table 2: Stochastic Gradient Descent Coefficients

Coefficient Value Coefficient Value

yes -4.1029 however 6.5277
conflicts -2.0396 not 6.4184

good -2.0083 but 5.5175
apply -1.7788 should 3.9721

complicated -1.7785 could 3.9198
since -1.6178 would 3.8352
sense -1.6139 more 3.6346

required -1.5925 missing 3.5942
passed -1.5757 no 3.4112
project -1.5637 except 2.9776

5. SUMMARY
We have marshalled a multitude of classifiers that can parse
student peer-review comments for the detecting the mention
of a problem. The HAN and BiGRU-Attn-Caps models per-
formed the best among the neural network classifiers on this
dataset, while the best traditional classifiers were the sup-
port vector machine and stochastic gradient descent models.
The least effective classical models were the AdaBoost and
multinomial näıve Bayes classifiers—the two that used the
sentence and word level embeddings.
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