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ABSTRACT

Over the past decade, machine learning has become an in-
tegral part of educational technologies. With more and
more applications such as students’ performance prediction,
course recommendation, dropout prediction and knowledge
tracing relying upon machine learning models, there is in-
creasing evidence and concerns about bias and unfairness of
these models. Unfair models can lead to inequitable out-
comes for some groups of students and negatively impact
their learning. We show by real-world examples that educa-
tional data has embedded bias that leads to biased student
modeling, which urges the development of fairness formaliza-
tions and fair algorithms for educational applications. Sev-
eral formalizations of fairness have been proposed that can
be classified into two types: (i) group fairness and (ii) indi-
vidual fairness. Group fairness guarantees that groups are
treated fairly as a whole, which might not be fair to some
individuals. Thus individual fairness has been proposed to
make sure fairness is achieved on individual level. In this
work, we focus on developing an individually fair model for
identifying students at-risk of underperforming. We propose
a model which is based on the idea that the prediction for
a student (identifying at-risk students) should not be influ-
enced by his/her sensitive attributes. The proposed model
is shown to effectively remove bias from these predictions
and hence, making them useful in aiding all students.

Keywords
Fairness, at-risk students detection, decision making, stu-
dent modeling

1. INTRODUCTION

Educational data mining (EDM) approaches seck to analyze
student-related data with the objective of improving learn-
ing outcomes for students. Many machine learning methods
have been proposed for student modeling and forecasting.
However, in the past few years, concerns have emerged about
the fairness of machine learning models. An investigation by
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ProPublica has found that a machine learning tool COM-
PAS used to predict risk of recidivism exhibits alarming
bias against African-American defendants. It shows that the
false positive rate of African-American defendants is twice
as their white counterparts (45% vs. 23%) [1]. Buolamwini
et al. [3] observed imbalanced gender and skin type distri-
butions in facial recognition datasets. Their study shows
that facial recognition algorithms are more likely to misclas-
sify darker-skinned females with error rates up to 34.7%,
while the maximum error rate for light-skinned males is
0.8%. In health care, an algorithm used to guide health de-
cisions found that African-American patients assigned the
same level of risk are sicker than white patients [24].

In the domain of EDM, unfairness has also been observed. In
academic performance prediction systems, social indicators
have been found to predict low-performance of male students
more accurately than that of female students [29]. A study
by Doroudi et al. [7] showed that although personalized
models were more equitable than treating all students the
same, they were still not fair when relying on inaccurate
models and the inequities could cascade as the amount of
content increases.
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Figure 1: GPA distribution by gender.

Machine learning models learn from data. If bias is recorded
in data, models trained on the biased data can also be bi-
ased [3]. Bias is also observed in educational data. Figures 1
and 2 show the average GPA of students by gender and race
at George Mason University over a period of ten years. The
GPA of a student is his/her accumulative GPA as of the last
term before graduation. In Figure 1, average GPA of male
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Figure 2: GPA distribution by race.

students is skewed towards lower GPAs, while average GPA
of female students is skewed towards higher GPAs. The av-
erage GPA of overall female students is 3.15 which is higher
than that of male students 2.86. Figure 2 shows the average
GPA of African-American and non-African-American stu-
dents. From the figure, we can observe that average GPA
of African-American students leans towards left while that
of non-African-American students leans towards right. The
data shows that the average GPA of African-American stu-
dents is 2.86, while it is 3.03 for non-African-American stu-
dents.

Biased data can lead to biased machine learning models
which can be harmful to minority groups. For example,
models predicting a group of students to be at-risk or under-
performing can discourage them and undermine their learn-
ing outcomes. To resolve the harmful results brought about
by inequity of machine learning, there are critical needs to
develop fair machine learning algorithms.

In this work, we build a fair machine learning model based on
metric free individual fairness. Metric free individual fair-
ness assumes that an individual’s qualification should not
be changed if his/her sensitive attribute is changed [19]. In
this paper, without loss of generality we assume there are
two sensitive attributes. The proposed model is composed
of two classifiers. Each classifier corresponds to a sensitive
group. The classifier corresponding to the individual’s sen-
sitive attribute predicts the individual’s probability of being
positive, while the probability of the other classifier indi-
cates the individual’s probability of being positive if his/her
sensitive attribute is changed. According to the definition of
metric free individual fairness, the two probability distribu-
tions should be nearly identical. The proximity of the two
probability distributions is treated as fairness. The closer
the two distributions, the fairer the prediction is. In ad-
dition to fairness, we also care about the accuracy of the
classifier. Therefore, the overall objective we seek to opti-
mize is the accuracy of the classifier corresponding to the
individual and the proximity of the distributions of the two
classifiers.

The proposed model is evaluated on datasets collected from
George Mason University and the task is detecting at-risk
students. The experimental results show the efficacy of the

proposed model at mitigating bias. Although, the overall
data shows that female and non-African-American students
have higher overall performance, we observe that the bias is
different for different courses. Specifically, in some courses
female students belong to disadvantaged group, while in
other courses male students are in disadvantaged group.
This observation is useful for future work on developing fair
machine learning models in educational setting.

The rest of the paper is organized as following. Section 2
discusses related work on EDM and fairness. The following
section introduce preliminary on the definition of individual
fairness. In Section 4, we propose our fair model for at-
risk students detection. Datasets and experimental protocol
is described in Section 5. Section 6 presents experimental
results and analysis. The last section concludes the paper
and discusses future work.

2. RELATED WORK

In this work, we focus on mitigating bias in classification
tasks. We first describe related works in EDM that rely
on classification. Then we describe the formalizations of
fairness. Lastly, we talk about proposed methods for fair
machine learning.

2.1 Classification Problems in EDM

In educational data mining, there are many tasks that can
be formulated as a classification problem and several prior
works have been proposed in this area such as affect detec-
tion [30], dropout prediction [4], graduation prediction [20],
at-risk student detection [17, 28], knowledge tracing [31],
etc.

Affect detection is the task of classifying a student’s affec-
tive states such as boredom, confusion, delight, concentra-
tion and frustration by using sensor [26] and sensor-free
[2] data. Vinayak et al. [15] proposed to predict student
dropout using a Naive-Bayes classifier. Ojha et al. [25] pro-
posed SVMs, Gaussian Processes and Deep Boltzmann Ma-
chines for student’s graduation prediction using factors such
as pre-university preparation. A set of human-interpretable
features have been engineered by Polyzou et al. [28] for at-
risk student detection. All these tasks can be formulated as
a classification problem. However, all these works did not
consider the potential bias and discrimination of the mod-
els. In this work, we try to build a general method that can
be used for different kinds of tasks. To test the proposed
method, we focus on the task of identifying at-risk students.

2.2 Fairness Formalizations

Over the years, different formalizations of fairness have been
proposed that focus on different aspects. For example, sta-
tistical parity [11] requires that the probability of being pre-
dicted as positive across all the groups should be nearly the
same. Equal odds imposes the constraint that the true pos-
itive rate should be the same for all the groups [14]. Equal
opportunity requires a qualified individual should be pre-
dicted as qualified regardless of his/her sensitive attribute
[14]. Another type of fairness formalization focuses more
on individual level. The notion of individual fairness pro-
posed by Cynthia et al. [8] assumes that similar individuals
should be treated similarly. However, the requirement of a
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problem-specific similarity metric limits its adoption [5]. Hu
et al. [19] proposed metric free individual fairness based on
the assumption that the prediction outcome of an individ-
ual should be not be influenced by the individual’s sensitive
attribute. The elimination of similarity metric makes imple-
mentation of metric free individual fairness easier.

2.3 Fair Machine Learning Algorithms

Several algorithms have been proposed to achieve individual
fairness. Based on John Rawls’ notion of fair equality of op-
portunity, Joseph et al. [21] proposed an individual fairness
notion that a worse individual should never be favored over
a better one. The unfairness comes from the prediction’s de-
pendence on sensitive attribute. To remove the dependence,
Zemel et al. [32] proposed learning a fair representation
which does not contain sensitive information. The represen-
tation is a cluster of embedding vectors. Following the idea
of learning fair representation, Edwards [9] proposed to re-
move sensitive information from the learned representation
by using adversarial learning. The input feature vectors are
mapped to an embedding vector by an encoder. An adver-
sary tries to predict the sensitive attribute from the repre-
sentation. The encoder and the adversary plays a minimax
game to remove sensitive information. The fair representa-
tion learning algorithms achieve individual fairness by first
learning a representation and then training a classifier based
on the learned representation. Our proposed model directly
puts fairness constraints on the predictions.

3. PRELIMINARIES

In this section, we discuss the formalization of individual
fairness.

3.1 Individual Fairness

Cynthia et al. [8] introduces the concept of individual fair-
ness, which is based on the idea that similar individuals
should be treated similarly. This definition requires a simi-
larity metric measuring the similarity between two individ-
uals. Given two individuals x; and x;, a classifier H is indi-
vidually fair if the difference of the predictions between the
individuals are upper bounded by their dissimilarity. The
definition is as following

D(H (z;), H(x;)) < d(wi,z ) (1)

where D is the distance measure between the outputs of the
classifier and d is the distance metric between the two indi-
viduals. The drawback of this definition is that a similarity
metric is required. A similarity metric guaranteeing fairness
is problem specific and requires strong assumptions, which
obstructs its adoption [5].

3.2 Metric Free Individual Fairness

Hu et al. [19] proposed metric free individual fairness based
on the idea that the qualification of an individual should not
be influenced by his/her sensitive attribute. Thus, changing
an individual’s sensitive attribute should not change the pre-
diction of a classifier. The definition of metric free individual
fairness is following

D(P(Y|z:,8 = ), P(Y]zi,S # 81)) < € (2)

where s; is the sensitive attribute of individual i, D is the
distance measure of the predictions, € is an arbitrarily small

Accuracy
Objective 0
Fairness Objective 1
Ifs;=1 .
Accuracy

Figure 3: The architecture of the proposed model. The
model consists of two classifiers Cy and C; corresponding to
sensitive attribute 0 and 1. An input vector z; is fed into the
two classifiers and the outputs are used to compute accuracy
and fairness score. Note that if the sensitive attribute s; is
0, accuracy Ao and fairness F' are combined to compute
objective Op and only classifier Cp is updated; otherwise,
A; and fairness F' are combined to form objective O; and
classifier C is updated.

positive number. This definition eliminates the requirement
of a similarity measure between individuals. In this work,
we develop a fair model based on this definition.

4. METHODS
4.1 Problem Statement

In this work, we focus on the task of identifying at-risk stu-
dents. Given a student ¢ with ((x;, s:),v:), x; € R” encodes
the student’s grades in courses taken prior to the target
course; s; € {0,1} is the student’s sensitive attribute such
as gender or race; y; € {0,1} is the ground truth label indi-
cating whether a student is at-risk (1) or not (0). We focus
on a binary sensitive attribute, though our method can be
easily extend to scenarios where the sensitive attribute is n-
ary. We want to build a classifier to predict if a student will
underperform in a future target course. The classifier needs
to satisfy two constraints: 1) make predictions as accurate
as possible and 2) the output of the classifier is individually
fair as specified by Equation 2.

The model is trained in a course-specific manner, namely, we
train a model for each target course. Given a target course,
we extract all the students who have taken it. The courses
these students have taken prior to the target course are ex-
tracted as prior courses. The students’ grades in the prior
courses are extracted to form a matrix X and the students’
grades in the target course are Y. Students’ sensitive at-
tributes are denoted as S. We train a course-specific model
on (X,Y) to predict whether students who have not taken
the target course will fail it or not. Note that sensitive at-
tributes S are not used as features.

4.2 Proposed Algorithm

In this section, we present the proposed model, multiple
cooperative classifier model (MCCM). Figure 3 shows the
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architecture of the proposed model. The model is com-
posed of two classifiers, each of which corresponds to a sen-
sitive attribute, e.g., male or female. Given an individual
((z3, $i), yi), the feature vector x; is fed into the two classi-
fiers. The output of the classifier corresponding to s; is the
individual’s probability of being positive, while the output
of the classifier corresponding to 1 — s; is the individual’s
probability of being positive if his/her sensitive attribute is
changed. Based on the assumption of metric free individual
fairness, to be fair the difference between the outputs of the
two classifiers should be ignorable. In this work, the differ-
ence is the KL-divergence of the two outputs. In addition
to fairness, we also care about the accuracy of the classifier.
Therefore, for student i, the objective function we seek to
optimize is as following

Li = —yilogps;i — (1 —yi) log(1 —ps; i) + AKL(Ps, i, ﬁl—si(,zg

3
where A is a hyperparameter trading off between accuracy
and fairness, ps;,; is the probability of being positive pre-
dicted by classifier s; and p1—s,,; is the probability predicted
by classifier 1 — s;. Note that, for L; only the classifier cor-
responding to s; is updated. The classifiers are feed-forward
neural networks with two hidden layers. The activation
function is chosen to be ReLU [12]. Dropout [16] is used
to prevent overfitting.

Algorithm 1: Multiple Cooperative Classifier Model

Input : Data D = {((xs,si), yi)}fil, learning rate «,
A, number of iterations 7T, classifier Cy and
C.

Initialize parameters {6§, 69}

fort=1,...,T do
Sample example ((x;, s;),y;) from D
Feed z; into classifier Cs; and Ci_,
Compute the loss L; according to equation 3

t+1 _ pt AL,
9&5 - esi + O‘aog_
<1

return {67,607}

5. EXPERIMENTAL PROTOCOL
5.1 Datasets

To evaluate the proposed model, we collect ten-year data
at George Mason University from Fall 2009 to Fall 2019.
We choose top five majors including Biology (BIOL), Civil
Engineering (CEIE), Computer Science (CS), Electrical En-
gineering (ECE) and Psychology (PSYC). We only choose a
course if there are at least 300 students who have taken it.
We use a student’s grade in prior courses to predict whether
a student is at-risk of failing a target course. While prepro-
cessing the data, we exclude courses that are not relevant to
a major such as elective courses. Table 1 shows statistics of
the data. From the table, we can see clear gender difference
for different majors. Female students tend to choose Biology
and Psychology majors, while male students are more prone
to engineering majors such as Civil Engineering, Computer
Science and Electrical Engineering. Overall, the proportion
of African-American students is relatively small, especially
for Civil Engineering and Computer Science.

We build course specific models, namely, for a target course
we train a classifier to predict whether a student will fail

that course in the future. We define as at-risk student if the
student’s grade is lower than 3.0. Given a target course, the
data related to that course is split into 75%, 15%, 15% for
training, validation and testing, respectively.

5.2 Baselines

As in this work we focus on individual fairness, we com-
pare our proposed model with several individually fair algo-
rithms.

5.2.1 Logistic Regression (LR)

This baseline does not have a fairness constraint. It directly
predicts if a student is at-risk or not. The input is a feature
vector encoding a student’s grades in prior courses. The out-
put is the student’s probability of failing the target course.

5.2.2  Rawlsian Fairness (Rawlsian)

The concept of Rawlsian fairness is that a worse candidate
should never be favored over a better one. Joseph et al. [21]
proposed an individually fair algorithm utilizing a contex-
tual bandits as building block to implement Rawlsian fair-
ness.

5.2.3 Learning Fair Representation (LFR)

The unfairness of a prediction comes from the correlation of
the output with the sensitive attribute. Zemel et al. [32]
proposed to remove the correlation by learning an interme-
diate representation and train a classifier on it.

5.2.4 Adversarial Learned Fair Representation (ALFR)

Edwards et al. [9] propose to remove sensitive information
from representation by adversarial learning. An encoder
maps the original feature vector to a latent embedding vec-
tor, from which an adversary tries to predict the sensitive
attribute. While the adversary tries to predict the sensi-
tive attribute, the encoder seeks to generate a representation
that prevent the encoder from predicting it.

5.3 Evaluation Metrics

To evaluate if the proposed algorithm satisfy the accuracy
and fairness constraints, we utilize three evaluation metrics
accuracy, discrimination and consistency.

The accuracy metric assesses the predictive accuracy of the
model, defined as following

SN Ly = §i)
acc = - N (4)

where N is the number of examples, ¢; is the prediction and
g is the ground truth label.

Discrimination measures the difference between the groups’
rate of being predicted as positive, mathematically expressed
as following

Zili1 1(si =0) * gi
Zﬁil 1(s; =0)

_ Ziil L(si =1) g
Zi\;l I(s; =1)

discri = |

()

Consistency compares the predicted results of an individ-
ual with his/her k-nearest neighbors. If the predicted results
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Table 1: Dataset Statistics

Major #S  #C #G #M
BIOL 6,127 16 124,716 1,927(31.45%)
CEIE 450 7 23,708 338(75.11%)
CS 2430 11 90,819  1,942(79.92%)
ECE 671 10 65,396 575(85.69%)
PSYC 5,110 17 84,504  1,200(23.48%)

3,910(76.52%)

#F #AA #NAA
4,200(68.55%) 759(12.39%) 5,368(87.61%)
112(24.89%)  27(6.00%)  423(94.00%)
488(20.08%)  157(6.46%)  2,273(93.54%)
96(14.31%)  66(9.84%)  605(90.16%)

694(13.58%)  4,416(86.42%)

#S total number of students, #C number of courses for prediction, #G total number of grades
#M number of male students, #F number of female students, #AA number of African-American students

#NNA number of non-African-American students.

is close to the results of the neighbors, consistency is high
and the algorithm is fair. Consistency is defined as following

S - 5 )

. n=11Yi JEKNN (z;) Y7
t=1— 6
consis E % (6)

i=1

where kNN (z;) is the k-nearest neighbors of individual <.

We use Gower similarity [13] to measure the similarity be-
tween individuals. Gower similarity is defined as
N
Gower(i,j) = 721“:]{, adi L (7)
D ket Wk
where N is the number of features and wy is the weight of
the k-th variable, in this paper the weights are set to one;
Sijk is the contribution by the k-th variable. If the k-th
variable is continuous, S;;x is defined as

Sign =1 128 =l ®)
Tk
where z;; is the value of k-th feature of 7 and ry is the
range of values for the k-th variable. If the k-th variable is
categorical, Sijk is 1 if x4, = zj; or 0, otherwise.

6. EXPERIMENTAL RESULTS
6.1 Results and Analysis

We train a classifier for each course in a major to predict
if a student will fail that course. The predictions are evalu-
ated by using accuracy, discrimination and consistency. The
results are averaged across the courses in a major. Table 2
shows the experimental results with gender as sensitive at-
tribute. From the table, we can see that the proposed model
MCCM achieves the best performance in mitigating bias
in terms of discrimination. It is able to achieve both group
fairness and individual fairness, although, it is designed for
achieving individual fairness. The reason is that group and
individual fairness are highly correlated so that achieving
one helps achieving the other.

The predictions from LR model is highly biased as there is
no fairness constraint imposed on it, but it performs well
with respect to predicting accuracy. On average, the dis-
crimination of LR is 7.3%. Other methods achieve fairness
at the cost of accuracy. It is interesting to see that Rawl-
sian is not able to remove bias and in some cases it leads
to even more unfair predictions. Rawlsian is based on the
idea that a worse candidate should never be favored over a
better one, which is implemented by interval chaining that
is a weak fairness constraint. We can also observe from the

table that different majors have different level of bias, e.g.,
Psychology has the least bias while Computer Science has
the highest bias with respect to the predictions of LR. The
experimental results with race as sensitive attribute is shown
in Table 3. The results are similar to those with gender as
sensitive attribute.

6.2 Fine-grained analysis of the bias

To have a fine-grained view of the bias, we look at the data
and predictions at the course level. In this section, we an-
alyze the bias embedded in the data and predictions from
LR and the proposed model MCCM. Figure 4 shows the
fine-grained results with gender as sensitive attribute. For
Figure 4, the data bias is that the proportion of at-risk fe-
male students subtracts the proportion of at-risk male stu-
dents. Positive bias means female students are more likely
to be predicted as at-risk; otherwise male students are more
likely to be predicted as at-risk. For the predictions from the
models, the bias is the female students’ average probability
of being predicted as at-risk students subtract that of male
students.

First of all, as stated in Section 1, the overall data such as
overall GPA by gender shows that male is minority groups.
However, when looking at the course level, different courses
have different minority groups. Figure 4 shows that in some
courses male students are less likely to be at-risk. This in-
sights can be used to inform future fairness work in edu-
cational data mining that a course specific model is desir-
able, considering that different courses have different mi-
nority groups. From the figures, we can also observe that
data and machine learning models might have different bias
direction. For example, in Figure 4(a), for course CO the
data bias is against male while LR and MCCM is against
female. In addition, data bias does not necessarily lead to
predictive bias. For example in Figure 4, all the courses
show data bias. However, a no-fairness-constraint classifier,
e.g., logistic regression has fair predictions in many courses.

7. CONCLUSION AND FUTURE WORK

The concerns about bias and discrimination of machine learn-
ing models are rising with the increasing of their adoption.
In educational setting, we observe bias from a real-world
dataset and machine learning models without fairness con-
straints exhibit non-ignorable biased predictions. Machine
learning models are intended to aid students with their learn-
ing. However, unfair treatment of students can undermine
their learning and graduation. To mitigate discrimination
in educational data mining, in this paper, we proposed a
fair machine learning model satisfying metric free individual
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Table 2: Experimental results with gender as sensitive attribute.

Method BIOL CEIE Cs ECE PSYC
acc(1)|discri({)|consist (1)  acc(T)|discri({)|consist(1) ace(T)|discri({)|consist(1) ace(1)|discri())|consist(1) acc(t)|discri()|consist(1)
LR 0.7662(0.0613(0.8152 0.6761]0.0837]0.7451 0.6628|0.1007(0.7569 0.7545|0.0980(0.7655 0.7769(0.0192|0.9578
Rawlsian 0.58890.0807(0.8120 0.6250]0.0866]0.7052 0.5582(0.0913/0.8301 0.6660]0.1498]0.7036 0.7559|0.0960(0.9396
LFR 0.6470|0.0369(0.9691 0.6983|0.0518]0.9631 0.6004/0.0228/0.9463 0.7389]0.0273]0.9912 0.78980.0248|0.9865
ALFR 0.6802(0.0202(0.9675 0.7062|0.0240/0.9855 0.6124/0.0134/0.9821 0.7465|0.0114]0.9783 0.7903|0.0125|0.9878
MCCM 0.6774/0.0163/0.9401 0.6415]0.0165]0.9823 0.6180(0.0038|0.9562 0.7394/0.0061]0.9717 0.7868|0.0023]0.9958

acc = accuracy, discri = discrimination, consist = consistency.
1 means higher is better; | menas lower is better.

Table 3: Experimental results with race as sensitive attribute.

Method BIOL CEIE Cs ECE PSYC
acc(?1)|discri({)|consist (1)  acc(T)|discri({)|consist(1) ace(1)|discri({)|consist(1) acc(T)|discri())|consist(1) acc(t)|discri({)|consist(1)
LR 0.7662(0.1004(0.8152 0.6761]0.1411]0.7451 0.66280.1085(0.7569 0.7545|0.1238]0.7655 0.7769|0.0276/0.9578
Rawlsian 0.5854/0.1129(0.7870 0.5849]0.3658]0.7349 0.5561(0.1857]0.8007 0.6999|0.1446]0.7416 0.7608|0.0776/0.9570
LFR 0.6202(0.0569(0.9051 0.7099]0.1722]0.9701 0.6107|0.0599(0.9897 0.7441|0.0800(0.9852 0.7874(0.0172]0.9933
ALFR 0.6850(0.0505(0.9504 0.7274]0.0862]0.9688 0.6129|0.0086/0.9715 0.7435|0.0384/0.9887 0.78980.0156|0.9882
MCCM 0.6563|0.0198/0.9340 0.7138]0.0114]0.9828 0.5895(0.0303/0.9968 0.7133|0.0013]0.9986 0.7857(0.0021]0.9974
acc = accuracy, discri = discrimination, consist = consistency.
1 means higher is better; | menas lower is better.
BIOL CEIE cs
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Figure 4: Bias of different courses with gender as sensitive attribute.

fairness. We evaluate the model’s performance on removing
unfairness on datasets collected from an anonymous Univer-
sity. The results show the efficacy of the model on removing
bias. Compared to other domains, educational data min-
ing has its own characteristics. For example, in our dataset,
when looking at university level, male and African-American
students are biased against. However, at course level, dif-
ferent courses have different bias direction. This insights in-
form that future work on fairness in educational data mining
should design course-specific models. In this work, we treat
gender and race separately in terms of removing bias. In the
future, we want to build models that treat gender and race
as sensitive attributes simultaneously.
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