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ABSTRACT

With the increased number of MOOC offerings, it is unclear how
these courses are related. Previous work has focused on capturing the
prerequisite relationships between courses, lectures, and concepts.
However, it is also essential to model the content structure of MOOC
courses. Constructing a precedence graph that models the similarities
and variations of learning paths followed by similar MOOCs would
help both students and instructors. Students can personalize their
learning by choosing the desired learning path and lectures across
several courses guided by the precedence graph. Similarly, by exam-
ining the precedence graph, instructors can 1) identify knowledge
gaps in their MOOC offerings, and 2) find alternative course plans.
In this paper, we propose an unsupervised approach to build the
precedence graph of similar MOOCsSs, where nodes are clusters of
lectures with similar content, and edges depict alternative precedence
relationships. Our approach to cluster similar lectures based on PCK-
Means clustering algorithm that incorporates pairwise constraints:
Must-Link and Cannot-Link with the standard K-Means algorithm.
To build the precedence graph, we link the clusters according to the
precedence relations mined from current MOOCs. Experiments over
real-world MOOC data show that PCK-Means with our proposed
pairwise constraints outperform the K-Means algorithm in both
Adjusted Mutual Information (AMI) and Fowlkes-Mallows scores
(FMI).
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1. INTRODUCTION

According to Class Central [19], by the end of 2019, over 13 thou-
sand MOOCs have been announced or launched by more than 900
universities worldwide. With such an increase in online courses,
it becomes increasingly hard for learners to understand similari-
ties and differences among courses that cover similar topics. For
instance, Coursera!, one of the leading MOOC platforms, offers
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several “Machine Learning” courses, such as “Machine Learning”
form Stanford University, “Machine Learning with Python” offered
by IBM, “Machine Learning for All” from University of London, etc.
Understanding the content structure across such similar courses can
be very challenging. Consequently, MOOCs users may waste time
choosing a course among a broad set of similar MOOC offerings.

Previous work studied ways for capturing prerequisite relationships
between courses [23, 11], between lectures within (or among) courses
[5, 6], or between concepts discussed within (or across) courses
[2, 10, 15, 23, 11]. While modeling prerequisite relationships is
crucial for understanding the content and knowledge structure of a
specific domain, prerequisites do not reveal content overlap in similar
courses. Further, modeling MOOC content in terms of prerequisite
relations cannot detect the variations in the learning path between
similar MOOC:s.

In this paper, we propose to model the content structure of similar
MOOC offerings as a precedence graph. This graph can be useful
for both learners and instructors. Learners can use the graph to build
a customized learning plan as well as to explore how various courses
explain the same topic. As for instructors, the graph can be used
to identify any missing knowledge in their MOOC:s offering, hence
help them improve their courses. Section 3.2 elaborates on other
possible applications of our proposed MOOCs precedence graph.

More precisely, we introduce an unsupervised approach to model the
content structures of MOOC:s. Figure 1 demonstrates the proposed
idea. Given a set of courses that have some overlap in their content,
we first cluster lectures based on their content similarity into clusters;
each cluster represents a node in the precedence graph (see Figure 1
(b)). Then, the clusters are linked according to their lectures prece-
dence relations mined from current MOOC:s as depicted in Figure
1 (c). Linking clusters of similar content based on the precedence
relations can reveal the various possible paths followed by similar
courses and also capture which path is considered more common in
these courses.

To cluster lectures based on their content similarity, we utilize a
constraint-based clustering algorithm called Pairwise Constrained
K-Means (PCK-Means). PCK-Means guides the clustering process
by using two constraints: Must-Link and Cannot-Link. The idea is
to guide the clustering process, by using the constraints, to focus on
clustering lectures across courses instead of within courses to capture
the similarity between courses. To measure the content similarity
between lectures, we exploit both lecture titles and transcripts as they
both encode enough information about the content of lectures. By
using cosine similarity, we measure the similarity between lectures
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(a) Lecture Sequences
in Different Courses.

(b) Clustering Similar
Lectures.

(c) Linking Clusters.

Figure 1: The basic idea of modeling the content of
MOOC:s to construct the precedence graph. Given similar
Courses with some overlaps in content represented as
sequences of lectures, the precedence graph is constructed
by clustering lectures based on content similarity and
link the clusters using the precedence relations between
lectures.

and construct the constraint examples to guide the clustering process.
Our experiment on real MOOC dataset shows that PCK-Means with
our proposed constraints outperforms standard K-Means algorithm
in both Adjusted Mutual Information (AMI) and Fowlkes-Mallows
scores (FMI).

After clustering similar lectures, we construct the precedence graph by
linking clusters based on the precedence relations and label clusters
using salient and key terms in each cluster. The generated precedence
graph reveals the popular learning path and some alternative paths
in our MOOC:s dataset.

The rest of the paper is organized as follows. Section 2 presents
related work. In section 3, we demonstrate the idea of modeling
the content structure of MOOCs by an illustrative example and
also present some applications of the precedence graph before we
formally define our problem in Section 4. Section 5 describes how we
represent the content of MOOCsS using word count and embedding
representations. In section 6, we explain PCK-Means algorithm and

present our method of generating the lists of pairwise constraints.

In section 7, we demonstrate the process of linking and labeling
clusters to construct the precedence graph. Section 8 elaborates on
our approach for the evaluation and presents some learning path
examples extracted from the generated precedence graph. Finally,
we conclude our work in section 9.

2. RELATED WORK

There has been recently a growing body of work that addresses the
problem of modeling the content of MOOCs. Most of this work has
focused on capturing the prerequisite relationships between courses
[23, 11], between lectures or segments of lectures [5, 6], or between
concepts discussed within or across courses [2, 10, 15,23, 11]. These
studies have developed supervised and unsupervised approaches to
model only the prerequisite relations in MOOC:s. In this paper, we
go further and develop an unsupervised approach to capture the
similarities and variations of learning paths between MOOC:s in the
same domain. Our work models the precedence relations (i.e., the
implicit prerequisite relationships) between concepts by clustering
similar lectures among different courses. Therefore, our model can
revel popular learning paths shared by several courses along with
alternative possible paths to learn the topic covered by these similar
courses.

To model the prerequisite relationships, some studies have used exter-
nal knowledge such as Wikipedia to support identifying educational
concepts [10] or to represent concepts using Wikipedia articles or
categories [15, 23, 11]. Using Wikipedia to identify concepts has
some weaknesses: (1) some concepts are not included in Wikipedia
[15] and thus can affect the performance of the model, (2) the map-
ping between course concepts to Wikipedia is not always accurate,
which can affect the quality of the extracted concepts [10], and (3)
using Wikipedia categories affects concept granularity by preferring
more general concepts [2]. Instead of using Wikipedia, the work by
ALSaad et al. [2] has exploited pre-trained part-of-speech-guided
phrasal segmentation to extract phrases from course content and then
manually group synonym phrases to represent concepts. In our work,
instead of relying on external knowledge or manually improve the
concepts, we represent the precedence graph nodes by salient terms
using simple TF-IDF and bag-of-words representations. Our method
represent each cluster with key terms by accumulating lecture repre-
sentation vectors of each cluster and exploiting the top ranked words
to represent clusters. Accumulating the vector representations of
similar lectures helps in extracting representative terms that express
the content of each cluster clearly.

Another related line of work is the use of prerequisite relations
between concepts to organize learning units and predict the prece-
dence relationships between them [1, 13]. The studies [1, 13] have
proposed supervised approaches that rely on features extracted from
external knowledge such as Wikipedia [1] and DBpedia [13] to infer
the prerequisite relations between concepts. While the work [1]
assumed that concepts are given, the study [13] manually extracted
concepts by annotators. Our work is different as instead of inferring
the prerequisite relations between concepts and then organizing them
according to the precedence relations, we leverage the precedence re-
lations between lectures in existing MOOCs to detect the precedence
relations between the nodes in the precedence graph. Each node in
the precedence graph is labeled automatically with key concepts that
clearly express the content of each node without the use of external
knowledge.

The work by Shah et al. [20] is the most relevant work to ours.
The study has proposed a method for linking similar courses to
construct a map of lectures connected by two types of relations:
similar and prerequisite. The goal of the map is to help students find
the desired learning path that fits their interests and backgrounds.
Our work is very similar as we construct the precedence graph that
depicts the different possible learning paths. However, instead of
linking lectures by similar and prerequisite relations, we cluster
lectures based on content similarity and connect clusters according
to the precedence relations. Our approach reveals the similarities and
variations of learning paths between different courses by capturing
popular learning paths shared by many courses in the domain, hence
emphasizes the importance of the common, comprehensive and
alternative learning paths.

3. MODELING MOOCS CONTENT

In this section, we explain the idea of modeling the content of
MOOC:s as a precedence graph by using an illustrative example. We
also discuss possible applications of the mined precedence graph.
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1. Introduction to clustering.

1. Unsupervised learning introduction.
2. K-Means algorithm. 2. K-Means algorithm.

3. Agglomerative clustering. 3. Data compression.

4. DBSCAN clustering. 4. Principal component analysis.

. Introduction to clustering.
. Partition-based clustering methods
. K-Means clustering.

1. Introduction to unsupervised learning.
2. K-Means algorithm.

4. DBSCAN clustering.
5. Dimensionality reduction.
6. Principal component analysis.

. K-Medians & K-Modes clustering.
. Hierarchical clustering methods.

. Agglomerative clustering.

8. Divisive clustering.

1
2
3

3. Agglomerative clustering. 4. K-Medoids clustering.
5
6
7

Figure 2: The sequence of lectures in four different courses
that explain the topic Unsupervised Learning.

3.1 An Illustrative Example

For illustration purposes, let us assume that a MOOC platform offers
four courses about Unsupervised Learning topic in machine learning
as shown in Figure 2. Each course explains the topic using a sequence
of lectures. As can be seen in Figure 2, there are some overlaps
between these four courses as they all teach the same topic, but there
are also some variations. The variation in each course is based on
instructors’ perspectives and background about the topic, instructors’
teaching styles, and also the learning objective of each course. Some
courses are abstract as they focus on the theory behind the topic while
other courses are more concrete as they demonstrate the topic by
illustrating real-world examples. Courses also vary in the coverage of
topics as some courses are concise while other courses cover topics
in more details. For example, Course 1 and Course 2 in Figure 2
are examples of concise courses that focus only on teaching the
main concepts in the topic. In contrast, Course 3 and Course 4 are
examples of courses that elaborate more in the topic by providing
more detailed concepts.

Given the similarities and variations between these courses that
explain the same subject, we investigate the following questions. how
these courses are related? What are the common concepts taught
by the majority of these courses? Is there a common learning path
shared by most of these courses? what are the alternative paths to
study the topic? Modeling the content structure of these courses as
a precedence graph is a crucial step to help learners and educators
with answering these questions.

The first step in building the precedence graph is to cluster lectures
based on their content similarity and then construct a node in the
graph for each cluster. Figure 3 shows the cluster assignment of
each course lecture of Figure 2. As illustrated in Figure 3, all the
introductory lectures, the first lecture of each course, are grouped
into one cluster (cluster S1) as all these lectures introduce the topic of
Unsupervised Learning. Similarly, all the lectures about the concepts
“K-Means Algorithm”, “Agglomerative Clustering”, and “DBSCAN”
are clustered into three different clusters: Ss, S3, and S7 respectively.
Furthermore, lectures about “Data Compression” are clustered into
cluster S11 while lectures taught “Principal Component Analysis”
concept are clustered into cluster Sio.

After clustering similar lectures and finding the nodes of the prece-
dence graph, the next step in building the graph is to link these

S, : Introduction
------ N »: Hierachical

S;: Agglomerative
} ?g--.. S,: Divisive

Figure 3: The mined precedence Graph from courses in
Figure 2. Lectures are grouped into clusters to construct
the nodes of the graph. Edges depict the precedence
relationships between clusters where thick edges represent
the edges with high weights and thus indicate how common
are the relations between the nodes.

scattered clusters to reveal the precedence relations between clus-
ters. To that end, we use the precedence relations between adjacent
lectures of the same course to construct the edges between nodes
(clusters) in the precedence graph. For instance, we add a directed
edge from cluster S to cluster S¢ to determine the precedence rela-
tion between these two nodes according to the sequence of lectures 2
and 3 in course 4. To reflect the strength of each precedence relations
between two nodes (i.e., how common are the relations between the
nodes), we attach each edge in the precedence graph with different
weights. Edge weights are calculated by accumulating the frequency
of lecture sequences in various courses. For example, as shown in
Figure 3, the strength weight of edge S1 — Se should be higher
than the strength weight of edge S1 — S5 as three out of the four
courses (1,2, and 3) have the sequence S1 — S while only one
course (4) shows the sequence S1 — S5.

As mentioned earlier, the mined precedence graph can help us in
revealing some hidden structures in similar MOOC:s. For instance,
it is clear from Figure 3 that the path {S1 — Sg — S35 — S7}is
more common than other paths. The reason is that three courses (1,2,
and 3) explain the concepts “K-Means Algorithm” after introducing
the topic and two of them (courses 1 and 3) present the concepts
“Agglomerative Clustering” and “DBSCAN” after that. In addition
to indicating the common path, the mined precedence graph can
also reveal other possible paths to learn the topic such as the path
{Sl — S5 — Sg — S3 — S4}, or the path {Sl — S5 — S —
S11 = S10}. All these paths are valid and, off course, choosing a
path depends on students’ learning objectives.

In general, the mined precedence graph helps in capturing the
similarities and variations of the learning paths of similar courses in
our illustrative examples. In section 8.3, we present some learning
path examples from the precedence graph generated by our approach.

3.2 Precedence Graph Applications
Our mined precedence graph can be used to support several appli-
cations for improving the learning and teaching process. However,
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before discussing these applications, we first want to clarify that (in
this paper), we define a student as a person who uses MOOCs as
modularized resources to learn topics of their choice (as opposed
to taking a full course as part of a certificate program.) According
to Zheng et al. [24], one of the motivations for a student to register
for a MOOC is to learn some desired concepts on-demand. Once
they achieve their learning goals, this type of student usually stops
participating in the course.

Our precedence graph can support the following applications.

Personalized (customized) course plans. Our precedence graph
can help students develop custom learning plans. Students can
examine the graph to identify possible alternative paths for learning
a topic and then choose the path that best fits their needs. For
instance, a student might choose to follow one of the following
two paths: {Se¢ — Sg — Ss} or {S¢ — S11 — Si0} shown in
Figure 3. The former path helps the student explore and learn about
various clustering algorithms:“K-Means Algorithm”, “K-Medoids
Algorithm”, and “K-Medians and K-Modes Algorithms”, while the
latter path helps the student learn about the concepts of “Data
Compression”, and “PCA” with “K-Means” clustering algorithm.

An overview/summary of a topic. There are two ways in which
the precedence graph can be used to help students obtain a quick
overview of a particular topic of interest. First, students can use the
graph to follow the most common path that is shared among several
courses (i.e., the path with the highest edge weights.) For instance,
students can follow the path: {S1 — Ss — S3 — S7} as this is the

path with the highest edge weights in the graph shown in Figure 3.

This path introduces the topic of Unsupervised Learning first before
presenting three important and well-known clustering algorithms:
“K-Means Algorithm”, “Agglomerative Clustering Algorithm”, and
“DBSCAN Algorithm”. Second, using summarization algorithms,
we can generate a summary of the lectures in each node (cluster)
of the most common path in the precedence graph. Such a succinct
representation of clusters would provide students with a concise
summary of the topic they want to learn.

Acquiring expert knowledge. Our precedence graph can also be
used by students who are interested in becoming experts in a particular
domain. The graph allows students to easily determine how the
knowledge of a domain is structured. It also allows them to choose
the path that exposes them to a varity of concepts related to the topic
they want to learn. For example, to learn the most about unsupervised
learning, a student can follow the longest path in the precedence
graph shown in Figure 3: {S1 — S5 — Sg — Sg — Sg — S2 —
S3 — S4 — S7 — S11 — Si0}. Clustering similar lectures from
various courses into the same clusters can also help this type of
students as they can explore how different courses explain the same
concept.

Helping instructors improve their courses. In addition to helping
students with their learning process, the mined precedence graph
can also aid instructors in understanding the structure of their
MOOC offerings. By examining the precedence graph, instructors
can identify potential knowledge gaps (missing topics) or a better
ordering of the topics, and hence incorporate the new knowledge in
their next course offerings.

4. PROBLEM DEFINITION

The design of a MOOC mimics that of a typical on-campus course
in which the fundamental structure is a sequence of lectures. By

leveraging the sequences of lectures and the content similarities
between lectures from similar courses, we can model the knowledge
structure of similar (i.e., courses that cover the same topic) MOOCs
as a precedence graph. The nodes of this graph are groups of similar
lectures, labeled by dominant and salient terms in these lectures.
The edges of the graph represent the alternative precedence relations
between nodes. Each edge can be assigned different weights that
reflect the strength of the relation.

We formally define the problem as follows. Given a set of courses
X ={C1,C5,Cs,...,Cy,}, where n is the total number of courses.
We assume that all courses in X have the same difficulty level, and
there are some content overlaps between courses. Each course C; is
an ordered list of lectures C; = [Ls1, Lia, . . ., L;jc;|], where |C;]
is the total number of lectures in the course C;. Each lecture L;; is
represented using the title ¢;; and the lecture transcript d;;. The goal
is to model the content structure of similar MOOCs by constructing
the precedence graph as a directed graph G = (V, E) where V
is the set of nodes, V' = {S1, 52, S3,...,5v|} (the number of
nodes |V is given), and E' = {e1,e2,€3,...,€g|} is the set of
edges between nodes. Edges in the graph G are directed edges to
indicate the precedence relations between nodes. Each node in the
precedence graph is a cluster or a group of lectures that have similar
content. For example, S, = {L;1, Li2, Lj; } is a cluster that has the
first two lectures from course C; and the fifth lecture from course
C}. We represent the precedence graph G as an edge weight matrix
G e RVIXIVI where each entry of matrix G contains the edge
weight. For instance, the edge weight of the entry g;; reflects the
strength of the precedence relationship from cluster S; to cluster S;.

To construct the precedence graph, we need first to find the set of
nodes V' of the precedence graph by grouping similar lectures using
both lecture titles ¢;; and lecture transcripts d;;. Then, we compute
the edge weight between pairs of nodes by leveraging the sequence
of lecture in each course C;. Sections 6 and 7 explain our proposed
approach to build the precedence graph.

5. MOOC CONTENT REPRESENTATION

In this section, we demonstrate how we represent MOOC lectures
by exploiting two representations: 1) sparse representation that
is based on word count, and 2) dense representation to capture
the semantic similarity between text. The purpose of using these
two representations is to compare how each of them affects the
performance of clustering.

To represent lectures, we use the sparse representation, a robust
and straightforward representation based on the count of words. We
represent lecture titles as vectors of word count using Bag-Of-Words
(BOW) representation. Since lecture titles are short and concise,
the frequency of each word in the BOW vector is usually one. The
bag-of-words representation can be thought of as a bit vector where a
bit is set to 1 when the word occurs in the title and set to 0, otherwise.

For representing lecture transcripts, we use the Term-Frequency
Inverse-Document-Frequency (TF-IDF) representation. TF-IDF
weighting takes into consideration the count of words in docu-
ments as well as the popularity of words in the corpus, hence gives
higher weights to the words that are more frequent in the document
and less popular in the corpus.

In our model, each lecture is represented by two vectors: a BOW
vector to represent the title and a TF-IDF vector to capture the
content of the transcript. The drawbacks of this representation are 1)
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it generates high dimensional sparse vectors, and 2) it cannot capture
the semantic similarity between similar words.

To overcomes the limitations of TF-IDF and BOW representations,
we use an alternative (dense) representation to model MOOC content:
the unsupervised smoothed inverse frequency (uSIF) [8]. The uSIF
is a simple, yet effective method for generating sentence embeddings
without any labeled data. It is an improvement of smoothed inverse
frequency (SIF) [18], one of the state-of-the-art embedding represen-
tation for longer pieces of text. The basic idea of uSIF is to exploit
the pretrained word embeddings such as Word2Vec [14] or Glove
[16] that capture the semantic meaning between words to learn the
embeddings of sentences and paragraphs taking into consideration
the frequency of words in the text. For more information about uSIF,
please refer to [8].

For the embedding representation of lectures, we use uSIF with
Glove pretrained word embeddings [4] to represent both lecture titles
and transcripts. The number of feature dimensions in embedding
vectors is 100 dimensions.

6. CLUSTERING LECTURES OF MOOCS

To construct the nodes of the precedence graph, lectures are grouped
into clusters based on their content similarity. We can use any
clustering algorithm such as K-Means to do the clustering of lectures.
However, one problem of using K-Means or some other clustering
algorithms is that they will cluster similar lectures not just across
courses but also within courses. For example, if one course explains
the topic “Gradient Descent in Logistic Regression” and then later
explains the topic “Gradient Descent in Neural Networks”, then there
is a high chance that the clustering algorithm would group these
two lectures into the same cluster as the course instructor would use
almost the same terminology to explain these two topics. However,
our goal is to capture the similarity of lectures across courses to
reveal common learning paths utilized by many courses as well as
other alternative learning paths. Therefore, we need to restrict the
clustering process to cluster lectures from different courses rather than
within the same course. To do that, we need to guide the clustering
algorithm by imposing some constraints; which is infeasible with
the standard K-Means algorithm. Therefore, we decided to exploit a
constraint-based clustering algorithm called Pairwise Constrained
K-Means (PCK-Means) [3] to guide the clustering process.

6.1 PCK-Means Clustering Algorithm

PCK-Means clustering algorithm [3] is a variation of the standard
K-Means algorithm that incorporates distance between points as
well as pairwise constraints to guide the clustering process. PCK-
Means is a semi-supervised approach where users provide some
labels or pairwise constraints that the algorithm uses to improve
the clustering. Since collecting labels from users is expensive, we
propose an unsupervised method by automatically find suitable labels
or constraints to guide the clustering process (discussed in section
6.2).

Pairwise constraints can be used to determine the prior knowledge
about the domain by specifying which instances (in our case lectures)
should or should not be clustered together [21, 3]. There are two
types of pairwise constraints: Must-Link and Cannot-Link. Must-
Link constraint specifies pairs of instances (lectures) that need to
be grouped into the same cluster, while Cannot-Link constraint
determines pairs that should not be in the same cluster. Each type of
pairwise constraint applies a penalty function when the constraint
is violated. The objective function of PCK-Means is to 1) choose

partitions that minimize the penalty cost of each constraint, and 2)
minimize the sum of the square distance between the points and the
centroids of the clusters they belong to.

More formally, let M be a list of Must-Link constraint, which includes
tuples of lectures (L;, L;) that needs to be clustered together. Let
C be a list of Cannot-Link constraint. Each item in C is a lecture
pair of the form (L;, L;) where lecture L; and L; should not be in
same cluster. Each tuple in M and C is order-independent. Assume
W = {w;;} and W = {w; ;} are the sets of penalty costs of
violating the Must-Link and Cannot-Link constraints respectively.
Each lecture L; is assigned to a cluster S;, where S; € {h}IhV:\l, by
minimizing both the distance between L; and the cluster centroid
1, and the penalty costs of violating the constraints. The objective
function of PCK-Means algorithm is as follow:

1
Tpetm =5 D ||1Li = ps||?

Li€X
+ >

(Li,Lj)eM

(L;,Lj)ec

The first part of the objective function is K-Means objective function
while the second and the third parts are the accumulated penalty costs
of violating the Must-Link and Cannot-Link constraints respectively.
The 1[.] is the indicator function where 1[true] = 1 and 1[false] = 0.

In the initialization step of PCK-Means, examples of the pairwise
constraints are used to estimate the centroids of clusters. Before
initializing the cluster centroids, PCK-Means finds the transitive
closure of tuples in Must-Link constraint and appends them to
the list of Must-Link constraints. Then the updated list is used to
create A neighborhood sets. For each pair of neighborhoods, P; and
P; with at least one pair of points that appear in the Cannot-Link
list, PCK-means generates Cannot-Link constraint tuples between
every pair of points in P; and P; and appends these tuples to the
Cannot-Link constraints. Then the algorithm gets A neighborhoods
where links of type Must-Link constraint connect points within each
neighborhood, and links of type Cannot-Link constraint connect
some neighborhoods. If A is higher than the number of clusters,
A > |V, then the algorithm chooses the neighborhood sets with
the largest number of instances to initialize the clusters and the
centroids of each cluster. In contrast, if A is less than the number
of clusters, A < |V, then PCK-Means initializes the clusters from
the A neighborhoods and looks for a point that has links of type
Cannot-Link constraint to all the A neighborhoods. If so, it initializes
anew A+ 1 cluster from this point. Otherwise, PCK-Means chooses
the remaining |V'| — A clusters randomly.

In general, the PCK-Means clustering algorithm is an iterative
algorithm where it starts by using the pairwise constraints to initialize
the clusters. Then, iteratively (1) assign points (or lectures) to
clusters that minimize the combined objective function and then
(2) re-estimate the centroids of each cluster according to the cluster
assignment of each point. These two steps are repeated until the
algorithm converges. For more information about the algorithm,
please refer to [3].

6.2 Pairwise Constraints
To build the precedence graph, we use Must-Link and Cannot-Link
constraints to guide the clustering process. Must-Link constraint
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includes a list of pairs of lectures that have higher chance to be similar
while Cannot-Link constraint contains a list of lecture pairs that have
lower chance to be part of the same clusters such as lectures from
the same course. Yet, the question is how to find good examples of

lecture pairs for the lists of Must-Link and Cannot-Link constraints.

6.2.1 Must-Link Constraint

As our goal is to capture the content similarity between lectures
across courses, we want to feed the algorithm with similar lectures
from different courses that have higher chance to be part of the
same cluster as examples of Must-Link instances. To do that, we can
use the cosine similarity measure to calculate the similarity score
between lectures from different courses and choose lecture pairs
with a similarity score exceeds some predefined threshold.

Besides Similar lectures across courses, some similar lectures within
the same course can be good examples of Must-Link instances.
Adjacent lectures can have very similar content and hence they
should be grouped together in the same cluster. For instance, the
two adjacent lectures “K-Means Algorithm” and “Initialization of
K-Means Clustering” have similar content as they talked about
K-Means Clustering Algorithm and thus they need to be grouped
together. Therefore, we add adjacent lectures that have a similarity
score greater than the predefined threshold.

‘We propose two approaches to capture the similarity between lectures
within courses or among courses. First, we use the cosine similarity
between two lectures represented by lecture transcripts. Pairs of
lectures are considered similar when they have similar content and
hence the cosine similarity score would be high. Second, we use
the cosine similarity between two lectures represented by lecture
titles. We believe that two lectures are similar when they have very
similar titles even when there are some variations in the content.
One reason is that instructors sometimes explain the topic from
different perspectives. For instance, one instructor might explains
the lecture with a title “K-Means Clustering Algorithm” by using
examples while another instructor might explains the same lecture
by illustrating the theory behind it. Although the content is different,
both lectures explain the same topic but from different perspectives.
Another reason of using lecture titles is due to the average length
of lectures in MOOC:s. Lectures in MOOC:s are usually shorter in
length compared with regular university classes. As a result, some
instructors split the topic into two or more lectures. Usually these
lectures have very similar titles and should be clustered together even
if their content might vary. Therefore, we decided to utilize lecture
titles to measure the similarity between lectures in addition to lecture
transcripts. However, we use two different predefined thresholds Ky
and K> to capture the lectures similarity using titles and transcripts
respectively as we have to set a higher threshold for titles to minimize
the noise.

In general, the list of Must-Link constraint contains any similar
lectures across courses and similar adjacent lectures within courses.

6.2.2 Cannot-Link Constraint
Unlike the Must-Link constraint, Cannot-Link constraint is used to
indicate lecture pairs that should not be part of the same clusters.
Since we want to force the clustering algorithm to capture the
similarity between lectures across courses, we add lecture pairs
from the same course to the list of Cannot-Link constraint. However,
not any pair can be added to the list as some adjacent lectures can
have similar content or similar titles and hence need to be grouped
into the same cluster. Therefore, to determine lecture pairs that are

suitable to be examples of Cannot-Link constraint, we apply the
cosine similarity on the transcripts of two adjacent lectures. When
the cosine similarity of two adjacent lectures, L;; and L;(;41) of
course Cj, are less than a predefined threshold K3, then we can say
that there is a topic shift and hence we can add these two adjacent
lectures to the list of Cannot-Link constraint. However, before adding
any lecture pairs to the list of Cannot-Link constraint, we need to
ensure that the pair is not part of the Must-Link constraint and its
transitive closure list. In addition to adding the two adjacent lectures
L;j and L; ;4 1), we also pair the lecture L;; with all the subsequent
lectures of lecture L;(;41) since there is a shift in the topic. As a
result, we add the lectures (Lij, L;(j4.)) where 1 < z < |C|—j,to
the list of Cannot-Link constraint if they are not part of the Must-Link
constraint and its transitive closure list.

In general, the purpose of Cannot-Link constraint is to restrict the
clustering algorithm from clustering lectures within courses in order
to capture the similarity between different courses. As a result,
by using Must-Link and Cannot-Link constraints, the clustering
algorithm learns to cluster lectures from across courses and only
cluster adjacent lectures within the same course if they are similar.

7. BUILDING PRECEDENCE GRAPH

Building the precedence graph from similar MOOCs has three
steps: (1) Cluster similar lectures to construct the node of the graph,
(2) Link the nodes by a directed weighted edge to determine the
precedence relations between nodes, and (3) Represent each node
by dominant and salient terms mined from lectures belong to each
nodes. In the previous section, we explain how we cluster similar
lectures using PCK-Means algorithm with our proposed Must-Link
and Cannot-Link constraints. In this section, we first present our
method of linking the precedence graph nodes before illustrating our
approach of labeling each node.

7.1 Linking Clusters

After clustering similar lectures, we need to link the scattered clusters
to construct the precedence graph. As we mentioned earlier, we utilize
lecture sequences in each course. We can think of the sequence of
lectures in MOOCS as implicit prerequisite relationships between
lectures as these sequences are carefully designed by experts. When
instructors design courses, they usually maintain the prerequisite
order constraints between lectures by placing prerequisite lectures
before the dependent lectures. In addition, according to the locality
of references property [1], when designing a course plan, a dependent
lecture should appear as soon as possible after the prerequisite lecture
to reduce students comprehension burden. Therefore, tackling the
various sequence orders of lectures from different courses helps in
linking clusters of lectures from across courses and thus captures
the precedence relations between clusters.

To link the scattered clusters, we use the precedence relations between
adjacent lectures to infer the precedence relations between clusters.
If two adjacent lectures L;; and L;(;41) of course C; appear in two
different clusters, then these two clusters need to be linked by an
edge with a direction from the cluster that includes lecture L;; to the
cluster that has lecture L;(;41). Sometimes some adjacent lectures
appear in the same cluster and hence we ignore the sequence relation
of these lectures.

To capture the strength of the precedence relations between clusters,
and hence how these relations are common in current MOOCs, we
attach each edge with different wights. We accumulate the frequency
of courses that have adjacent lectures clustered into two different
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clusters to determine the weight between these two clusters. The
equation to determine the edge weight is as follow:

|C|—1
WS =8)= > > 1L:€SAL€S] (2
vCeX =z=1

where W (S; — S;) is the weight of the edge between cluster S;
and S; and 1[] is an indicator function where 1[true] = 1 and
1(false] = 0.

Since the edge weights determine the popularity of relations across
similar courses, edge weights are not normalized to be between
0 and 1 because normalization will produce misleading weights.
For example, if we use normalized edge weights, then the edge that
connects two clusters that have adjacent lectures from one course will
have the same weight; which is equal to 1, to the edge that connects
two clusters that have adjacent lectures from IV courses. Therefore,
we use unnormalized edge wights to capture the popularity of the
precedence relations.

7.2 Labeling Clusters

Each node in the precedence graph is labeled by some key terms
to represent the topics or key concepts discussed by the lectures
attached to this node. To extract the key terms from lectures, we
exploit lecture titles and transcripts represented by bag-of-words and
TF-IDF representations respectively. Lecture titles are very concise
and usually have the key terms in lectures. On the other hand, lecture
transcripts are more elaborative and would help in extracting other
important key terms that demonstrate topics or key concepts of each
cluster.

The basic idea to extract the key terms is to accumulate the vector
representations of each lecture that belongs to the same cluster in
order to find the key terms of that cluster. In other words, for all
lectures that belong to the same cluster we accumulate the bag-of-
word representation vectors of their titles and also add the TF-IDF
weighting vectors of their transcripts. Then, we use the top k terms
from these two different representations to find the salient terms that
represent each cluster. The following is the equation used to specify
the key words of each cluster:

D]
Label(S;) = (mgxz > TFIDF(w;|w; € dy))
j=1VLES;
IT|

U (m}gxz > BOW(wjlw; € tr)) (3)

j=1VLEeS;

where the first part finds the top £ terms by using the TF-IDF
representation of lecture transcripts dz, where | D] is the total number
of vocabularies in the corpus of lecture transcripts. For each word
wj; in the vocabulary, we accumulate the TF-IDF wights of word
wjy if the word appears in lecture L that belongs to cluster S;.
Similarly, the second part determines the top k terms by exploiting
the bag-of-words representation of titles £;, where the total number
of vocabularies in lecture titles is | T'|. We also accumulate the BOW
weights of each word belongs to titles of all lectures that are part of
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cluster S;. By taking the union of these two sets of top words, we
extract salient terms that clearly explain the content of each clusters.

8. EVALUATION

In this section, we evaluate the performance of our approach for
clustering similar lectures using PCK-Means algorithm with the
proposed pairwise constraints. We first present the dataset and ground
truth we used in our evaluation. Then, we compare the performance
of the clustering algorithms using both representations: word counts
(sparse representation) and embeddings (dense representation). We
also present some examples of the learning paths extracted from the
precedence graph that was constructed by our approach. Finally, we
discuss some limitations of our study.

8.1 Datasets

We used a dataset of six modules related to Unsupervised Learning
and Clustering Algorithms from five real machine learning and data
mining courses offered by the Coursera platform?2. These modules
include “Unsupervised Machine Learning”, ‘“Partitioning Based
Clustering Methods and Hierarchical Clustering Methods”, “Unsu-
pervised Learning”, “Clustering”, “Clustering With K-Means”, and
“Hierarchical Clustering” (see Table 1.) The total number of lectures
in the dataset is 65 lectures. Each lecture is represented by its title

and transcript.

To evaluate the performance of the PCK-Means algorithm and
the effectiveness of the proposed constraints, we asked experts to
construct the ground truth labels of our dataset. Each of our four
experts (a Machine Learning professor, an Information Science
professor, a Machine Learning graduate student, and a Database and
Information Systems graduate student) manually grouped lectures
based on topics similarities. None of the experts is participating in
this study.

To measure the level of agreement among our experts, we used
the Fleiss’ kappa measure. Fleiss’ Kappa is a statistical measure
of inter-rater agreement used to determine the level of agreement
between two or more raters. The kappa score of labels collected
from experts was k = 0.65, which indicates substantial agreements
between the annotators.

After receiving the labeled datasets from our experts, we used the
majority votes to decide the cluster assignment of each lecture. For
lectures that experts disagreed on their clustering assignment, we
decided to follow the advice of our experts and created a new cluster
for each lecture. The total number of labeled clusters was 21 clusters.

8.2 Clustering Performance

To evaluate the performance of our clustering approach and to study
the effect of using the pairwise constraints on clustering performance,
we compared the PCK-Means algorithm to the standard K-Means
algorithm. In particular, we focused on two measures: (1) Adjusted
Mutual Information (AMI), and (2) Fowlkes-Mallows scores (FMI).
Adjusted Mutual Information is a variation of the Mutual Information
measure that is used for comparing clustering results. According to

Zhttps://www.coursera.org

3https://www.coursera.org/learn/advanced-machine-learning-
signal-processing

*https://www.coursera.org/learn/cluster-analysis
Shttps://www.coursera.org/learn/machine-learning
®https://www.coursera.org/learn/machine-learning-with-python
"https://www.coursera.org/learn/ml-clustering-and-retrieval
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Table 1: The dataset utilized for the evaluation. It has six
modules from five courses. The total number of lectures in
the dataset is 65 lectures.

Courses Modules # of Lec-
tures

Advanced Machine Unsupervised Machine | 13

Learning and Signal Learning

Processing3

Cluster Analysis in Partitioning Based 15

Data Mining# Clustering Methods and
Hierarchical Clustering
Methods

Machine Learning Unsupervised Learning | 12

Machine Learning With | Clustering 6

Python®

Machine Learning Clustering With 13

Clustering and K-Means

Retrieval” Hierarchical Clustering | 6

Romano et al. [17], AMI measure should be used to evaluate the
clustering performance when the reference clustering is unbalanced
and contain small clusters. Since we have unbalanced clusters (i.e.,
some clusters have many lectures while others have one or two
lectures), we decided to use AMI for the evaluation. The second
metric, Fowlkes-Mallows scores, is a geometric mean of precision and
recall where precision determines the correctness of the clustering
assignments of lectures while recall measures the completeness of
the assignments. Similar to AMI, FMI gives a zero score for random
clustering assignments.

Before discussing clustering performance, it worth mentioning that
for finding the lists of Must-Link and Cannot-Link constraints,
we tried various values for each threshold, K, K>, and K3, and
used the values that gave the highest performance. For TF-IDF
and BOW representations, the thresholds were K1 = 0.85, Ko =
0.3, and K3 = 0.07 for titles and transcripts in Must-Link list
and for transcript in Cannot-Link list respectively. For the uSIF
representation, the thresholds were K1 = 0.85, K2 = 0.65, and
K3 = 0. Having K3 = 0 in uSIF representation does not mean that
we exclude the list of Cannot-Link constraint. The cosine similarity
values in the uSIF embedding representation can have negative
values as some values in the embedding vectors are negatives.

Because PCK-Means and K-Means algorithms produce different
clustering assignments for each run (based on how the centroids
are initialized), we ran each clustering algorithm 20 times. Then we
recorded the average and the max scores. TF-IDF and bag-of-words
representations have a total number of 1650 dimension features. So,
we reduced the number of dimensions before clustering the data by
applying the T-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm[12]. We also applied the t-SNE reduction technique on
the uSIF embedding. However, because the performance of the uSIF
was degraded due to the dimensions reduction, we decided to use
all 200 dimensions for the embedding representation: 100 for titles,
and 100 for transcripts. Table 2 summarizes the results.

The average and max scores for each algorithm are presented in
Table 2. We can see from the table that PCK-Means outperforms
K-Means in both representations. The differences in performance
between PCK-Means and K-Means are statistically significant, using
Welch’s t-test, with p-value score < 0.01 in TF-IDF\BOW and

Table 2: The performance of clustering algorithms. PCK-
Means outperforms the standard K-Means in both repre-
sentations: (1) TF-IDF for lecture transcripts and bag-of-
words (BOW) for lecture titles, (2) The embedding rep-
resentation (uSIF) for both lecture transcripts and titles.
The performance of PCK-Means is statistically significant
(represented by *) in both representations.

AMI FMI

Method
TF-IDF\BOW Representation

K-Means 0.523 0.597 0412 0.478
PCK-Means 0.551*  0.649 0.511"  0.632

Embedding Representation (uSIF)

K-Means 0.395 0.491 0.344 0.452
PCK-Means 0.480* 0.536 0.420" 0.548

Average Max  Average Max

uSIF representations for FMI measure. In contrast, when using
AMI for the comparison, the differences between PCK-Means and
K-Means are statistically significant with p-value scores < 0.01
with uSIF representation and p-value < 0.05 with TF-IDF\BOW
representation. We also compare the performance of PCK-Means
using different representations: TF-IDFABOW and uSIF. It is clear
form the table that PCK-Means with TF-IDF\BOW representation
outperforms PCK-Means with uSIF embedding representation where
the difference is statistically significant with p-value < 0.01 in both
AMI and FMI measures. In general, PCK-Means with TE-IDF\BOW
representation achieves the highest performance.

Since uSIF embedding representation uses pretrained word em-
beddings that allow it to capture the semantic similarity between
documents, we expected it to have the highest performance. However,
it did not perform as expected. We investigate this issue and found
that some words from our dataset of lecture transcripts and titles do
not exist in the list of words from the Glove pretrained model. The
total number of missing words was 31 words from both lecture titles
and transcripts. The missing words includes some key terms, such
as agglomerative, dendrogram, subcluster, medoids, sparkml, and
dbscan.

To study the effect of using the lecture titles and transcripts when
generating the Must-Link constraint, we compared the performance
of the PCK-Means algorithm using only Must-link constraint from
titles to the performance of the same algorithm using only Must-link
constraint from transcripts. We use TF-IDF and bag-of-words rep-
resentation with the same set of thresholds for the comparison as
PCK-Means achieves the highest performance with this representa-
tion. We show the results of this experiment in Table 3. The results
indicate that using both lecture titles and transcripts to produce the
Must-Link constraint achieves the highest score. We conclude that
title and transcripts representations are important for capturing the
similarity between lectures. We also notice that removing Must-Link
tuples of lecture transcripts reduces the clustering performance more
than removing title tuples. This is expected as lecture transcripts
contain more keywords than titles. However, using only titles to
generate the Must-Link constraint tuples achieves comparable results,
which also indicates the importance of using titles to capture lectures
similarities.
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Table 3: The performance of the clustering in PCK-Means,
PCK-No-Title, and PCK-No-Trans using TF-IDF \BOW
representation. In PCK-No-Title, we remove all the tuples
from Must-Link list that are generated by using lecture
titles. In PCK-No-Trans, all Must-Link tuples produced by
lecture transcript are removed. Combing both titles and
transcripts improves the performance of PCK-Means.

AMI FMI
Method Average Max  Average Max
PCK-Means 0.551 0.649 0.511 0.632
PCK-No-Title  0.534 0.561 0.489 0.576
PCK-No-Trans  0.486 0.559 0.403 0.489

8.3 Examples of Learning Paths

After clustering lectures, we create the precedence graph that repre-
sents the six modules by linking the clusters and labeling them with
salient terms. We utilize the clusters generated by PCK-Means algo-
rithm with TF-IDF and bag-of-words representation as it achieves
the highest performance. In this section, we present several learning
paths examples extracted from our precedence graph.

Follow the crowd: The first example we extracted from our prece-
dence graph is the learning path that is shared across many modules
in our dataset. Students who follow the most common learning path
would have a good overview of the topic as they follow the most
popular path that is shared by many courses. Figure 4 depicts the
common learning path for the Unsupervised Learning topic. The
figure shows that the learning path starts with an introduction about
Unsupervised Learning, followed by k-Means clustering algorithm
and how to choose the number of clusters. Then, dimensionality
reduction in clustering is discussed next using the Principle Compo-
nent Analysis algorithm as an example of dimensionality reduction
techniques.

The expert learning path: The second example path we extracted
from the precedence graph is one of the longest learning paths. Figure
5 shows a path that spans over seven nodes. This path starts with
the partitioning-based clustering methods discussing algorithms,
such as “K-Means”, “K-Medians”, “K-Medoids”, and “K-Modes”. It
then discusses the application of “K-Means Algorithm” in apache
sparkml. Next, it shifts to the hierarchical clustering methods by
recommending “Divisive Clustering Algorithm” and “Aglomerative
Clustering”. Finally, it presents the “DBSCAN”, a density-based
clustering algorithms. This long path is more comprehensive than the
common path as it explores more clustering algorithms. Students who
are interested in gaining comprehensive knowledge about clustering
will find this path very rewarding. Note that such a path does not exist
in any of the original six modules we have in our dataset; but it was
extracted from the precedence graph constructed by our approach.

Give me some options: Figure 6 shows an example of a sub-graph
with several alternative learning paths. To learn the “K-Means”
concept, a student can either start with introduction to unsupervised
learning or learn about partitioning-based clustering methods. After
learning “K-Means”, the student can choose one of the four possible
paths: (1) Learn how to choose the number of clusters using “Elbow’
methods, (2) Learn about different partitioning algorithms such as
“K-Medians”, (3) Move to the hierarchical clustering algorithms and
learn “Divisive Algorithm”, or (4) Shift to the hierarchical clustering
algorithms and learn “Agglomerative clustering”. Each of these
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Figure 4: The common learning path extracted from the
Precedence Graph. This path is shared by many mod-
ules and includes fundamental concepts in Unsupervised

Learning topic.
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Figure 5: An example of a long learning path extracted
from the Precedence Graph. This long path can support
students who acquiring expert knowledge as it presents
many clustering algorithms.

possible paths are also precedence to other nodes as shown in Figure
6. From the sub-graph, students can choose the learning path that
fits their needs. Additionally, the sub-graph shown in Figure 6 gives
students a comprehensive overview of how concepts are connected
among several courses related to the Unsupervised Learning topic.

8.4 Limitations

There are two limitations of our study. First, using the sequence
relations among lectures to infer the precedence relations between
clusters can cause cycles in the precedence graph. The method
proposed in this paper has not addressed the problem of cycles.
The naive approach to solve the problem of cycles is to eliminate
edges with lower weights that cause cycles in the graph. Further
investigation for addressing graph cycles is left as a future work.

Second, in the evaluation we have not examined the performance
of our approach in other domains. In the future work, we plan to
apply our method on courses from different domain areas and thus
generate the precedence graph for each domain.

9. CONCLUSIONS

In this paper, we developed an approach to build the precedence
graph of similar MOOCs that have overlaps in content. Our approach
is based on Pairwise Constrained K-Means (PCK-Means) clustering
algorithm that incorporates constraints to guide the clustering process
to focus on clustering similar lectures across courses. We proposed
a method of generating the lists of Must-Link and Cannot-Link
constraints. PCK-Means with our generated constraint examples
significantly outperforms the standard K-Means algorithm with
the TF-IDF and bag-of-words representations achieves the highest
performance. Using the clusters of similar lectures as nodes in
the precedence graph, we connect each cluster according to the
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Figure 6: An example of a sub-graph extracted from the
Precedence Graph. It depicts some possible paths to learn
the topic. It also gives a comprehensive overview about
the topic.

precedence relations between lectures in various courses by directed
weighted edges to reflect the strength of the precedence relations
between clusters. Finally, we label each node in the precedence graph
by key concepts extracted from lectures belonging to each cluster.
The generated precedence graph reveals popular learning paths as
well as alternative learning paths of learning the topics of MOOCs
in our dataset.

The precedence graph constructed by our approach is considered
the initial block for building applications that support personalized
learning. As an example, we can use the precedence graph to build a
tool that visualizes the precedence graph to help learners to choose
the desired learning paths that are suitable to their interests and
backgrounds. Another application is to build a tool that recommends
personalized study plans for students based on their interests and time
constraints. As discussed in [9, 7], the main obstacle that faces online
learners is not having enough time for the course. Further, according
to [24, 22], some learners register for a MOOC with a motivation to
learn some concepts and hence they drop the course after they are
done with studying the concepts of their interest. Wilkowski et al.
[22] found that large groups of learners just wanted to learn some
concepts without the purpose of earning certificates. Therefore, it is
very important to build an application that recommends study plans
based on learners motivation, interests, and time constraints. Our
proposed precedence graph would be the initial step for building
such applications.
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