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ABSTRACT
Research on the effectiveness of Intelligent Tutoring Sys-
tems (ITSs) suggests that automatic hint generation has the
best effect on learning outcomes when hints are provided on
the level of intermediate steps. However, ITSs for program-
ming tasks face the challenge to decide on the granularity
of steps for feedback, since it is not a priori clear which se-
quence of code edits constitutes a step. We argue that the
step granularity for programming tasks should be founded
on pedagogical considerations and suggest Vygotsky’s the-
ory as an example. Furthermore, we compare several au-
tomated methods for sub-dividing programming traces into
steps. To evaluate these methods, we provide a novel dataset
consisting of 44 code-traces from introductory Python tasks.
Furthermore, we provide a novel tool for annotating steps
in programming traces and perform a study with six expe-
rienced annotators. Our post-survey results show that the
annotators favored solved subtasks as a granularity for step
division. However, our results show that completed lines as
indications of steps explain the annotations best, suggest-
ing that even simple rule-based approaches are suitable for
automatic programming trace sub-division.

Keywords
Programming Education, Next-step hints, Tutoring Systems,
Automated feedback, Programming traces

1. INTRODUCTION
Intelligent Tutoring Systems (ITS) have been shown to be
most effective if they provide learners with pedagogically
valuable hints at intermediate steps while solving a task [11,
24]. One particularly popular hinting strategy in the context
of programming are next-step hints [13] which try to predict
what a learner should do next to get closer to a correct solu-
tion on a path that matches their intent and abilities. How-
ever, to provide a helpful next-step hint, one must define
what a step is (for this learner). Giving only one symbol as
a next-step hint is probably too fine-grained, while disclos-

ing the entire correct solution is probably too coarse – and
could potentially hinder learning [7]. So, what is a reason-
able granularity for giving a next-step hint in programming
tasks, and how can the solution process of a programming
task be effectively sub-divided into steps? Prior work has
emphasized the importance of these questions [8], and some
authors explicitly define what they consider to be a step in
their work [2, 20, 14]. Often, the step granularity is deter-
mined implicitly by a combination of the logging granularity
of the system at hand and the method used for hint gener-
ation [13, 18]. However, the diversity of step definitions
raises the question: which step definition is most suitable
for a given context, and are there insights from educational
and cognitive science perspectives that may help us choose?
This paper provides, to our knowledge, the first systematic
comparison of step definitions for programming tasks and
their operationalization.

We have collected and implemented a range of approaches
from the literature that can automatically subdivide pro-
gramming traces into steps. These approaches were adjusted
for text-based Python programming. We then performed a
study with six students with programming and/or tutoring
experience (annotators), who were asked to extract steps
from a range of anonymized programming traces from CS
undergrad students (learners) solving introductory Python
tasks. We evaluate the automated approaches using the an-
notated programming traces, and find that, in our set of
tasks, most steps were identified at the level of completed
lines of code. The main contributions of this paper are:

• A novel tool for annotating steps in programming traces
from students.

• An annotated dataset of 44 programming traces for 18
tasks with at least two traces per task and three or
more annotations per trace.

• A systematic evaluation of several step detection meth-
ods from the literature, covering both the theoreti-
cal foundations and their empirical performance when
compared to human annotations.

The source code of the annotation tool (Section 4.1), as well
as the analysis code and dataset1, are open source.

1https://gitlab.ub.uni-bielefeld.de/publications-ag-
kml/programming-step-analysis
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2. BACKGROUND AND RELATED WORK
Presently, there is no universally accepted definition of steps
in a programming task. The step definition might be influ-
enced by factors like the theoretical perspective, the task
domain, and the skill level of a learner. For instance, Jeur-
ing et al. differentiate between ”steps” and ”subgoals” in pro-
gramming tasks [9]. A step is viewed as either a code-edit
or a user-action within the code environment. A subgoal is
seen as the intention behind a sequence of steps that lead
to progress towards the solution. Therefore, the implemen-
tation of a subgoal could be described with an intention (a
plan) and a set of steps that implement it. We find this dis-
tinction very insightful for analysing parallel levels of gran-
ularity. However, we argue that the issue of determining a
granularity for a subgoal raises questions similar to those
surrounding the granularity of individual steps. In particu-
lar, we cannot decide if the intention of a learner in doing a
certain step is to complete a small feature or a subgoal on
a higher level. Furthermore, it is very likely that multiple
levels of intentions exist simultaneously. Therefore, in this
work, we simplify our terminology and consider only steps
as the relevant entity for providing hints. More precisely,
we define a step as any sequence of code-edits and/or user-
actions that follows a distinct intention on a granularity de-
termined by pedagogical considerations. In the following, we
discuss potential theoretical foundations for step definitions.

2.1 Pedagogical foundation
One foundation for next-step hints is Vygotsky’s learning
theory [25]. For providing automated hints, considering the
Zone of Proximal Development (ZPD) is especially useful.
The ZPD characterises the area of competency that is ac-
quirable by the learner if assistance is provided. Vygotsky’s
learning theory states that the progression in competency
is fastest if learning opportunities lie in this zone. Scaf-
folding operationalizes the ZPD for giving feedback through
hints [7]. It states that hints should contain as little infor-
mation as necessary to enable the learner to progress on a
task themselves. Based on scaffolding theory, we argue that
the pedagogically optimal granularity on which to provide
a next-step hint might be related to the students compe-
tency and ZPD. More precisely, we aim for the granularity
of a slightly higher competency compared to the learner but
which is still accessible and actionable for the learner.

2.2 Cognitive science perspective
Cognitive science concepts can also contribute to reason-
ing about steps. Different foundations in cognitive science
motivate different operationalizations, which in turn can be
translated into automatic algorithms to sub-divide program-
ming traces into steps.

Cognitive load theory aligns with Vygotsky’s learning the-
ory [23]. It provides a perspective on the question how and
why learners might sub-divide their task-solution process. If
a learner solves a task, they have to allocate chunks of in-
formation to their limited working memory. Cognitive load
refers to the amount of memory occupied, which is usually
related to the proficiency in a certain domain. Proficiency
allows working memory items to be used more effectively.
Consequently, if the cognitive load is too high, learning can
be hindered [15]. This implies that the sub-division of a task
should be on a granularity that is not too coarse in order to

keep cognitive load in check. Additionally, there is a relation
between pausing behavior in keystroke patterns and cogni-
tive load [23], providing a measurable indicator of potential
cognitive processes.

Learners with a higher proficiency tend to experience less
cognitive load when solving tasks. This phenomenon can
be connected to cognitive schemas. A schema is a cognitive
construction that reflects and structures information in an
actionable way [15]. They can be utilized to increase the ef-
fectiveness of working memory use. It is plausible that steps
of learners who have built more effective schemas might be
more coarse-grained [6]. We additionally hypothesize that a
learner’s individual schema could be a reasonable granular-
ity for providing hints. Duran et al.’s work builds a bridge
between cognitive schemas and the complexity of real-word
programming tasks [5]. The authors propose a hierarchical
model for analysing the cognitive complexity of programs
using a plan tree. A plan tree is a representation of a pro-
gram in plans of different levels, where a higher level plan
consists of multiple lower level plans. The complexity of pro-
grams can be compared with the plan depth (tree height) of
the plan tree. It is hypothesized to be associated with cog-
nitive load and mediated by the amount and complexity of
schemas accessible to the learner. In an optimal case, plan
trees could provide a tool to select a step granularity based
on the plan tree level.

2.3 Implementations of Step concepts
When giving a next-step hint, a step sub-division method
is always present either implicitly or explicitly. We catego-
rize existing methods for step sub-division in three broad
overlapping categories: structural, dynamic, and behavior-
based. Various combinations and hybrid approaches of these
categories also exist.

Structural approaches focus on the static properties of code
snapshots and their relations. In particular, this includes
approaches that utilize the raw string of the snapshot and
approaches based on static code analysis, for instance via
abstract syntax trees (ASTs). One example is to assign steps
on the level of completed lines. Roest et al. used three rules
for this[20]: Firstly, snapshots with an incorrect syntax are
removed from the trace. Next, duplicate states are identified
and deleted. Lastly, only the last edit of each line is kept.
Another structural approach is implemented by Birillo et al.
[2]. They used static code analysis to provide three heuristics
on the level of six different control-flows. The first heuristic
is based on summarizing changes that contribute to adding
a new control block. The second heuristic covers changes
that modify the control flow of a single, already existing
control structure. Lastly, one heuristic covers changes to
the body (content) of a particular control structure. Many
structural approaches utilize learner data to infer a state
space for each task [19, 26]. The state space size is usually
reduced by preprocessing the code and mapping the ASTs
for different solutions onto one state [19]. Depending on
how much the state space is reduced, one obtains different
granularities. For instance Zhi et al. use pq-grams to reduce
the state space considerably [26].

Dynamic approaches are relying on the execution behavior
of snapshots. One basic approach is to consider the set of
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passed unit-test cases as a state and assign a step once at
least one unit test changes from fail to pass or vice versa
[14]. Alternatively, the execution behavior can be analyzed
in more detail by computing distances between execution
traces [17].

Behavior-based approaches assign steps to actions that the
learner performs or log-events that get triggered. One such
approach would be to examine the pausing behavior of learn-
ers [23]. One can also use submissions and feedback requests
as an indicator of steps [9].

3. METHOD
In this section we will review several methods from the liter-
ature that could be used to sub-divide programming traces
into steps. We describe how we implemented these Methods
for Python programming traces in our dataset. Additionally,
we will exemplify the methods with a case-study.

3.1 Trace sub-division methods
Our goal is to implement different methods that cover the
range of approaches present in the literature. We note that,
due to practical limitations, we could not ensure that every
method is selected and optimized in a way that would allow
a conclusive judgement. We applied and evaluated all meth-
ods on cleaned code traces where we deleted all snapshots
between the first and last occurrence of any exact duplicate
present.

Our first approach is the completed line approach from Roest
et al. as described above [20]. We also adapted Birillo
et al.’s approach for trace sub-division on control-flow level
[2] with the heuristics ”Add control block”, ”Modify control
flow”, and ”Internal body change” on various Python con-
trol structures (For, While, If, With, FunctionDef, Return,
Try, ExceptionHandler). Since it was already used in down-
stream work to determine sub-goals in programming tasks
[12], we decided to represent state-space based methods us-
ing parts of Zhi et al.’s state-space reduction method [26].
More precisely, we extract pq-grams from all correct solu-
tions for p ∈ {1, 2, 3} and q ∈ {1, 2, 3, 4} (similar to [26])
and match all pq-grams that have a Jaccard-similarity (on
all snapshots) over 0.975. We do not apply further process-
ing of the resulting sets of shapes into disjunction shapes
and features (like [26] do), since the number of states was
reduced to very small numbers in our dataset when applying
processing beyond the matching of code shapes.

We also created two sub-division methods based of behav-
ioral patterns of the learners. Firstly, we classified every
code-action within the UI as a step. This includes running
the program, requesting feedback, and submitting code for
testing. A second behavior-based approach focuses on the
relationship between cognitive load and pausing behavior
[23]. We hypothesize that pausing behavior can therefore
indicate if a learner is stuck at a certain point in the solution
process, which would be relevant information with respect
to automatic hint generation. Pausing behavior might also
indicate that a step has been completed. Therefore, we mark
all instances of a pause in typing for more than 2 seconds
as a step. We choose the cutoff of two seconds based on a
previously published dataset [16].

Furthermore we propose three different autoregressive,
distance-based methods for trace sub-division. Each of these
methods defines a distance measure between two snapshots.
A new step is marked as soon as the distance to the last
step exceeds a certain threshold. We included these ap-
proaches in order to be able to account for any distance-
based method. However, the auto-regressive nature of this
approach might be prone to accumulating errors for longer
sequences of snapshots. First, we consider the distance be-
tween code execution traces proposed by [17]. We use easy
positive examples for each task for the generation of execu-
tion traces with a threshold of 0.01. Second, we consider
the distance between code embeddings produced using the
PromptEOL method and CodeLlama 7B with a threshold of
0.02 [10, 21, 3]. Lastly we use the Levenshtein distance on
the code snapshots as a baseline (threshold=8). The thresh-
olds were optimized based on the performance on a small,
independent sample dataset of annotations created by the
authors.

3.2 Case study
Table 1 shows an example code trace of a learner. The
columns indicate whether a certain step subdivision method
would treat the current snapshot as a step or not (autore-
gressive methods were excluded for better oversight). In the
rightmost column, we have displayed the step selection of the
annotators of our annotation study (section 4). The task for
the learner was to implement a function that calculates the
factorial of an integer n. In the first section of the trace, the
learner fixes an issue with the first return statement. The
annotators regard the third snapshot to be a completed step.
All other methods agree with the exception that there was
no code-action performed by the learner. Further down, the
annotators selected two more snapshots as steps, with only
the line-based method agreeing on all three occasions. All
methods seem to display some false positives. One interest-
ing case is the third and second snapshot from the bottom,
where it becomes apparent that formatting code (in this
case removing a space) can trigger completed line and con-
trol structure steps. This occurs when the formatting occurs
in distinct lines or blocks. We decided to display formatting
to our annotators in order enable them to understand stu-
dent activity on a keystroke level. However, this decision
might have a slight negative influence on the performance of
certain methods.

4. STUDY
In order to evaluate the different trace sub-division methods,
we performed a study with six annotators. As data source
for programming traces, we recorded the coding behavior of
62 learners in a two-hour Python introduction course with
third-semester undergrad students held in October 2024.
For this course, we utilized SCRIPT, which is our own pro-
gramming ITS [4]. LLM-generated textual hints could be
requested through the system’s UI. We obtained 399 traces
on 18 different tasks. In this section, we will discuss the
setup for the study as well as the tool we have developed
for the annotation procedure. Both studies—the Python in-
troduction course for trace collection, and the annotation
study—were approved by the local ethics comity.
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Table 1: Example code trace with different sub-divisions. All zero rows are excluded.
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def factorial(n):
if n == 1:

return n
else:

return factorial

- - - - - -

def factorial(n):
if n == 1:

return
else:

return factorial

0 0 0 1 0 0

def factorial(n):
if n == 1:

return 1
else:

return factorial

1 1 0 1 1 2

def factorial(n):
if n == 1:

return 1
else:

return(factorial

0 0 0 0 1 0

def factorial(n):
if n == 1:

return 1
else:

return(factorial(n-1))

1 0 1 0 1 1

. . .

def factorial(n):
if n == 1:

return (1)
else:

return(n * factorial(n-1))

1 0 1 0 1 2

def factorial(n):
if n == 1:

return(1)
else:

return(n * factorial(n-1))

1 1 0 0 1 0

def factorial(n):
if n <= 1:

return(1)
else:

return(n * factorial(n-1))

1 1 1 1 0 2

* Number out of two annotators who selected a snapshot as step.

4.1 Annotation tool
As displayed in Figure 1, our novel step annotation tool con-
sists of three main components. The toolbar at the top con-
tains a button to display relevant information (annotation
guidelines, task descriptions), arrow icons to navigate across
different code traces (cases), and a button to export the an-
notated dataset. The center panels contain code snapshots.
On the left side, the annotator can review the last snapshot
that was labelled as a step. On the right side, the cur-
rent snapshot is displayed. It can be marked and unmarked
with a mouse-click, leading to a change in background color
from blue to green and vice-versa. We intentionally did not

include a commentary function in order to streamline the
annotation process and limit the (time-)cost of annotation
for annotators. The bottom toolbar features a slider for
the current code trace, where black bars indicate annotated
steps. The slider value represents an index in the sequence
of snapshots at keystroke level, but is not associated with
actual passed time. The Finish Replay button navigates to
the next trace. The tool is implemented as a frontend-only
web-application with Angular 19. The data management of
the tool allows uploading code traces directly via the UI and
backs up annotations in local storage for later restoration in
case of browser crashes. The source code with build instruc-
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Figure 1: Screenshot of the Step Annotation Tool

tions is available as a GitLab repository2. We included the
system usability questionnaire [1] into the post survey of our
annotation study to ensure that the usability of the annota-
tion tool is sufficient to not negatively impact data quality.
We obtained an average usability score of 87.08, correspond-
ing to an A+ usability grade [22].

4.2 Study setup
In order to create datasets for the annotation study, we
obtained a difficulty parameter for each task using a two-
parameter Item Response Theory (IRT) model. For the
purpose of IRT, we counted an attempt as successful if the
learner was able to solve the task within the median solu-
tion time across all tasks. We then sampled three learner
traces per task randomly and reviewed each of the traces
to ensure their suitability for annotation. We found several
traces that could not be used due to copy and pasting of
larger chunks and detours from the task goal. For two tasks,
we had to re-sample and review additional traces (three in
total) in order to meet our goal of two suitable traces per
task. In total, we obtained 44 traces, which we grouped
into three datasets, two primary sets and one bonus set (see
Figure 2). For the two primary sets, we selected a set of
four traces of very easy tasks as a common starting point.
We displayed the remaining tasks in increasing order of dif-
ficulty, the first set contained the eight easiest tasks and the
second set contained the six most difficult tasks. We as-
signed sets to the participants based on their prior Python
experience, giving harder tasks to more experienced annota-
tors (48 months median Python experience) and easier tasks
to less experienced annotators (16 months median Python
experience). We gave participants who finished early an ad-
ditional set of bonus traces, where we didn’t differentiate by
difficulty. Each study session was set for 90 minutes with
10 min at the beginning allocated for system explanation
and initial questions and 15 min at the end allocated for the
post-questionnaire and debriefing. We excluded two of the
44 traces from further analysis due to collecting less than
three annotations for them.

We provided the participants with an information sheet con-
taining a general study description and a consent form at

2https://gitlab.ub.uni-bielefeld.de/publications-ag-
kml/step-annotation-tool

Verified traces + resampled traces

Pu
bl

is
he

d
an

no
ta

te
d 

da
ta

se
t

Random subsample: 3 traces per task

Traces collected

Bonus set

Hard set + PrimerEasy set + Primer

Figure 2: Dataset architecture of the study, t - tasks, n -
traces, s - snapshots annotated as steps

the beginning of the study. Additionally, we provided an-
notation guidelines that were shown at the beginning of an-
notation and accessible during the whole process by click-
ing on the info icon of the Annotation tool. Importantly,
we wished to avoid biasing annotators into the direction of
any specific step definition described in Section 2. There-
fore, we provided only loose guidelines, as well as guide-
lines for some Python-specific more technical cases. The
main prompt we gave our annotators was to ”immerse [them-
selves] into the solution-process of a particular student” and
to mark steps where they believe ”that the student com-
pleted a small chunk of their process towards the correct
solution”. The full agreement form as well as the annota-
tion guidelines are provided in the GitLab repository. We
recruited our participants using public E-Mail lists at Biele-
feld university and E-Mail lists of university courses. Two
participants were also recruited in-person. As we wanted
to get a picture about step definitions of persons with pro-
gramming experience slightly above undergrad level but not
yet full professionals, the main inclusion criterion for the
study was studying an IT-related subject and having ex-
tensive Python experience. Applying this procedure, we re-
cruited six annotators and collected 194 annotated traces in
total.

4.3 Metrics
Our metric of success for automatic step sub-division algo-
rithms is how well the respective algorithm matches human
step annotations. We quantify the match in terms of classifi-
cation metrics, namely F1 score, accuracy, true positive rate,
and true negative rate. More precisely, let xi,j,s ∈ {0, 1} de-
note whether annotator i ∈ {1, 2, ..., N} annotated snapshot
s ∈ {1, 2, ..., Sj} of trace j ∈ {1, 2, ...., J} as a step (1 means
yes, 0 means no). Correspondingly, let ym,j,s ∈ {0, 1} de-
note whether method m ∈ {1, 2, ...,M} classified snapshot
s in trace j as a step. Then, we define the true negatives
TNi,m for annotator i and method m as the number of snap-
shots where both xi,j,s and ym,j,s are zero.

For the true positives, we choose to include a slack parame-
ter, since steps are typically sparse in our fine-granular data
and it may be slightly ambiguous at which keystroke exactly
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Table 2: Mean and SD of classification metrics
Method F1 ACC TPR TNR

Completed line .73 (.05) .96 (.01) .75 (.08) .98 (.01)

Control-flow .6 (.04) .94 (.01) .62 (.06) .97 (.0)

pq state-space .44 (.07) .85 (.01) .79 (.05) .85 (.01)

Code-action .56 (.05) .94 (.02) .50 (.1) .98 (.0)

Pausing .41 (.11) .90 (.01) .43 (.07) .94 (.01)

Embedding .35 (.02) .90 (.03) .34 (.03) .95 (.01)

Execution traces .34 (.04) .93 (.02) .23 (.05) .99 (.0)

Levenshtein .40 (.08) .86 (.01) .68 (.04) .86 (.0)

to set the step (e.g., should the ”:” at the end of a control
structure be included or not?). So, given a slack of δ ∈ N0

snapshots, we define the set ∆m,j,s(δ) := {ym,j,s−δ, . . . ,
ym,j,s, . . . , ym,j,s+δ} as the slack-window and the true posi-
tives TPi,m as the number of snapshots, where xi,j,s is one
and ∆y,j,s(δ) contains a one. Using this basic approach, we
can calculate the true positive rate (TPR), the true nega-
tive rate (TNR), the accuracy (ACC), and the F1 score. In
the results section, we report the mean and standard devi-
ation over all annotators for each method and each metric
at a slack of δ = 1. We additionally calculated all tables
from Section 5 using a slack of zero (δ = 0), resulting in the
standard, more strict classification metrics. As expected,
the performance scores of most methods are lower without
slack. However, the deviations are mostly within small mar-
gins and the order of the three best results as well as the
qualitative picture don’t change.

5. RESULTS
We calculated pairwise Cohen’s Kappa scores between each
of the six annotations in order to evaluate annotator agree-
ment. We obtained values between 0.55 and 0.8 with a
mean of 0.7 which can be considered a moderate agree-
ment. We expected different approaches from annotators
based on preference. Therefore, we believe the moderate
agreement values give sufficient support for the validity of
the annotations. Additionally, we computed the mean agree-
ment within study groups which is 0.7 for group one and
0.67 for group two. Since the agreement between the study
groups is 0.7 as well, we cannot report any systematic group-
dependent deviations in annotator agreement.

In Table 2, the results for the evaluation study are displayed.
We can observe that all methods exhibit a relatively high ac-
curacy. This can be explained by the class imbalance, with
the negative class (no step) being highly prevalent with 92%
over all annotations. In that light, only four out of eight
methods outperform the trivial baseline (setting all snap-
shots to ”no step”). Due to the class-imbalance, the F1 score
is better suited for comparing the methods. The completed
line method and the control-flow method perform best with
0.73 and 0.6 F1, respectively. Assigning steps when code-
actions are taken also seems to partially align with annota-
tor opinions (0.56 F1). The autoregressive distance-based
methods using LLM embeddings (0.35 F1) and execution
traces (0.34 F1) perform worse than the auto-regressive Lev-
enshtein method (0.40 F1). The pq state-space and the paus-
ing method both have a larger F1 (0.44 and 0.41).

Table 3: F1 results differentiated by study group

Method F1 group 1 F1 group 2

Completed line .76 (.03) .70 (.05)

Control-flow .64 (.02) .59 (.05)

pq state-space .51 (.03) .39 (.05)

Code-action .54 (.03) .59 (.04)

Pausing .48 (.03) .34 (.11)

Embedding .39 (.02) .32 (.01)

Execution traces .34 (.04) .36 (.05)

Levenshtein .48 (.02) .35 (.06)

Table 3 shows the F1 scores for the different sub-division
methods by annotator experience. Group 1 refers to the
three less experienced annotators with easier tasks; group
2 refers to the more experienced annotators with harder
tasks. There is a clear trend towards a lower performance of
the automatic trace sub-division methods for group 2. The
worsening performance is most severe for the pq-state-space
method with 0.51 F1 for group 1 vs. 0.39 F1 for group 2,
but even the best-performing methods, completed line and
control-flow, perform worse for group 2 with a difference of
-0.06 and -0.05, respectively. By contrast, trace sub-division
based on the code-actions in the UI (run, feedback request,
submission) shows a performance increase of 0.06 for the
second group.

5.1 Survey results

Figure 3: Annotators who determined steps by a granularity
(a/c/d - add or change or delete)

The bar plot in Figure 3 shows the percentage of annotators
who self-report to have used a certain granularity for de-
termining a step during the study. All granularities, except
one (adding punctuation) where used by at least two of the
annotators. 100% of annotators stated that they considered
whether students were adding a feature, fixing an issue, or
solving a sub-task at least once, respectively, for determin-
ing a step. Adding/deleting/changing lines or blocks and
changing the control flow are also prominent with 83%.

Figure 4 shows the percentage of annotators who considered
a certain granularity among the 3 most important for deter-
mining steps. The solving of a subtask is among the most
important indicators of a step for five out of six annotators.

538



Figure 4: Annotators marking a granularity in the top three
most important (a/c/d - add or change or delete)

Changes of the control flow and adding features are also
prominent with 66%. All other granularities achieved lower
ratings. Interestingly, adding, changing or deleting lines was
not mentioned by any of the annotators as among the top 3
most important indicators of a step—even though this gran-
ularity matches human annotations particularly well (see
Table 2).

6. LIMITATIONS & CONCLUSION
Within this work, we have conducted a study to investigate
what tutors and experienced students regard as steps in in-
troductory Python tasks. Our study design differentiates
two groups of annotators, who get tasks assigned based on
experience. The selection of tutors and students as annota-
tors and the task assignment based on difficulty/experience
serve the purpose of aligning our approach with Vygostky’s
learning theory, which suggests that next-step hints should
be within the learners ZPD. We also have developed a novel
tool for step annotation in programming traces. The sys-
tem usability was evaluated by the annotators and scored
highly, reassuring our impression that it serves the purpose
of efficiently displaying and annotating programming traces.
We compared human step annotations to different automatic
trace sub-division methods extracted from cognitive science
perspectives on programming and prior work on next-step
hints. Steps based on completed lines showed the best align-
ment to the annotations. Strong results are also achieved at
the level of the control-flow.

Several limitations arise due to the limited scope of this
study. Firstly, we collected programming traces in only two
university courses with a high degree of computer science
students. Therefore, not all results may generalize to dif-
ferent course situations and populations. Furthermore, we
have used Python as the only programming language for our
studies, making the results dependent on Pythons specific
features like dynamic typing. Additionally, the annotation
guidelines provided to the annotators were supposed to only
give minimal direction and a high degree of freedom to the
annotators. However, the results might still be influenced
by specific phrasings: for instance, we explicitly addressed
assigning steps for fixing an issue, which also ranks rela-
tively high in the post survey. Additionally, an issue ap-

peared during the data collection: In three cases, the bonus
set contained some duplicate tasks (duplicate annotations
where omitted). Since the bonus set was solved after the
main set, these remain unaffected.

Our results imply that simple rule-based methods can per-
form well at determining steps. This interpretation should
be contextualized with our study parameters, though: the
tasks in our study correspond to an introductory level and
are relatively short. We hypothesize that our results could
have differed for harder and longer tasks. This assump-
tion is supported by the results of Table 3 which shows that
the line-based approach performs worse for the more ex-
perienced group with harder tasks. On the contrary, the
sub-division based on code-actions seems to work better for
harder tasks, which might imply that the structure of steps
is more complex. In the post-survey, the annotators favored
annotating steps for more coarse, functionally driven gran-
ularities (e.g., adding a feature). For simple programming
tasks such as the ones in our study, structural indicators like
completed lines may co-incide with functional ones, but this
may not hold for more complex programming tasks. Still,
our results suggest that, for introductory Python program-
ming, line completion is a strong indicator of steps. We
do encourage researchers to use our open-sourced step an-
notation tool to investigate steps in other context. Future
work in this research direction should also consider different
programming languages, more complex tasks and additional
sub-division methods that account for these scenarios. Prac-
tical applications of step sub-division methods according to
the results of this paper should happen under careful evalu-
ation on whether the obtained results are plausible and de-
sirable for the task type at hand as otherwise, sub-optimal
pedagogical results might be obtained.
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