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ABSTRACT
Teacher gesture recognition aims to identify and interpret
teacher gestures within academic settings. It has been ap-
plied in domains such as teaching performance evaluation,
the optimization of online education, and special needs ed-
ucation. However, the background similarity of teacher ges-
tures, the inter-class similarity, and the intra-class variabil-
ity limit the recognition capabilities of visual neural net-
works. In this paper, a Natural Language-Driven Teacher
Gesture Recognition (NLD-TGR) framework is proposed.
To mitigate the effects of background similarity, textual de-
scriptions for each frame are generated using GPT-4o, guided
by prompts specifically designed to describe the teacher’s
hand posture in the frames. Then, we combine video fea-
tures with text features mapped to a high-dimensional space
to create semantically-enhanced fused features. To overcome
the limitations of one-hot labels in capturing inter-class and
intra-class relationships, we embed semantically interpreted
category names into a textual feature space. Gesture clas-
sification is then performed by computing the similarity be-
tween these textual embeddings and the fused feature repre-
sentations. The experimental results validate the effective-
ness of the proposed method, which achieves state-of-the-
art performance with an accuracy of 93.7% on the TBU-G
teacher gesture benchmark.

Keywords
Teacher Gesture Recognition, Classroom Scenario, Natural
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1. INTRODUCTION
Teacher gestures are widely regarded as an effective tools
to improve teaching efficiency and foster a positive learn-
ing atmosphere[19]. When used in coordination with verbal
communication, gestures improve the clarity and precision
of delivering teaching content, directing students’ attention
to key points highlighted by teachers [14]. Thus, teacher ges-

Figure 1: Figures a and b have similar teacher hand gestures,
but due to the differences in their interaction objects, they
belong to different categories. Conversely, the gestures in
Figures c and d, although different, share the same meaning.
Additionally, the backgrounds of each gesture are highly sim-
ilar. Please zoom in for the best view.

tures serve as important indicators of instructional attitudes
and pedagogical skills. With the continuous advancement
of deep learning technologies, the integration of artificial in-
telligence in education is becoming increasingly profound
[24, 12]. AI technologies can be utilized for evaluating ed-
ucational quality, thereby enabling an objective analysis of
teaching issues [4]. To explore how teacher gestures influence
the effectiveness and quality of teaching, a detailed analysis
of classroom gestures is necessary [22]. The key to success
in this analysis lies in efficiently and accurately recognizing
these gestures.

Extensive studies[7, 13, 17, 18, 26, 28] have confirmed the
effectiveness and reliability of deep learning techniques in
teacher gesture recognition. However, current studies still
lack a comprehensive understanding and in-depth analysis
of teacher gestures. Most approaches [7, 17, 28] focus on ex-
tracting hand shape features and tracking changes in hand
postures, directly adapting techniques from keypoint-based
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sign language recognition. Unfortunately, these methods
exhibit significant limitations when specifically applied to
teacher gesture recognition. Keypoint-based gesture recog-
nition methods[3, 7, 23] demonstrate high robustness to
challenges such as variations in illumination, complex back-
grounds, and occlusions. These methods effectively track
hand skeletal points and reliably identify hand shapes and
motion trajectories. However, their primary limitation lies
in isolating hand gestures from the overall teaching con-
text by focusing exclusively on hand postures. In classroom
settings, hand gestures are closely linked to the surround-
ing environment and teaching activities, and their meanings
can only be accurately interpreted when analyzed in con-
text. As illustrated in Figure 1a and 1b, identical hand ges-
tures may convey completely different meanings depending
on the specific interaction context. Meanwhile, appearance-
based methods[29, 31, 32] for recognizing teacher gestures
predominantly focus on temporal modeling. These methods
aim to capture and analyze subtle hand movement variations
within video sequences to achieve robust gesture recognition.
However, these methods often overlook the issue of inter-
class similarity and intra-class variability in teacher gestures,
Which leads to frequent misclassification of teacher gesture
tasks.

To address the aforementioned issues, we propose a natu-
ral language-driven teacher gesture recognition (NLD-TGR)
model designed to accurately recognize gestures of teachers
in real classroom teaching scenarios. In contrast to conven-
tional natural language-assisted methods, our approach uti-
lizes GPT to generate detailed descriptions of gesture actions
for individual frames, offering a significantly higher level of
specificity and granularity. Specifically, given a video of
teacher gestures, a generative model GPT-4o[1] is employed
to produce textual descriptions for the extracted frames based
on the prompt “Please describe the hand posture of the
teacher in the image”. The textual descriptions are trans-
formed into high-dimensional features and subsequently in-
tegrated with video features to mitigate the problem of infor-
mation loss within visual features arising from background
similarity. Moreover, semantic analysis is applied to each
class name, followed by the generation of corresponding tex-
tual feature vectors using a text encoder. The final predic-
tion is obtained by calculating the cosine similarity between
the fused features and the class name features.

Our contributions can be summarized as follows:

(1) We propose a fusion method that combines textual infor-
mation from hand movements with video features to effec-
tively compensate for the insufficiency of visual information,
addressing the challenges of teacher gesture recognition in
highly similar backgrounds.

(2) We propose a classification head network based on class
name definitions, which performs classification by comput-
ing the similarity between visual features and textual fea-
tures derived from class name definitions. The proposed
method effectively smooths inter-class relationships and en-
hances intra-class feature consistency.

(3) Our proposed NLD-TGR method achieves state-of-the-
art performance on the most representative TUB-G dynamic

teacher gesture dataset, with an accuracy of 93.7%.

2. RELATED WORK
Teacher gesture recognition (TGR) is a fundamental task
in intelligent educational. The performance of TGR mod-
els depends heavily on feature extraction. Recent studies in
TGR have attempted to reduce the impact of background
noise through skeletal point-based feature analysis. Chen[7]
employed RTMPose[9] to extract teachers’ skeletal keypoint
coordinates. The extracted skeletal sequences were then in-
put into the MoGRU action recognition network for gesture
classification. By leveraging keypoints from object detec-
tion and pose estimation algorithms, Wu[18] constructed a
graph convolutional network for automatically identifying
teachers’ gestures. However, these methods often overlook
a significant characteristic of teacher gestures: their inter-
action with the environment. The same gesture, when asso-
ciated with different entities such as multimedia resources,
students, or teaching tools, may convey different meanings
as shown in Figure 1a and 1b. Yet, methods based on
skeletal points inevitably ignore this critical characteristic
of teacher gestures.

To address the aforementioned issues, Wu[28] explored an
gesture recognition method that leverages both RGB video
and skeletal information, integrating them to enhance recog-
nition accuracy. However, these methods also show clear
limitations. Models based on ImageNet pre-trained weights
perform poorly in extracting teacher gesture features. This
is because their feature representation capabilities are not
optimized for gesture characteristics in educational settings.
Moreover, the backgrounds of teacher gestures in classrooms
are generally highly similar, a point that has not been effec-
tively considered. In response to these challenges, this paper
attempts to use the large-scale pre-trained CLIP[20] model
to extract spatial features of teacher gestures. GPT-4o is
used to generate textual descriptions of hand movements
based on prompts of the teacher’s hand postures. The ex-
tracted video frame features are combined with the encoded
textual description features, allowing for a more comprehen-
sive understanding and representation of the teacher’s hand
gestures by integrating visual features and textual descrip-
tions.

Inter-class similarity and intra-class variability are a note-
worthy challenge in teacher gesture recognition. Teacher
gestures frequently comprise numerous similar movements
or shapes, posing significant challenges to model discrimi-
nation. Song[15] proposes using a deep neural network to
learn feature embeddings that minimize intra-class distance
while maximizing inter-class distance, generating class pro-
totypes through feature mean calculation for improved com-
parison. Furthermore, Zuo[32] introduces a language-aware
label smoothing technique. This generates soft labels for
each training sample, effectively alleviating inter-class simi-
larity issues. In this study, class names are interpreted and
mapped into a high-dimensional text feature space. They
are then compared with video features for similarity cal-
culation to achieve classification prediction. The approach
utilizes the multimodal alignment features of CLIP, allowing
class names to not only indicate categories, but also reveal
diverse gestures within the class. By using similarity classifi-
cation, the boundaries between classes are effectively soften.
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3. METHODOLOGY
The overview of our NLD-TGR recognition framework is il-
lustrated in Figure 2. Our framework primarily comprises
three components: 1) a video-text fusion network which
fuses video features with descriptive text features generated
from video frames. 2) a temporal information mining de-
coder encompasses the extraction of both short-term and
long-term temporal information. 3) a head network contains
the definition of the classification head and the implemen-
tation methods for classification.

3.1 Video-Text Fusion Network
In this study, we observed that teacher gestures exhibit a
high degree of similarity in their background. Therefore, we
aim to leverage the semantic information from hand move-
ments to enhance the discriminability among different ges-
tures. Considering that concatenation has the ability to fully
conserve the initial information of visual and textual fea-
tures, it does not cause the inhibition or augmentation of
specific features that might be brought about by the weight
distribution in the attention mechanism, a video-text fusion
network is proposed, which integrates visual features with
textual representations of hand movements to obtain a more
comprehensive feature representation, as illustrated in Fig-
ure 2.

To generate robust spatial features, the CLIP model based
on contrastive learning is employed. Meanwhile, GPT-4o
is utilized to generate detailed text descriptions for video
frames. Specifically, given a teacher gesture video V ∈
RT×HK×WK with T frames and a spatial resolution HK =
WK . Initially, video features Fvideo ∈ RT×N1 are extracted
using CLIP, where T represents the number of frames and
N1 represents the feature dimension. Then using the gen-
erative capabilities of GPT-4o, a prompt like “describe the
hand posture of teacher in the image” is provided, result-
ing in T descriptions of the teacher’s hand movements. For
instance, one praise gesture frame description reads: “The
palms of teacher are together, seemingly clapping”. Sub-
sequently, the text is encoded using the sentence-level em-
bedding model, Sentence-BERT[21], to obtain descriptive
features Ftext ∈ RT×N2 , where T represents the number
of frames and N2 represents the feature dimension. The fi-
nal fusion feature Ffusion ∈ RT×(N1+N2) representation is
formed by combining Fvideo ∈ RT×N1 and Ftext ∈ RT×N2 ,
thereby further enhancing the expressiveness and distinc-
tiveness of the teacher gesture features. This approach al-
lows the model to extract critical but often overlooked in-
formation, significantly improving its discriminative perfor-
mance in teacher gesture recognition with highly similar
backgrounds.

3.2 Temporal Information Mining in Spatial
Features

Teacher gestures, a distinct form of visual language in ed-
ucational contexts, primarily convey semantic information
through various hand shapes and movements. Although the
CLIP model demonstrates excellent performance in repre-
senting spatial features, it lacks the necessary capability to
capture temporal dependencies. Although the Transformer
decoder has been proven effective in aggregating global tem-
poral information via weighted feature fusion [25, 11], it is

still necessary to capture temporal features at both global
and local levels to accurately model teacher gestures. This
dual-level strategy is crucial for accurately capturing the in-
trinsic temporal characteristics of dynamic gestures. In our
framework design, the extraction of temporal information is
performed both before and after feature fusion to capture
hierarchical temporal features more comprehensively.

Temporal decoding before fusion: 1D temporal convolution
effectively captures short-term and local patterns. GRU,
a variant of recurrent neural networks, excels in captur-
ing long-range dependencies in sequential data. It retains
and extracts long-term contextual information. Through
weighted summation, the integration of these two methods
combines temporal features at different scales. This fusion
enables the model to comprehensively understand time se-
ries data. Formally, the features encoded by this temporal
decoder are denoted as Ytime:

Ytime = α(t) ·GRU(X) + β(t) ·Conv1D(X) + γ ·R(X) (1)

Where α(t) = eλ1t

eλ1t+eλ2t and β(t) = eλ2t

eλ1t+eλ2t are time-

dependent dynamic weight functions, with λ1 and λ2 as
learning parameters, allowing the model to adaptively ad-
just the contributions of GRU and Conv1D based on the
time point t in the sequence. R(X) is a regularization term,
used to control model complexity and prevent overfitting. γ
is the coefficient that controls the impact of the regulariza-
tion term. The decoder is inserted between each transformer
block of the main CLIP backbone.

Temporal decoding after fusion: Positional embeddings are
integrated into the fused feature matrix Ffusion to com-
pensate for the self-attention mechanism’s lack of intrinsic
positional discrimination. These embeddings enable precise
modeling of the temporal dynamics by providing spatial con-
text, which is critical for distinguishing the sequential order
of frames in the video. Formally, the computation of the
video features post fusion and positional encoding can be
denoted by the following enhanced expression:

Yvideo = MHA

(
T∑

i=1

F
(i)
fusion + PE(i, P )

)
(2)

where MHA signifies the MultiHead Attention mechanism.

F
(i)
fusion denotes the i-th frame feature vector from the fused

feature matrix. PE(i, P ) represents the positional encoding
for frame i based on its position P in the sequence, enhanc-
ing the model’s ability to understand temporal placement.

3.3 Head Network
In studies on teacher gesture recognition in classroom en-
vironments, traditional fully connected models that rely on
one-hot encoding[3, 7, 28] for class label representation face
two significant limitations. (1) the association between dif-
ferent classes is overlooked. (2) the issue of intraclass vari-
ability has not been adequately addressed. To address these
limitations, class names are redefined and then embedded
into textual features, and classification prediction is per-
formed by calculating the similarity between video feature
embeddings and textual feature embeddings.
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Figure 2: Natural Language-Driven Teacher Gesture Recognition(NLD-TGR). We first use GPT-4o to generate textual descrip-
tions of gestures based on prompts “describe the teacher’s hand gestures in the frame”. These textual descriptions are then
mapped into high-dimensional features and combined with video features to extract information that might be overlooked in the
visual data. Next, the interpreted category names are encoded into the text feature space and compared with the previously
fused features through similarity computation to achieve classification.

Specific, we first define class names based on the guidelines
below: Teacher gestures exhibit distinct expressive styles
across different individuals, leading to intraclass variability.
Thus, it is essential to reflect this variability in the textual
descriptions. Take the category ”explanation gesture” as an
example. Teachers often use spontaneous and specific ges-
tures during teaching to enhance instructional effectiveness
or convey emotions. For instance, some teachers wave their
arms while explaining complex concepts or support their
chin in thought. Such actions can be characterized as “A
video of a teacher waving their arms or resting their chin”.
The definitions of class names can be flexibly adapted to
specific behaviors within each category. This approach ef-
fectively distinguishes between classes, without completely
severing the connections between classes like one-hot labels
do. Incorporating specific behaviors into class name defini-
tions highlights the unique characteristics of each category
and reflects potential inter-category relationships.

For the definition of class names for each category, we em-
ploy a sentence representation learning framework to map
them into high-dimensional features. Specifically, Sentence-
BERT processes the class name annotations for N categories
to derive a D-dimensional feature for each. This approach
facilitates a more intuitive representation of the semantic
features of the categories within the feature space. Conse-
quently, we obtain a feature matrix Yclass ∈ RN×D. The
n-th row of Yclass, denoted as Y n, represents the textual
features of the class name for the n-th category.

Finally, we use the cross-entropy as the loss function, given
the final video feature Yvideo and N class name textual fea-
tures Yclass ∈ RN×D, we compute the cosine similarity, ap-
ply softmax, and then compute the cross-entropy loss.

si =
Yvideo · Yclassi

∥Yvideo∥∥Yclassi∥
, for i = 1, 2, . . . , N (3)

L = −
N∑

i=1

yi log

(
esi∑N
j=1 e

sj

)
(4)

where yi is the ground truth label, pi is the predicted label,
and L is the cross entropy loss. The proposed classification
method softens inter-class boundaries effectively. It also uti-
lizes class name definitions to enhance the understanding of
intrinsic variability within categories.

4. EXPERIMENTS
4.1 Dataset and Implementation Details
Dataset:We evaluate our method on the TBU-G dataset,
which is an extended version of the Teacher Behavior Under-
standing (TBU) dataset [5]. To the best of our knowledge,
TBU-G is the largest publicly available dynamic teacher ges-
ture dataset available as of now. In contrast to previous
teacher gesture datasets that primarily emphasized hand
posture variations, TBU-G is classified based on the actual
meaning and interactive nature of teacher gestures, making
it better aligned with the requirements of real-world teaching
environments, as illustrated in Figure 1. This dataset com-
prises 8 categories, with a total of 2,908 video clips ranging
in duration from 1 to 10 seconds. The dataset provides a
comprehensive representation of the complexity and diver-
sity of teacher gestures in authentic classroom settings.

Implementation Details: Our experiments are conducted us-
ing a machine equipped with four NVIDIA RTX 4090 GPUs,
each with 24 GB of memory. For a given video, we begin
by uniformly sampling T frames (e.g., 8, 16, 32) throughout
its duration. We then use a Vision Transformer (ViT) as
the video encoder and GPT-4o as the video frame descrip-
tion generator. To enhance training efficiency, the generated
descriptions are stored as weight files, allowing subsequent
training processes to utilize these pre-saved weights directly,
thereby minimizing redundant resource consumption. Ad-
ditionally, sentence-BERT is employed as the text encoder.
During training, we set the learning rate to 5×10−5 and uti-
lize the AdamW optimizer. We use Top-1 Accuracy as the
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primary metric to assess the model performance on the test
set. To balance accuracy and speed, we evaluate using only
one clip per video. For efficiency, a center crop is applied
during the evaluation process.

4.2 Comparison with State-of-the-art Methods
Table 1: Comparison with state-of-the-arts on TBU-G.
Keypoint-based models refer to models that perform ges-
ture recognition by extracting skeleton keypoints through
publicly available models. Appearance-based models are
those that rely on video features for recognition. CLIP-
based models refer to those that first extract spatial feature
information from videos using the CLIP model, and then per-
form gesture classification through temporal decoding.

Method Input Backbones Pre-training Top-1

Keypoint-based

Spoter[3] — ViT-B/14 ImageNet 79.4%

VTN-PF[8] — ViT-B/14 ImageNet 77.7%

SLGTformer[23] — ViT-B/14 ImageNet 81.3%

Appearance-based

TDN[27] 16×2562 ResNet-50 ImageNet 83.4%

ViViT[2] 16×2562 ViT-B/14 ImageNet 85.5%

I3D[6] 16×2242 ResNet-50 ImageNet 69.9%

MvfNet[29] 16×2242 ResNet-50 ImageNet 83.3%

S3D[31] 16×2562 ResNet-50 ImageNet 74.3%

CLIP-based

Text4Vis[30] 8×2242 ViT-L/16 CLIP 89.6%

ST-Adapter[16] 16×2562 ViT-L/16 CLIP 89.4%

EVL[11] 8×2242 ViT-L/16 CLIP 90.2%

Ours 8×2242 ViT-L/16 CLIP 93.7%

Table 1 presents the experimental results on the TBU-G
dataset, comparing our approach with mainstream methods
based on keypoint features, appearance features, and the
large language model CLIP. The results clearly demonstrate
that our method achieves state-of-the-art performance. Com-
pared to keypoint-based methods, our approach shows sig-
nificant advantages, with accuracy improvements of 12.4%
over SLGTformer and a substantial 14.3% increase over Spoter.
Skeleton-based recognition models do not achieve the same
level of excellence in performance as observed in sign lan-
guage recognition tasks. This is consistent with our expec-
tation that relying solely on posture keypoint information
is inadequate to fully reveal the true intentions behind the
teacher’s gestures. To recognize teacher gestures, it is nec-
essary to consider the objects they interact with as part of
the analysis. Furthermore, the proposed method clearly out-
performs appearance-based recognition approaches in vari-
ous aspects. For instance, it achieves a 10.3% increase in
Top-1 accuracy compared to TDN, which utilizes ImageNet
pre-trained weights. Moreover, even with a smaller spatial
resolution (224 vs. 336), our method achieves a substantial
improvement over ViViT, with a Top-1 accuracy of 93.7%
compared to 85.5%, demonstrating its superior performance.
Moreover, compared to the large-model methods based on
CLIP, such as EVL and Text4Vis, our approach achieves
performance improvements of 3.4% and 4.1%, respectively.
This significant enhancement demonstrates that our model

more effectively leverages the transfer learning capabilities
of CLIP, thus improving its adaptability and performance
in the task of teacher gesture recognition.

4.3 Ablation Studies

Table 2: Ablation studies on NLD-TGR. TheBase model uti-
lizes only positional encoding and multi-head attention mech-
anisms to capture temporal information, ultimately employ-
ing a fully connected layer for gesture classification. TheText
variant incorporates a fusion network and uses class name in-
terpretation as the classification head. Meanwhile, the Time
model integrates a time decoder into the CLIP backbone, ex-
tracting both global and local temporal information.

Base Base+Text Base+Text+Time Top-1%

✓ ✗ ✗ 86.4%

✓ ✓ ✗ 92.8%

✓ ✓ ✓ 93.7%

To thoroughly analyze the contributions of each design com-
ponent, we performed an extensive ablation study. As re-
ported in Table 2, the base model utilizes only positional
encoding and multi-head attention mechanisms to capture
temporal information, ultimately employing a fully connected
layer for gesture classification. Text-based assistance re-
sulted in a 6.4% improvement in model performance. The
combination of the class name definitions head network and
text-video fusion network effectively enhanced gesture clas-
sification. These components leveraged the transfer learning
capabilities of large-scale models more efficiently. Moreover,
extending the CLIP backbone with global and local tem-
poral decoders resulted in an additional 0.9% performance
boost. These outcomes clearly demonstrate that the extrac-
tion of multi-level temporal information plays a vital role in
advancing the model’s overall performance.

Meanwhile, based on the confusion matrix shown in Figure
3, we analyzed the contributions of the model components in
addressing challenges related to teacher gestures. In the base
model, label misclassifications exhibit an approximately uni-
form distribution. This can be attributed to the high degree
of similarity in background characteristics across various ges-
ture categories. Additionally, the one-hot labels ignore the
potential relationships between categories, making it diffi-
cult for the model to effectively extract key differences be-
tween categories. Consequently, the misclassification of the
model approximates a random distribution. Taking the ges-
ture “encourage student to raise hand” as an example, the
traditional one-hot encoding method ignores the intrinsic
relationships among categories, which often leads to mis-
classification into significantly different gesture categories.
However, by incorporating text-assisted tasks, misclassifi-
cations are primarily concentrated within the “invitation”
gesture category. This is due to the significant similarities
in gesture between the two categories. The proposed model
effectively identifies and exploits these underlying relation-
ships, facilitating the extraction of more discriminative and
representative features. The observed regularity in misclas-
sification patterns underscores a significant enhancement in
the model’s learning capability.
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Certain categories with lower classification accuracy, such
as“praise”and“explain”gestures, exhibit considerable intra-
class variability stemming from individual differences in teach-
ers’ expression styles. This characteristic poses significant
challenges for traditional models in accurately classifying
complex and dynamic features. With the integration of
text-assisted information, the accuracies for these two ges-
ture categories improved respectively by 35.3% and 13.9%.
This improvement can be attributed to the proposed head
network design, which effectively learns and generalizes the
individualized variations in these gestures, thereby signifi-
cantly enhancing classification accuracy and overall perfor-
mance. Furthermore, the integration of a multi-level tempo-
ral decoder into the backbone network resulted in measur-
able improvements in the recognition accuracy of temporal-
context-dependent gestures, such as“praise”and“raise hand”.
These findings further substantiate the efficacy of the pro-
posed framework.

Figure 3: Confusion Matrix of the Ablation Study. Please
zoom in for the best view.

5. LIMITATIONS AND FUTURE WORK
In this paper, class names are revised according to the ob-
served characteristics of the dataset. These redefined class
names are represented as high-dimensional text vectors and
aligned with video feature vectors via similarity-based com-
putation to achieve classification. However, this redefinition-
based approach requires detailed dataset analysis, making
it highly time-consuming, especially for large-scale datasets
with numerous gesture categories, such as WLASL[10]. Ad-
ditionally, optimizing class redefinitions demands extensive
experiments and iterative fine-tuning, which further adds to
the complexity and cost.

Future work will focus on the potential applications of nat-
ural language in improving gesture recognition. Analysis of
the generated frame textual descriptions reveals that cer-
tain teacher gestures can be directly categorized based on
their textual descriptions. Building on this observation, fu-
ture work plans to incorporate a text classification branch
as an important auxiliary module for gesture recognition
tasks. Meanwhile, there is a remarkable correlation between
teachers’ audio and gestures, so it can serve as another core
modality and be integrated into the gesture recognition sys-
tem. In addition, considering the computational costs of cur-
rent generative models, future research will prioritize the use
of a predefined dictionary of textual descriptions. Through
a classification model, the most relevant textual descriptions
for each frame will be selected from the dictionary and inte-
grated with video features. Furthermore, subsequent studies
aim to optimize the fusion mechanism between textual and
video features to significantly enhance the effectiveness of

natural language as a support in gesture recognition tasks.
To address the bottleneck in the efficiency of class interpre-
tation, an automated class definition tool will be developed.
By leveraging natural language processing techniques and
integrating them with the image or video features of the
dataset, this tool will generate representative textual de-
scriptions as class names, eliminating the need for manual
and detailed analysis of the dataset.

In terms of the application in practical teaching scenar-
ios, the gesture recognition model enables teachers to tran-
scend spatial constraints and achieve interactive effective-
ness equivalent to that of in-person classrooms. When spe-
cific gestures such as thumbs-up or pause gestures are ex-
ecuted, the system’s pre-programmed algorithms automati-
cally trigger visual feedback on student terminals and reg-
ulate the teaching process, thereby ensuring the immediacy
and synchronization of remote teaching interactions.

6. CONCLUSIONS
In this study, we introduce a natural language-driven teacher
gesture recognition (NLD-TGR) framework, which leverages
natural language information with the aim of enhancing the
performance of teacher gesture recognition. Specifically, a
video-text fusion network is designed. Initially, a generative
model is utilized to derive textual descriptions of gesture
postures from video frames based on prompts. These de-
scriptions are then mapped into high-dimensional features,
which are fused with the video features. Subsequently, a
multi-dimensional temporal decoder is proposed to extract
temporal information from the spatial features. Ultimately,
accurate predictions are achieved by calculating the cosine
similarity between the fused features and the textual fea-
tures representing category names. Experimental results
demonstrate that this approach surpasses the state-of-the-
art methods on the teacher gesture dataset.
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