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ABSTRACT

Teacher classroom teaching behavior indicators serve as a
crucial foundation for guiding instructional evaluation. Ex-
isting indicator system suffers from limitations such as strong
subjectivity and weak contextual generalization capabilities.
Generalized category discovery (GCD) enables automatic
data clustering to identify known categories and discover
novel ones. Drawing inspiration from GCD mechanisms,
this paper proposes a data-knowledge-driven framework for
automatic category discovery of classroom teaching behav-
ior indicators (DKD-TBICAD). The framework utilizes par-
tially labeled data as constraint guidance and leverages ex-
tensive unlabeled data as pattern mining carriers to achieve
automatic discovery and classification of teaching behavior
categories. Specifically, the framework enhances spatiotem-
poral feature discriminability through supervised contrastive
learning and spatiotemporal neighborhood aggregation con-
trastive learning. Additionally, we design a dynamic domain
feature aggregation strategy to optimize the adaptability of
feature learning, further enhancing the framework’s capa-
bilities in feature aggregation and novel class discovery. Ex-
perimental results on the proprietary TBU dataset and pub-
lic UCF101 dataset demonstrate that the proposed method
achieves 4% higher overall accuracy than baseline models.
On UCF101, it surpasses baselines by 8.9% in old-class ac-
curacy, while on the TBU dataset, it achieves 10% higher
accuracy in new-class recognition. We believe this study
provides valuable insights for indicator generation research
driven by bidirectional integration of expert knowledge and
data knowledge.

Keywords

Teacher classroom Teaching behavior indicators, General-
ized category discovery, Automatic discovery, Contrastive
learning

Ting Cai, Qingyuan Tang, Yu Xiong, and Lu Zhang. Data-
Knowledge-Driven Automatic Discovery of Teacher Classroom Teach-
ing Behavior Indicator Categories. In Caitlin Mills, Giora Alexan-
dron, Davide Taibi, Giosu¢ Lo Bosco, and Luc Paquette (eds.) Pro-
ceedings of the 18th International Conference on Educational Data
Mining, Palermo, Italy, July, 2025, pp. 388-395. International Edu-
cational Data Mining Society (2025).

© 2025 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.15870294

Qingyuan Tang

Chonggqing University of Posts

and Telecommunications

1549973104@qqg.com
Lu Zhang

Chongging University of Posts

and Telecommunications

d240101037@stu.cqupt.edu.cn

388

1. INTRODUCTION

The enhancement of classroom teaching quality relies on
teachers’ evidence-based reflective practice [19]. As the core
carrier of the teaching process, the classroom teaching be-
haviors of teachers directly affect the efficiency of knowledge
construction and the cognitive development of students [9].
Effective teaching behavior indicators should simultaneously
meet the requirements of dynamic adaptability and inter-
pretability to ensure they can flexibly reflect the diversity of
teachers’ behaviors in the classroom [23].

The current construction of the indicator system for teach-
ers’ classroom teaching behaviors mainly proceeds from two
aspects: expert-driven and data-driven. The expert-driven
method, based on literature analysis and expert experience,
employs the Analytic Hierarchy Process (AHP) for opti-
mization and weight determination. However, this approach
tends to overly rely on expert experience, making it difficult
to fully reflect the complexity and dynamism of teaching
behaviors [1, 7, 21]. This behavioral difference of spatial di-
mension is the typical embodiment of the lack of dynamic
adaptability of the existing index system. The data-driven
method, on the other hand, integrates data knowledge with
expert insights, mining behavioral patterns from data to re-
fine the indicator system, thereby ensuring its scientific rigor
and interpretability [2, 23]. However, this approach may rely
too much on historical data and ignore behavioral patterns
that are not highly relevant to existing topics but contain
new information, especially in complex classroom environ-
ments and dynamic data [24].

Teacher-student interaction is often simplified into a single
dimension in traditional indicator systems, overlooking spa-
tial differences such as interactions on vs.outside the podium.
Studies show that students feel stronger emotional support
when teachers engage with them outside the podium [12].
While data-driven methods can capture such spatial distinc-
tions, they depend on historical data. Without an automatic
discovery mechanism, these differences may be averaged out
or ignored, reducing the model’s ability to distinguish be-
haviors.

Therefore, in the face of the existing indicator system’s strong
subjectivity and weak situational generalization ability, the
automatic discovery mechanism of teacher classroom teach-
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Figure 1: A Framework for Data-Driven Automatic Discovery
of Teacher Classroom Behavior Indicator Categories.

ing behavior indicator categories came into being. This
mechanism aims to integrate expert and data knowledge, dy-
namically identify behavioral patterns in diverse classroom
scenarios through data mining technology, and supplement
and improve the existing evaluation system.

Generalized category discovery (GCD) is a mechanism suit-
able for discovering categories in the real world [18]. It
can automatically identify unknown categories and classify
known ones using labeled category information in an open-
world scenario, without the need to predefine the number of
categories. This mechanism aligns closely with the require-
ments for automatic discovery of teacher classroom behavior
indicator categories. Currently, GCD research primarily fo-
cuses on the field of image recognition, where contrastive
learning is used to construct feature representation spaces,
combined with clustering methods to achieve the discov-
ery of unknown categories[18, 5, 14]. Despite significant
progress in the image domain, research on GCD for behav-
ior category discovery in video data is still in its early stages.
Video data contains rich spatiotemporal information. Stud-
ies have shown that spatiotemporal contrastive learning can
effectively uncover dynamic behavioral features[22, 6], pro-
viding a potential breakthrough for GCD to discover new
classes in video data[l13]. However, existing methods have
the problem of insufficient intra-class feature aggregation
when processing video data. Therefore, combining the GCD
clustering idea with contrastive learning is expected to im-
prove the discovery of new categories. Based on the above
analysis, combined with the mechanism of GCD, this paper
proposes a data-driven framework for the automatic dis-
covery of teacher classroom behavior indicator categories
(DKD-TBICAD), which aims to dynamically discover po-
tential new categories. The framework can be seen in Fig-
ure 1. DKD-TBICAD consists of two stages: feature repre-
sentation learning and indicator category automatic discov-
ery. The feature representation learning stage uses a small
amount of labeled data based on expert knowledge and a
large amount of unlabeled data to conduct supervised con-
trastive learning and spatiotemporal aggregation contrastive
learning. At the same time, dynamic neighborhood aggre-
gation is designed to further enhance the spatiotemporal ag-
gregation capability of video data. The indicator category
automatic discovery stage aims to use the trained encoder
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to cluster features of unlabeled data, enabling the recog-
nition of known categories and the discovery of unknown
behavior categories. In this framework, known categories
guide the model’s sensitivity to unknown categories through
expert knowledge, while the dynamic neighborhood fusion
of known and unknown category data guides the model to
focus on the features themselves. This process combines
expert knowledge with data-driven, dynamically adapts to
changes in teaching scenarios, optimizes indicator adjust-
ments, enriches the category label library, and alleviates the
deviation problem in the design of education evaluation in-
dicators. Our contributions are summarized as follows:

e We propose a data-driven framework based on the
GCD for automatic discovery of teacher classroom teach-
ing behavior indicator categories (DKD-TBICAD). The
framework uses a small number of known category data
as guidance and a large amount of unknown category
data as feature patterns to achieve automatic recogni-
tion and discovery of teaching behavior category indi-
cators.

e We propose a spatio-temporal neighborhood aggrega-
tion contrastive learning method (STNA). This method
optimizes feature consistency through a dynamic neigh-
borhood aggregation strategy, generating representa-
tive minimal pseudo-category prototypes, enhancing
the model’s ability to learn discriminative features in
complex classroom environments.

e Experimental results on proprietary and public datasets
demonstrate that the proposed method achieves 4%
higher overall accuracy and 10% superior new-class
recognition accuracy compared to baseline models. Out-
comes validate the method’s effectiveness and general-
izability in automatic discovery of classroom teaching
behavior indicator categories.

2. RELATED WORK

2.1 Design of Teaching Behavior Indicator
Currently, there are mainly two approaches to constructing
the teaching behavior indicator system: the expert-driven
approach and the data-driven approach. The expert-driven
approach relies on theoretical analysis and expert experi-
ence. For instance, Atapattu et al. [1] constructed the be-
havioral indicators of students’ cognitive engagement based
on theoretical analysis, emphasizing the combination of quan-
titative and qualitative methods. Ding et al.[7] used asso-
ciation rules to explore the relationships among indicators.
Chong et al.[20] determined the indicator weights based on
the Analytic Hierarchy Process. The data-driven approach
determines key indicators through data analysis [16]. Yu
et al. [23] constructed an evaluation indicator system for
teachers’ teaching reflection based on data. However, this
study holds that this indicator system needs to be verified
in a more complex environment. Shravya et al.[2] automati-
cally generated indicators by integrating generative models.
Zhang et al.[24] discovered that existing indicators tend to
overlook data containing new information.

Current teaching behavior indicator systems have made prog-
ress, but two key challenges remain. First, expert-defined in-
dicators struggle to keep up with dynamic classroom changes,
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Figure 2: Overview of the STAN.

making it hard to capture new behavior patterns. Second,
data-driven methods rely heavily on historical data, which
may miss behaviors that are less correlated with existing in-
dicators but still educationally valuable. This highlights the
need for an automatic discovery framework to better adapt
to evolving classroom environments.

2.2 Generalized Category Discovery
Generalized Category Discovery (GCD) is a method de-
signed to automatically identify and explore unknown cat-
egories by leveraging existing known category information
in open-world learning environments, thereby dynamically
expanding the category system [18]. The general practice
of GCD involves optimizing feature space representations
through clustering algorithms. Zhao et al. [25] proposed a
semi-supervised variant of Gaussian mixture models to ex-
amine the compactness and separation of clusters, dynami-
cally determining feature prototypes, and further optimized
representation learning through prototype refinement. Pu et
al.[14] employed the Infomap clustering algorithm to gener-
ate dynamic concept prototypes, achieving highly discrimi-
native feature representations through dual-layer contrastive
learning at both instance and concept levels. To better inte-
grate features between labeled and unlabeled data, Choi et
al.[5] combined mean-shift clustering with contrastive learn-
ing, attaining enhanced feature representation performance
in GCD. Although contrastive learning has demonstrated
promising results in GCD, neighborhood features often suf-
fer from interference caused by noisy data when processing
complex datasets. Consequently, further filtering and refine-
ment of neighborhood features have become critical.

In this context, this study applies key technologies such as
contrastive learning and clustering in GCD to the analysis
of time-series teaching behavior characteristics, solves key
problems such as dynamic aggregation of time-series fea-
tures and cross-scene generalization, and uses labeled data
to design a neighborhood noise filtering strategy to improve
the ability of the model to automatically discover indicator
categories.
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2.3 Video Representation Based on Spatiotem-

poral Contrastive Learning

Spatiotemporal contrastive learning is a widely used tech-
nique in video action recognition, aiming to enhance the
expressive power of video features through joint learning
in temporal and spatial dimensions. Qian et al. [15] pro-
posed a temporal consistency data augmentation strategy
that treats different clips of the same video as positive sam-
ples for contrastive learning, simultaneously capturing spa-
tial and temporal characteristics of videos. Feichtenhofer et
al. [10] encouraged temporal consistency in video features
by utilizing different temporal segments of the same video
as positive samples. Han et al. [11] used the RGB stream
features and optical flow features of the same video data as
positive sample pairs for self-supervised contrastive learn-
ing to learn spatiotemporal representations. However, the
aforementioned works merely focus on the temporal-spatial
contrastive learning of individual instances, while neglecting
the influence of neighboring samples in the temporal-spatial
domain.

3. PROBLEM FORMULATION

This study introduces the GCD mechanism that enhances
the dynamic adaptability and interpretability of indicator
systems by automatically identifying novel behavioral cate-
gories in classroom teaching through the integration of ex-
pert knowledge and data-driven strategies.

Specifically, GCD can automatically discover novel cate-
gories in the unlabeled dataset D, without requiring pre-
defined knowledge of the true number of categories. Let the
training dataset be D = D;UD,,, where D; = {(z;, yi)}f\gl S
X x ) represents the labeled subset (known categories), and
D, = {:Cj};v:ul € X x Y. represents the unlabeled subset
(containing both known and unknown categories). Here, )
denotes the known categories. And ), denotes all possible
categories in the data, including the known categories ); and
the unknown categories. The terms z; and z; denote data
samples, y; represents data labels, X denotes the complete
data space. Let K be the total number of categories in D,



which remains unknown during model training and needs to
be predicted by the model. To estimate K, we introduce
a validation set D, disjoint from the training set. During
the validation process, the model dynamically adjusts the
number of clusters in the agglomerative clustering proce-
dure and computes the clustering accuracy for samples from
the known classes. When the accuracy for known classes
reaches its maximum, we hypothesize that the correspond-
ing number of clusters equals K, which represents the total
number of both known and unknown categories.

4. METHODOLOGY

4.1 Model Framework

Figure 2 shows the model architecture (STNA) of the rep-
resentation learning stage in the proposed framework. The
model first inputs labeled and unlabeled teacher classroom
teaching behavior video clips. Then, two clips are randomly
selected for temporally consistent data augmentation. Fi-
nally, the augmented data is passed through an encoder to
extract features, followed by supervised contrastive learning
and spatio-temporal neighborhood aggregation contrastive
learning. Among them, supervised contrastive learning makes
the features of the same class more compact in the fea-
ture space and distinguishes the features of known and new

classes. Spatio-temporal neighborhood aggregation contrastive

learning combines the semantic similar features of labeled
and unlabeled data in the feature space by selecting neigh-
borhood samples through KNN and aggregating them. This
process learns high-quality feature representations and en-
hances the ability to discover new classes.

4.2 Temporally Consistent Augmentation

In the framework of this study, we rely on contrastive learn-
ing to identify old classes and discover new teaching behav-
ior categories. Therefore, a temporal consistency data aug-
mentation method is adopted to provide effective positive
sample pair generation for contrastive learning. Specifically,
two clips {ClipA, ClipB} are randomly selected from each
video, and the same enhancement operation is applied to
each frame to ensure the consistency of temporal cues be-
tween video clips. This operation prevents the time consis-
tency from being disrupted, which is often caused by con-
ventional spatial augmentation methods. It ensures that the
sample pairs before and after augmentation {v;, ’UZ-+ } exhibit
different features in both spatial and temporal dimensions,
helping the model learn richer spatiotemporal information.

4.3 Supervised Contrastive Learning

In GCD, the classification head tends to overfit to known
categories, causing the features of new category data to align
closely with those of known categories, which hinders the dis-
covery of new categories. To mitigate this issue, this study
employs supervised contrastive learning to directly learn fea-
ture representations of known category data. Specifically, in
the feature space, the features of data from the same cat-
egory are pulled closer as positive sample pairs, while the
features of data from different categories are pushed apart
as negative sample pairs. Through this approach, super-
vised contrastive learning not only clusters the features of
data from the same category in the feature space but also in-
creases the inter-class distance between different categories,
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making the feature space distribution more structured and
reducing the difficulty of discovering new categories.

In supervised contrastive learning, the supervised contrastive
loss for a single data sample is calculated as follows:

! Z log;Z

o
PON 2

exp (v; - Vp/Ts)

L
jgP@i) €XP (Ui : UJ/TS)

Sup —

(1)

P(i) represents the set of data samples within the same
batch that share the same label category as the data sample
v;. Here, v, denotes the feature of the data or augmented
sample that shares the same label as v;, and 75 represents
the temperature coefficient.

4.4 Spatio-temporal Neighborhood Aggrega-

tion Contrastive Learning
This module is designed to improve the category discrimina-
tion ability of feature representation in contrastive learning.
This module consists of Dynamic Neighborhood Aggrega-
tion and Minimal pseudo-class prototype contrastive learn-
ing.

4.4.1 Dynamic Neighborhood Aggregation
Traditional spatiotemporal contrastive learning usually re-
lies on a single data instance and ignores the global seman-
tics at the category level. To optimize feature space learning,
steps such as neighborhood sample selection, dynamic neigh-
borhood feature aggregation strategy and minimum pseudo-
class prototype generation are designed to improve the per-
formance.

KNN-based neighborhood sample selection. In the feature
embedding space V of all data, the KNN algorithm is used
to find the n nearest neighbor sample features N(v;) and
N(v;) for each sample pair {v;,v;"}. Specifically, during
the KNN neighborhood sample selection process, the sample
features are derived from all video embeddings, where the
labels of some sample embeddings are known. Therefore, the
feature aggregation representation of a single sample after
KNN is as follows:

N(vi) = argmax; ¢y vi - v; (2)
V represents the feature embeddings of all data, and n is
the number of neighborhood samples.

Dynamic neighborhood aggregation strategy. To enhance
the consistency of these neighborhood sample features, a
dynamic neighborhood aggregation strategy to refine the
neighborhood features is designed to obtain the optimized
feature representation refine(N(v;)), which better repre-
sents the category to which the sample belongs. The strat-
egy is as follows:

(1) Labeled Sample Processing: If the data sample v; in the
training batch is itself a labeled sample, the known labeled
samples in the neighborhood N (v;) must belong to the same
category as the sample itself; otherwise, they are filtered out.

(2) Unlabeled Sample Processing: If the sample v; is an
unlabeled sample, only the labeled samples with the most
frequent category in the neighborhood N(v;) are retained,



and other samples are filtered. If more than half of the data
in the neighborhood N(v;) are of the same category label,
only these labeled data are retained.

Generation of minimum pseudo-class prototype. After ob-
taining the refined feature representation refine(N(v;)), a
mean aggregation method is used to merge the neighborhood
data. And an adjustment factor « € [0, 1] is introduced to
control the weight distribution between the neighborhood
samples and the original features. Finally, the neighborhood
aggregation method yields the minimal pseudo-category pro-
totype for the sample, as shown in Formula 3.

zi = (1 — a)v; + a Mean(refine(N (v;)) 3)

4.4.2  Minimal Pseudo-class Prototype Contrastive Le-

arning
Based on the generated minimal pseudo-category prototypes,
a spatiotemporal neighborhood aggregation contrastive loss
function is designed to optimize the feature learning ability
of the encoder. The specific loss function is as follows:

exp(zi, zf/Tu)

L(i) = —log
ST Zj;,gi exp(2i, 2;/Tu)

(4)

Tu 1S the temperature coefficient, which is used to adjust
the similarity range of positive and negative sample pairs in
contrastive learning. This loss function encourages pseudo-
category prototypes of the same category to cluster together
in the feature space while pushing apart prototypes of differ-
ent categories, thereby enhancing the discriminative power
of the features.

During the feature representation learning stage (training
process), supervised contrastive learning and spatiotempo-
ral neighborhood aggregation contrastive learning are jointly
optimized to enhance the feature space, thereby improving
the model’s ability to recognize known categories and dis-
cover new ones. The total loss for model optimization is as
follows:

(1)
Sup

1 (&) 1
L=—S10 4+ L 5
|B‘Z ST |BL| Z ( )

i€B i€By,

B is a hyperparameter, and By, represents the labeled data
in each batch.

5. EXPERIMENT
5.1 Dataset

To comprehensively evaluate the effectiveness of STAN, two
datasets are used: TBU dataset [3] and UCF101 dataset
[17].

TBU: TBU is a large-scale proprietary multi-task video data-
set for teacher classroom behaviors, containing video tasks
such as classification, detection and description. Specif-
ically, its action classification subset comprises 13 classes
with 37,026 video samples. For this study, we select a sub-
set of 11 classes (excluding the “teacher bowing” and “erasing
blackboard” categories with small sample sizes), resulting in
15,638 video samples. The detailed sample distribution is
presented in Table 1.
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UCF101: UCF101 is a general-purpose action recognition
benchmark containing 101 classes with 13,320 video samples.

Dataset Splitting: During dataset division, 20% of all data
is first allocated as the validation set D,. Next, a subset of
categories is selected as the known classes ). Among the
known class data, 50% is used to form the labeled dataset
D;, which contains the categories );. The remaining data
constitutes the unlabeled dataset D,, which contains the
categories ),. In addition to the known categories Vi, V.,
also includes unknown categories that do not appear in the
labeled data. During model training, the labels of the data
in D, are invisible. The model is trained jointly on the
labeled dataset D; and the unlabeled dataset D,,. The entire
D, serves as the test set. The division of the number of
categories and samples is shown in Table 2.

Selection of new and old classes: In the UCF10 dataset, due
to the balanced distribution of classes, we randomly select
50 of them as unknown classes to verify the model perfor-
mance. In the TBU dataset, considering that the category
distribution is often unbalanced in real teaching scenarios,
we include categories with more and less data in the division
of known classes and unknown classes to be closer to the ac-
tual application situation. Specifically, we select 4 categories
from the 7 categories with a relatively large amount of data
and 2 categories from the 4 categories with a relatively small
amount of data. In total, 6 categories are designated as the
old classes, and the remaining categories are regarded as the
new classes.

5.2 Experimental Implementation

STAN uses ViT-B-16 [8] pretrained with DINO [4] as the en-
coder. The training epoch is 50, the learning rate is 0.001,
the batch size is 128, and the Adam optimizer is used. The
experiment is completed on 4 3090 GPUs. After each train-
ing epoch, the clustering accuracy and the number of esti-
mated categories of the model are evaluated using the ag-
glomerative clustering method on the validation set. The
best model is selected after multiple rounds of training. The
performance of the model is evaluated on the test set. Since
GCD in the video domain is still in its infancy, we adaptively
modify the GCD [18] and CMS [5] models from the image
domain to build two powerful baseline models.

5.3 Comparison with the Baselines

Table 1: TBU Dataset

Category Quantity
Lecture on the Podium 3079
Multimedia Teaching 2755
Lecture Underneath the Podium 2361
Interact with Students Outside the Podium 2289
Interacting with Students On the Podium 1314
Board Writing 1440
Classroom Inspection Underneath the Podium 1362
Displaying Teaching Aids 468
Pointing To the Blackboard 335
Operating Multimedia 125
Classroom Inspection Around On the Podium 110




Table 2: Dataset Splitting

TBU UCF101
R 6 50
Vu 11 101
D, 4336 2638
Dy, 8174 8018

Table 3: Results on Different Datasets

TBU UCF101
Classes All Old New All Old New
agglomerative 0.3026 0.2593 0.3427 0.6126 0.5559 0.6419
GCD 0.4836 0.7159 0.2735 0.5925 0.7605 0.5070
CMS 0.6449 0.7905 0.5131 0.7603 0.8632 0.7083
STNA 0.6859 0.7639 0.6154 0.8109 0.9518 0.7392

In table 3, we respectively report the comparative experi-
mental results on the TBU dataset and the UCF101 dataset.
Overall, STNA achieves a 4% improvement in overall clus-
tering accuracy and 10% higher accuracy for novel classes
compared to the baseline models. This demonstrates that
the features encoded by STAN better capture the semantic
information of the data itself, effectively balancing the rep-
resentation of novel and known classes in the feature space,
thereby providing reliable support for the dynamic discovery
of teacher behavior indicators.

In terms of model comparison, STAN significantly outper-
forms GCD and Agglomerative in clustering accuracy for
novel classes and surpasses the CMS model by 10%. This
discrepancy arises because CMS excessively compresses the
features of known classes through mean shift, limiting the
learning space for novel classes. In contrast, STAN en-
hances the neighborhood relationships between known and
novel class features in the feature space through a dynamic
neighborhood aggregation strategy. This allows novel class
features to maintain discriminability while co-evolving with
known class features, making it more suitable for behavior
discovery in open classroom scenarios.

The results on the UCF101 dataset show that STNA im-
proves the accuracy for known classes by 8.9% compared
to the baseline, validating the model’s strong representation
capability for general video behavior features. For the TBU
dataset, the proposed method slightly underperforms CMS
in known class recognition. This may be due to the chal-
lenges posed by the real-world classroom setting of TBU,
such as long-tailed distribution and multi-view perspectives,
which introduce noise during training and feature selection,
affecting the performance on known classes. Nevertheless,
STNA still achieves effective discovery of novel classes in
the long-tailed TBU dataset, demonstrating its practicality
in real-world educational scenarios.

5.4 Estimating the Number of Classes

Table 4 presents the true number of categories K for differ-
ent datasets, along with the estimated K values from STAN,
GCD, and CMS. GCD estimates the number of categories
after training, while STAN and CMS estimate the number
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of categories at the end of each training epoch. The experi-
mental results demonstrate that STAN provides the closest
estimation to the true number of categories for unlabeled
data, with a maximum error of only 9.1%, significantly out-
performing GCD and CMS. This is because GCD suffers
from overfitting to known classes, which limits its ability to
discover novel classes and results in larger estimation errors.
STAN outperforms CMS due to the more balanced distribu-
tion of novel and known class features in the feature space,
leading to more accurate category estimation.

Table 4: Estimation of the Number of Classes

TBU UCF101
Method g @ K  Eu(%)
Ground truth 11 - 101 -
GCD 7 36.4 91 9.9
CMS 9 18.2 92 8.9
STNA 10 9.1 94 6.9

Figure 3 illustrates the changes in the accuracy of novel and
old classes, as well as the estimated number of categories
K, on the validation set across different epochs during the
training process of the STNA and CMS models. It can
be observed that as the training progresses, STNA signif-
icantly outperforms CMS in novel class discovery and cate-
gory quantity estimation. The old class recognition rate of
CMS is relatively stable, but the new class discovery per-
formance is poor (as shown in Table 4). STNA, on the
other hand, performs stably in new class discovery and old
class recognition, making it more advantageous in category
number estimation. This is primarily attributed to STNA’s
dynamic neighborhood aggregation design, which effectively
mitigates the impact of background complexity and behav-
ioral similarities, reducing the interference of noise on rep-
resentation learning. This also proves STNA’s ability to
adapt to behavioral differences in complex classroom envi-
ronments.
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Figure 3: Comparison of STNA and CMS across Epochs on
TBU

6. CONCLUSIONS

Drawing inspiration from the generalized category discov-
ery mechanism, this study proposes a data-knowledge-driven



framework for the automatic discovery of teacher classroom
instruction behavior indicators. The framework aims to
dynamically uncover implicit, non-predefined behavior pat-
terns from classroom teaching video data, providing techni-
cal support for building intelligent educational evaluation in-
dicators. Supervised contrastive learning is designed to con-
strain the feature distribution of known categories, reserv-
ing semantic space for novel class discovery. Spatiotemporal
neighborhood aggregation contrastive learning is designed
to enable self-organization of novel class features into com-
pact clusters while optimizing the discriminability of known
class features through dynamic neighborhood feature fusion.
To estimate the number of unknown categories, clustering
algorithms are used during training to classify validation set
data. This approach discovers both novel and known classes,
eliminating the need for predefined category counts required
by traditional methods. Experimental results demonstrate
that the model achieves significant performance on both the
proprietary dataset TBU and the general behavior dataset
UCF101. Under the challenge of long-tailed distribution in
the TBU dataset, STNA improves novel class discovery ac-
curacy by 10% compared to baseline models. Additionally,
it outperforms other baselines in estimating the number of
unknown categories, showcasing the significant potential of
the proposed model.

This study focuses on the automatic discovery of teach-
ing behavior indicators in classroom, driven by both ex-
pert knowledge and data knowledge, under the constraints of
limited annotated data and leveraging large-scale unlabeled
data as feature carriers. This method not only overcomes the
limitations of traditional manually set indicators, but also
dynamically reflects the diversity and complexity of teaching
behaviors, providing support for building a more objective
education evaluation system. Specifically, in the educational
evaluation scenario, the framework can automatically dis-
cover key teaching behaviors, supplement and extend the
existing indicator system. By enabling the dynamic evolu-
tion of the index system of human-computer collaborative
education, this study provides technical support for the two-
way cooperation of expert knowledge and data knowledge to
build a perfect, comprehensive and real-time index system.
Although the method proposed in this paper has achieved
good results, it has certain limitations. Mainly in two as-
pects: first, the model’s ability to discover low-frequency
behavior categories is limited, and when the sample size
of new categories is too small, the feature representation
learning effect will significantly decline; second, the valida-
tion data may have incomplete coverage of new categories,
which will affect the reliability of model parameter updates.
These limitations mainly stem from the inherent imbalance
and dynamic evolution characteristics of behavior data in
the educational scenario.

As educational data continue to grow in diversity and com-
plexity, future research can explore the following directions.
First, addressing the issue of class imbalance in educational
data, particularly the imbalance in novel class data, by ex-
ploring data generation or intelligent sampling strategies to
mitigate obstacles in novel class discovery. Second, address
the issue of the model having an overly strong bias towards
known categories. Disentangled representation learning or
attention mechanisms can be considered to reduce the influ-
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ence of known category data on the representation of new
category data.
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