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ABSTRACT 
Mastery learning –  requiring students to achieve proficiency in a 

topic before advancing – is a well-established and effective 

teaching method. Digital learning systems support this approach by 

personalizing content sequences, enabling students to focus on 

practicing topics they have not yet mastered. To achieve this,  

digital learning systems use knowledge tracing models, such as 

Bayesian Knowledge Tracing (BKT), to estimate students' 

knowledge. The estimation is often converted into a binary 

indicator reflecting whether mastery has been achieved based on a 

predefined threshold (e.g. 0.95). Determining optimal thresholds is 

critical. While prior studies have identified thresholds to prevent 

over-practice on the same skill, it is equally important to examine 

how a student’s degree of mastery predicts future learning on other 

skills, where prior mastery may facilitate acquiring new skills. The 

current study explores this relationship using data from Rori, an 

online tutoring system for foundational math skills. Using BKT, we 

categorized students’ knowledge estimates at the end of each lesson 

(lesson N) into eight mastery levels and analyzed how the current 

mastery level is associated with students’ future learning, measured 

by their performance, early and final knowledge estimates, and 

learning in the subsequent lesson (lesson N+1). Results indicate 

that while the widely adopted threshold of 0.95 remains relevant, 

higher thresholds, such as 0.98, yield additional benefits, including 

improved performance and learning in subsequent lessons. These 

findings provide empirical insights for designing adaptive learning 

technologies that enhance personalization, efficiency, and support 

for future learning. 
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1. MASTERY LEARNING 
Mastery learning emphasizes that students should achieve a high 

level of understanding or proficiency in a given topic before 

moving on to the next [2]. Multiple studies show that mastery 

learning programs lead to improved learning outcomes [13, 21]. In 

digital learning, mastery learning is often supported by systems that 

incorporate adaptations to personalize the sequence of content. 

These systems first assess students’ knowledge of a skill and then 

either provide additional practice if mastery has not been achieved 

or allow students to move to the next topic if mastery is attained. 

This approach avoids over-practice, an inefficiency in learning that 

can account for up to 58% of practice if the system is not optimized 

[8]. It also ensures that students are not moved to a new topic 

prematurely, preventing negative learning experiences, such as 

frustration and boredom, which could also result in ineffective 

learning [5, 10]. As such, digital learning systems increasingly 

incorporate models that assess student learning, enabling 

adaptations that support mastery learning. 

2. MASTERY CRITERIA 
However, given that knowledge is a latent construct, how do we 

measure mastery? Simple approaches without assumptions of 

learning, such as counting the number of consecutive correct or 

calculating the success rate from last N attempts, have been widely 

used in large-scale learning platforms to inform mastery learning 

decisions (e.g. [11, 12]). While these methods provide a practical 

and efficient solution, each of them suffers from certain limitations 

[20]. For example, defining mastery by counting the number of 

consecutive correct answers cannot account for haphazard mistakes 

(e.g., slips). In these cases, a typo can influence the student learning 

sequence and cause them to over-practice [19]. Additionally, the 

success rate from the last N attempts cannot effectively distinguish 

performance patterns that may be useful for inferring mastery (e.g. 

treating the correct and incorrect responses of 1,0,1,0,1,0 the same 

as 0,0,0,1,1,1 where both scenarios have a success rate of 50% yet 

it’s more reasonable to assume mastery in the latter scenario).  

Given these issues, more complex approaches that rely on estimates 

from knowledge tracing (KT) models have been increasingly used 

in digital learning systems to determine mastery over the last 25 

years [1]. These KT models use students' past performance to infer 

their knowledge level on a given skill, estimating the likelihood of 

mastery, and mastery is determined by a predefined threshold [20]. 

To represent this process numerically, KT models estimate the 

probability of mastery in the form of a continuous value ranging 

from 0 to 1; these estimates are subsequently converted to a binary 

form (0 or 1) using a predefined threshold. Values below the 

threshold indicate that the student has not yet mastered the skill, 

whereas values at or above the threshold indicate mastery. 

In [9], where Bayesian Knowledge Tracing (BKT) was used to 

estimate students’ knowledge, the mastery criterion was set to 0.95. 

This means mastery is assumed when the knowledge estimate (i.e., 

P(Ln)) exceeds 0.95; otherwise, the student is considered to have 

not mastered the skill. However, 0.8, 0.9, and unique thresholds for 
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different topics have also been used in the past as the criterion for 

mastery (e.g., [11, 12, 20, 23]). To identify optimal thresholds, [20] 

used simulated data to optimize thresholds by minimizing the 

difference between the moment when the algorithm identified 

mastery, and the moment when mastery occurred according to the 

data simulation, focusing on the knowledge estimates of questions 

with the same skill. This analysis yields unique thresholds for 

different skills, ranging from 0.9 to 0.97.  

While [20] provide insights into optimizing thresholds to optimize 

the amount of practice on the current skill, this approach does not 

indicate what amount of practice is optimal for later student success 

on future skills. Being able to master a skill to a greater degree may 

facilitate student acquisition of other skills in subsequent learning. 

Thus, it may be even more valuable to identify thresholds that 

support future learning, where mastery of one skill facilitates 

learning of other skills—an approach termed Accelerated Future 

Learning (AFL) by VanLehn and Chi [14]. According to [14], AFL 

occurs when prior knowledge increases the rate at which students 

acquire new skills or knowledge. Specifically, mastering one skill 

can support success in new learning situations, preparing students 

for future learning and increasing their chances of success. 

Therefore, understanding the relationship between students’ 

knowledge of one skill and subsequent performance on other skills 

could provide valuable insights into determining the knowledge 

thresholds that optimally support future learning. 

3. THE CURRENT STUDY 
In this study, we collected data from Rori, an online tutoring system 

designed to teach upper elementary and junior high school students 

foundational math skills. The platform features micro-lessons, with 

each micro-lesson focusing on a single mathematical concept (i.e., 

skill), followed by 10 practice questions to assess mastery of that 

concept. Within the current platform, mastery learning is not yet 

implemented. We conducted a series of analyses to examine the 

relationship between students' knowledge level in micro-lesson N 

and their performance in the subsequent micro-lesson, N+1 that’s 

in the same grade level and on the same math topic.  

We used Bayesian Knowledge Tracing (BKT) to estimate students' 

latent knowledge after each question. As BKT iteratively updates 

the knowledge estimate based on the correctness of each attempt, 

the estimate from the final question of a micro-lesson was 

considered the knowledge level for that micro-lesson, which was 

then grouped into one of eight mastery levels (e.g., lower than 0.3, 

between 0.3 and 0.5, between 0.5 and 0.7, etc.). Using the mastery 

level derived from the current micro-lesson (micro-lesson N), we 

compared students' performance (i.e., percentage of correct 

responses), knowledge (early and final knowledge estimates), and 

learning (the difference between initial and final knowledge 

estimates) in the subsequent micro-lesson (micro-lesson N+1). 

Through these analyses, we aim to understand how knowledge 

level in one lesson relates to future performance, providing insights 

into where the cut-off point should be in deciding mastery. This 

study contributes to a deeper understanding of how adaptive 

learning technologies, such as Rori, can leverage empirical 

evidence to enhance adaptivity and better support personalized 

learning. 

4. METHODS 

4.1 Learning Platform 
Rori is an AI-powered virtual math tutor designed to help children 

develop foundational math skills. Rori provides personalized 

instructions, practice opportunities, and feedback through 

conversational interactions with a chatbot. Available via 

WhatsApp, and accessible with a 2G internet connection, it is 

designed for learners with limited access to quality education. Since 

launching in November 2022, Rori has been used as a remote math 

tutor for users interested in learning math and also in classrooms as 

a supplementary math learning tool for students. Over 63,000 users 

have interacted with Rori across seven African countries: Ghana, 

Kenya, Liberia, Nigeria, Rwanda, Sierra Leone, and Tanzania. 

Rori structures learning based on what is referred to as 

“microlessons,” a series of 10 math problems focused on a specific 

math topic (e.g., Algebra, Fractions) and a corresponding grade 

level (1 to 9) (see Figure 1). Math problems corresponding to 

different grade levels are developed using the Global Proficiency 

Framework [16]. After joining, students can choose the topic and 

grade level of the math problems they want to practice. Due to 

students’ different prior knowledge levels and needs, the platform 

allows them to switch between different topics or grade levels at 

any time. Students can also ask Rori for hints on how to solve math 

problems they struggle with. 

 

Figure 1. Example chats with Rori 

4.2 Data 
We extracted chat logs of students completing math problems in 

Rori from September 2023 to May 2024. The dataset included 

students making attempts at answering problems in micro-lessons. 

Each attempt was recorded with a timestamp, a unique student ID, 

the associated micro-lesson, and an indicator of whether the attempt 

was correct. For each problem, students can make multiple 

attempts, and only the first attempt at solving a problem was 

considered. Given that students may choose to discontinue a micro-

lesson (e.g. moving to a different micro-lesson) before completing 

all ten problems, we only included cases where a student worked 

on at least eight problems in a micro-lesson, to avoid cases where a 

student stopped out of a micro-lesson early, which could occur due 

to disengagement [7], which could reduce the quality of the 

knowledge inference. In total, the final dataset includes 5,039 

micro-lessons from 543 students working on 49,612 problems. 
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4.3 Bayesian Knowledge Tracing 
Bayesian knowledge tracing (BKT) estimates the probability of a 

student mastering a given skill over time based on their previous 

performance [9]. Though its performance is lower at predicting 

future correctness than more contemporary approaches (e.g. [15, 

18, 24]), BKT is still widely used in real-world systems (including 

Rori) due to its interpretability and straightforward estimates of 

skill mastery that teachers can use. To apply BKT, we estimated the 

four BKT parameters for each microlesson (i.e., initial knowledge, 

learning rate, guess, and slip). We used brute force grid search to 

find the best-fitting estimates of model parameters. This approach 

has been used in prior studies [4, 22], and its parameter estimations 

achieve fit comparable to those obtained with alternative methods 

[17]. In this approach, all possible combinations of four BKT 

parameters (at a pre-selected grain size, usually 0.01) are evaluated 

to find the combination that yields the lowest sum of square residual 

(SSR) between the likelihood of demonstrating a skill and the 

observed data. To avoid model degeneracy, we constrained Guess 

(G) and Slip (S) to values between 0.01 and 0.3, initial knowledge 

P(L0) to values between 0.001 and 0.5, and the learning rate (T) to 

values between 0.001 and 0.1 [3]. Using the estimated parameters, 

we then calculated the students’ mastery level of the micro-lesson 

P(Ln) after each practice attempt. The full description of BKT 

calculation can be found in [9]. 

4.4 Analysis 
Using the P(Ln) values obtained from BKT, we analyzed the 

relationship between students’ final knowledge level (their last 

P(Ln)) in the prior micro-lesson (i.e., micro-lesson N) to multiple 

estimates of their knowledge and performance in the subsequent 

micro-lesson (i.e., micro-lesson N+1)  within the same topic and 

grade level.  When a student shifts topic or grade level between 

micro-lessons, the link between the prior and subsequent micro-

lessons is unclear. Once we established the pairings between micro-

lessons N and N+1, we next grouped the final knowledge level (last 

P(Ln)) of each micro-lesson N into one of eight mastery buckets: 

1) P(Ln) < 0.3, 2) 0.3 ≤ P(Ln) < 0.5, 3) 0.5 ≤ P(Ln) < 0.7, 4) 0.7 ≤ 

P(Ln) < 0.8, 5) 0.8 ≤ P(Ln) < 0.9, 6) 0.9 ≤ P(Ln) < 0.95, 7) 0.95 ≤ 

P(Ln) < 0.98, and 8) P(Ln) ≥ 0.98. The higher the P(Ln) as well as 

the mastery level for which it is bucketed, the more likely the 

student has mastered the skill in the prior lesson. Different cut-offs 

for mastery were considered in line with the extensive literature that 

has considered a range of different BKT knowledge values as 

evidence of mastery [11, 12, 20, 23]. We used buckets rather than 

a continuous analysis to match the practice of selecting a mastery 

cut-off. 

For each micro-lesson N+1, we computed four performance and 

knowledge measures, capturing different aspects of the student’s 

readiness for micro-lesson N+1: 1) the percentage of questions that 

were answered correctly (i.e. accuracy), 2) an early knowledge 

estimate (i.e., P(Ln) after the first question -- P(L1)), 3) the final 

knowledge estimate (i.e., P(Ln) after the last question), and 4) 

learning, measured by the difference between the initial P(L0) and 

the final knowledge estimates. 

For each performance and knowledge measure, we first computed 

the average and standard deviation for each mastery level. We then 

ran a series of multilevel models to evaluate if there were 

significant differences across mastery levels for each measure. 

Multilevel modeling is necessary for this data structure to prevent 

correlations between model errors and grouping variables (i.e., 

students and micro-lessons), which would violate a key assumption 

of regression that can cause inflation of type one errors. These 

models included one-hot encoding indicators of students' mastery 

categories and random intercepts for students and problems. For 

each outcome, we ran the multiple models seven times (for seven 

buckets), using different mastery level categories as the reference 

in the one-hot encoding in each model. Each model only included 

mastery categories greater than or equal to the reference category. 

This allowed for pairwise comparison between all of the mastery 

categories, without duplicating analyses. To account for potential 

inflation of the false positive rate due to multiple comparisons, we 

compared the p-value for each coefficient to adjusted  criteria 

using  the Benjamini-Hochberg procedure [6]. Parametric models 

were used after reviewing the distributions for lack of hyper-

kurtosis, bimodality, or skew. We report the multilevel model 

results for accuracy, early knowledge estimate, final knowledge 

estimate, and learning (measured by the difference between the 

initial and the final knowledge estimates). 

5. RESULTS 
Descriptive statistics. Table 1 summarizes students' performance 

and knowledge estimates in the subsequent (N+1) micro-lessons 

based on the mastery levels in the prior micro-lessons (N). We 

observe a bimodal distribution in which most micro-lesson/student 

pairs N (the column titled “number of micro-lessons” in Table 1) 

end with students in the lowest (P(Ln) < 0.3) or highest (P(Ln) ≥ 

0.98) mastery levels. This distribution indicates that most of the 

Table 1. The average performance on micro-lesson N+1 by mastery levels in micro-lesson N 

  N+1 

Mastery level 

on micro-lesson N 

Number of 

microlessons Accuracy (sd) 

Early knowledge  

estimate  (sd) 

Final knowledge  

estimate (sd) 

Difference between initial and 

final knowledge estimate (sd) 

1) P(Ln)<0.3 783 0.53 (0.28) 0.42 (0.30) 0.57 (0.41) 0.22 (0.36) 

2) 0.3<=P(Ln)<0.5 148 0.59 (0.29) 0.48 (0.29) 0.66 (0.40) 0.26 (0.37) 

3) 0.5<=P(Ln)<0.7 151 0.63 (0.27) 0.54 (0.29) 0.70 (0.40) 0.28 (0.36) 

4) 0.7<=P(Ln)<0.8 139 0.65 (0.30) 0.54 (0.29) 0.71 (0.40) 0.29 (0.36) 

5) 0.8<=P(Ln)<0.9 176 0.64 (0.28) 0.51 (0.30) 0.70 (0.40) 0.28 (0.37) 

6) 0.9<=P(Ln)<0.95 129 0.66 (0.27) 0.50 (0.29) 0.75 (0.38) 0.35 (0.35) 

7) 0.95<=P(Ln)<0.98 229 0.69 (0.27) 0.56 (0.28) 0.77 (0.37) 0.33 (0.34) 

8) 0.98<=P(Ln) 4140 0.83 (0.22) 0.66 (0.26) 0.91 (0.25) 0.45 (0.21) 
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time when students completed a micro-lesson, they either had little 

knowledge of the skill or had mastered the skill to a significant 

degree (and may have over-practiced beyond the point where 

mastery was already established according to many commonly-

used mastery criterion, e.g. 0.95). 

Accuracy. Table 2 presents the estimated differences in accuracy 

on the subsequent micro-lesson (N+1) based on the mastery levels 

in micro-lesson N. Students with higher mastery levels in micro-

lesson N performed significantly better than those in the lowest 

levels of mastery. Specifically, as shown in the results highlighted 

in green in Table 2, students with mastery at or above 0.98 had 

significantly higher accuracy in micro-lesson N+1 than those with 

a probability of mastery below 0.3 (estimate = 0.072; p < 0.001, α 

= 0.002), between 0.3 and 0.5 (estimate = 0.063; p < 0.001, α = 

0.004), 0.5 and 0.7 (estimate = 0.43; p = 0.004, α = 0.014), 0.7 and 

0.8 (estimate = 0.047; p = 0.002, α = 0.009), 0.8 and 0.9 (estimate 

= 0.050; p < 0.001, α = 0.005), and 0.95 and 0.98 (estimate = 0.041; 

p < 0.001, α = 0.007). The difference between the highest and the 

third highest (0.9<=P(Ln)<0.95) mastery levels was only 

marginally significant when using the Benjamini-Hochberg 

adjusted alpha levels (estimate = 0.032, p = 0.034, α = 0.020). 

Additionally, students in the top three mastery levels mastery –  

0.9<=P(Ln)<0.95 (estimate = 0.052; p = 0.002, α = 0.013),   

0.95<=P(Ln)<0.98 (estimate = 0.042; p = 0.002, α = 0.011), 

0.98<=P(Ln) (estimate = 0.072; p < 0.001, α = 0.002) – 

significantly outperformed those with the bottom mastery. 

Early knowledge estimate. Table 3 summarizes the results of the 

multilevel model that estimates the differences in early knowledge 

estimates on the subsequent micro-lesson (N+1) based on the 

mastery levels in micro-lesson N. As shown in the results 

highlighted in green in Table 3, students with mastery at or above 

0.98 had significantly higher early knowledge estimates on the next 

micro-lesson than those with a probability of mastery below 0.3 

(estimate = 0.072; p < 0.001, α =0.002), between 0.3 and 0.5 

(estimate = 0.060; p < 0.001, α =0.004), 0.8 and 0.9 (estimate = 

0.049; p = 0.004, α = 0.005), 0.9 and 0.95 (estimate = 0.053; p = 

0.006, α = 0.009), 0.95 and 0.98 (estimate = 0.040; p = 0.006, α = 

0.011).  

The difference between the highest master category and the middle 

categories – 0.5<=P(Ln)<0.7 (estimate = 0.020, p = 0.286, α = 

0.029) and 0.7<=P(Ln)<0.8 (estimate = 0.034, p = 0.064, α = 0.016) 

– were not significant. These nonsignificant results may be due to 

the low certainty of early BKT estimates. 

Final knowledge estimate. Table 4 presents the estimated 

differences in final knowledge estimates on the subsequent micro-

lesson (N+1) based on the mastery levels in micro-lesson N. 

Similar to previous findings, compared to other mastery levels, 

students who achieved the highest mastery level in micro-lesson N 

tended to have higher knowledge estimates by the end of the next 

micro-lesson (i.e., micro-lesson N+1). Specifically,  as shown in 

the results highlighted in green in Table 4, students in the highest 

master level had significantly higher  final mastery estimates  than 

those with a probability of mastery below 0.3 (estimate = 0.101; p 

< 0.001, α = 0.002)  as well as between  0.3 and 0.5 (estimate = 

0.084; p < 0.001, α = 0.009), 0.5 and 0.7 (estimate = 0.052; p = 

0.008, α = 0.014), 0.7 and 0.8 (estimate = 0.109; p < 0.001,  α = 

0.004), 0.8 and 0.9 (estimate = 0.089; p < 0.001, α = 0.005), 0.9 and 

0.95 (estimate = 0.047; p = 0.014, α = 0.020), 0.95 and 0.98 

(estimate = 0.066; p < 0.001, a = 0.007).  

Students in the lowest master level (below 0.3) had significantly 

lower final mastery estimates than those with a probability of 

mastery between 0.5 and 0.7 (estimate =0.053; p = 0.013, α = 

0.018), 0.9 and 0.95 (estimate =0.076; p = 0.001, α = 0.011), and 

0.95 and 0.98 (estimate =0.057; p = 0.002,  α = 0.013). Students 

with a probability of mastery between 0.7 and 0.8 also had lower 

final mastery estimates than those with a probability of mastery 

between 0.9 and 0.95 (estimate =0.068; p = 0.010, α = 0.016), and 

0.95 and 0.98 (estimate =0.057; p = 0.014,  α = 0.021).   

Table 2. Multilevel model estimates of the difference in accuracy on  micro-lesson N+1 by mastery levels in micro-lesson N 

(unadjusted p-values)  

Mastery level 

on micro-lesson N 1) P(Ln)<0.3 

2) 

0.3<=P(Ln)<0.5 

3) 

0.5<=P(Ln)<0.7 

4) 

0.7<=P(Ln)<0.8 

5) 

0.8<=P(Ln)<0.9 

6) 

0.9<=P(Ln)<0.95 

7) 

0.95<=P(Ln)<0.98 

2) 0.3<=P(Ln)<0.5 

0.018  

p = 0.273,  

a = 0.03 - - - - - - 

3) 0.5<=P(Ln)<0.7 

0.033  

p = 0.036,  
a = 0.021 

0.02  

p = 0.329,  
a = 0.034 - - - - - 

4) 0.7<=P(Ln)<0.8 

0.039  

p = 0.016,  

a = 0.016 

0.024  

p = 0.226,  

a = 0.027 

<0.001  

p = 0.987,  

a = 0.05 - - - - 

5) 0.8<=P(Ln)<0.9 
0.033  
p = 0.031,  

a = 0.018 

0.023 
p = 0.234,  

a = 0.029 

0.002  
p = 0.932,  

a = 0.046 

-0.001  
p = 0.941,  

a = 0.048 - - - 

6) 0.9<=P(Ln)<0.95 

0.052*  

p = 0.002,  

a = 0.013 

0.037 

p = 0.075,  

a = 0.025 

0.018  

p = 0.379,  

a = 0.038 

0.019  

p = 0.353,  

a = 0.036 

0.021  

p = 0.289,  

a = 0.032 - - 

7) 0.95<=P(Ln)<0.98 

0.042*  

p = 0.002,  

a = 0.011 

0.033  

p = 0.066, 

a = 0.023 

0.013  

p = 0.472,  

a = 0.043 

0.015  

p = 0.398,  

a = 0.041 

0.015  

p = 0.384,  

a = 0.039 

-0.008  

p = 0.657, 

 a = 0.045 - 

8) 0.98<=P(Ln) 

0.072*  

p < 0.001,  

a = 0.002 

0.063*  

p < 0.001,  

a = 0.004 

0.043*  

p = 0.004,  

a = 0.014 

0.047*  

p = 0.002,  

a = 0.009 

0.050*  

p < 0.001,  

a = 0.005 

0.032  

p = 0.034,  
a = 0.020 

0.041* 

p < 0.001 ,  

a = 0.007 

*Significant when compared with the Benjamini-Hochberg corrected alpha levels 
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Learning measured by the difference between the initial and 

final knowledge estimates. Table 5 presents the estimated 

differences in learning on micro-lesson N+1 based on the mastery 

levels in micro-lesson N. The highest mastery level significantly 

outperformed all other mastery levels in terms of learning. As 

shown in the results highlighted in green in Table 5, the students in 

the highest master level (at and above 0.98) have significantly 

greater degree of learning than those with a probability of mastery 

below 0.3 (estimate = 0.102; p < 0.001, α = 0.002)  as well as 

between  0.3 and 0.5 (estimate = 0.085; p < 0.001, α = 0.009), 0.5 

and 0.7 (estimate = 0.058; p = 0.003, α = 0.014), 0.7 and 0.8 

(estimate = 0.110; p < 0.001,  α = 0.004), 0.8 and 0.9 (estimate = 

0.093; p < 0.001, α = 0.005), 0.90 and 0.95 (estimate = 0.045; p = 

0.018, α = 0.020), 0.95 and 0.98 (estimate = 0.068; p < 0.001; α = 

0.007).   

Students in the lowest master level have significantly smaller gains 

than those with a probability of mastery between 0.50 and 0.70 

(estimate =0.050; p = 0.020, α = 0.021), 0.90 and 0.95 (estimate 

=0.076; p = 0.001, α = 0.011), and 0.95 and 0.98 (estimate =0.056; 

Table 3. Multilevel model estimates of the difference in the early knowledge estimates on micro-lesson N+1 by mastery levels in 

micro-lesson N (unadjusted p-values) 

Mastery level 

on micro-lesson N 

1) 

P(Ln)<0.3 

2) 

0.3<=P(Ln)<0.5 

3) 

0.5<=P(Ln)<0.7 

4) 

0.7<=P(Ln)<0.8 

5) 

0.8<=P(Ln)<0.9 

6) 

0.9<=P(Ln)<0.95 

7) 

0.95<=P(Ln)<0.98 

2) 0.3<=P(Ln)<0.5 
0.011  
p = 0.552,  

a = 0.039 - - - - - - 

3) 0.5<=P(Ln)<0.7 

0.054*  

p = 0.004,  

a = 0.007 

0.044  

p = 0.07,  

a = 0.018 - - - - - 

4) 0.7<=P(Ln)<0.8 

0.044  

p = 0.024,  

a = 0.013 

0.03  

p = 0.224,  

a = 0.023 

-0.012  

p = 0.617,  

a = 0.043 - - - - 

5) 0.8<=P(Ln)<0.9 

0.026  

p = 0.15,  
a = 0.020 

0.017  

p = 0.464,  
a = 0.034 

-0.027 

 p = 0.248,  
a = 0.025 

-0.014  

p = 0.546,  
a = 0.038 - - - 

6) 0.9<=P(Ln)<0.95 

0.026  

p = 0.202,  

a = 0.021 

0.013  

p = 0.618,  

a = 0.045 

-0.029  

p = 0.257,  

a = 0.027 

-0.018  

p = 0.487,  

a = 0.036 

-0.004  

p = 0.861,  

a = 0.05 - - 

7) 0.95<=P(Ln)<0.98 
0.032  
p = 0.051,  

a = 0.014 

0.023  
p = 0.30,  

a = 0.030 

-0.019  
p = 0.385,  

a = 0.032 

-0.004  
p = 0.849,  

a = 0.048 

0.01  
p = 0.629,  

a = 0.046 

0.014  
p = 0.554,  

a = 0.041 - 

8) 0.98<=P(Ln) 

0.072*  

p < 0.001 ,  

a = 0.002 

0.060*  

p = 0.001,  

a = 0.004 

0.020  

p = 0.286,  

a = 0.029 

0.034  

p = 0.064,  

a = 0.016 

0.049*  

p = 0.004,  

a = 0.005 

0.053*  

p = 0.006,  

a = 0.009 

0.040*  

p = 0.006,  

a = 0.011 

Table 4. Multilevel model estimates of the difference in the final knowledge estimates on micro-lesson N+1 by mastery levels in 

micro-lesson N (unadjusted p-values) 

Mastery level 

on micro-lesson N 

1) 

P(Ln)<0.3 

2) 

0.3<=P(Ln)<0.5 

3) 

0.5<=P(Ln)<0.7 

4) 

0.7<=P(Ln)<0.8 

5) 

0.8<=P(Ln)<0.9 

6) 

0.9<=P(Ln)<0.95 

7) 

0.95<=P(Ln)<0.98 

2) 0.3<=P(Ln)<0.5 

0.03  

p = 0.164,  
a = 0.034 - - - - - - 

3) 0.5<=P(Ln)<0.7 

0.053*  

p = 0.013,  

a = 0.018 

0.03  

p = 0.247,  

a = 0.036 - - - - - 

4) 0.7<=P(Ln)<0.8 

0.013  

p = 0.54,  

a = 0.045 

-0.016  

p = 0.534,  

a = 0.043 

-0.052  

p = 0.047,  

a = 0.023 - - - - 

5) 0.8<=P(Ln)<0.9 

0.033  

p = 0.107,  
a = 0.029 

0.009  

p = 0.726,  
a = 0.048 

-0.023  

p = 0.349,  
a = 0.039 

0.024  

p = 0.344,  
a = 0.038 - - - 

6) 0.9<=P(Ln)<0.95 

0.076*  

p = 0.001,  

a = 0.011 

0.044  

p = 0.099, 

a = 0.027 

0.016  

p = 0.552,  

a = 0.046 

0.068*  

p = 0.010,  

a = 0.016 

0.045  

p = 0.07,  

a = 0.025 - - 

7) 0.95<=P(Ln)<0.98 
0.057*  

p = 0.002,  

a = 0.013 

0.037  
p = 0.124,  

a = 0.03 

0.005  
p = 0.834,  

a = 0.05 

0.057*  

p = 0.014,  

a = 0.021 

0.031  
p = 0.153,  

a = 0.032 

-0.018  
p = 0.431,  

a = 0.041 - 

8) 0.98<=P(Ln) 

0.101*  

p < 0.001,  

a = 0.002 

0.084*  

p < 0.001 ,  

a = 0.009 

0.052*  

p = 0.008,  

a = 0.014 

0.109*  

p < 0.001,  

a = 0.004 

0.089*  

p < 0.001,  

a = 0.005 

0.047*  

p = 0.014,  

a = 0.020 

0.066*  

p < 0.001,  

a = 0.007 
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p = 0.002,  α = 0.013). Students with a probability of mastery 

between 0.7 and 0.8  also had lower learning gains than those with 

a probability of mastery between 0.9 and 0.95 (estimate =0.071; p 

= 0.007, α = 0.016), and 0.95 and 0.98 (estimate =0.055; p = 0.017,  

α = 0.018).   

6. DISCUSSION AND CONCLUSION 
The current study explores the relationship between students’ 

mastery in one lesson and their performance, knowledge, and 

learning in the subsequent lessons, aiming to provide evidence to 

answer how much mastery is needed now to support future 

learning. While previous literature suggests using 0.95 as a 

threshold to define mastery in Bayesian Knowledge Tracing 

primarily to avoid over-practice [9, 19], the current study 

demonstrates the benefits of setting a threshold as high as 0.98 for 

supporting future performance. Specifically, our findings 

consistently show that students who achieved a knowledge estimate 

(P(Ln)) at and above 0.98 outperformed their peers across multiple 

learning metrics in the following lessons: they exhibited higher 

percentages of correct responses, higher early and final knowledge 

estimates, and greater learning gains (reflected by the difference 

between their initial and final knowledge estimates). These results 

suggest that P(Ln) > 0.98 may serve as a more effective threshold 

for defining mastery, given its potential to facilitate accelerated 

future learning [AFL; 14]. In other words, skipping students 

forward based on a mastery criterion of 0.95 or lower may overlook 

an opportunity for students to continue to improve their 

understanding on the current skill in a way that facilitates future 

learning. Or to put it another way, much of the over-practice 

identified by [8] may not be over-practice at all. 

As is the nature of any correlational analysis, the relationship 

identified in the current study does not prove causation. Although 

it is possible that attaining a higher mastery level caused students to 

perform better on subsequent lessons, it is also plausible that the 

students who attain high mastery have characteristics that make 

them more likely to perform better on both lessons. Thus, future 

research should employ causal methods to evaluate the impact of 

thresholds on learning. Additionally, it will probably be valuable to 

replicate the current analysis using data from different platforms 

and domains to examine the generalizability of the identified 

threshold (and the overall phenomenon of a higher threshold for 

AFL than is commonly used for mastery of the current skill). 

Additionally, it will be valuable to evaluate this threshold with 

other knowledge tracing models that predict performance (e.g., 

deep knowledge tracing) rather than focusing solely on BKT, as 

demonstrated in the current analysis. Other knowledge tracing 

models (especially deep learning-based models) may already 

account for the relationships across skills, contextualizing the 

estimation of a student knowledge on one skill using information 

from other skills. This could partially capture and reflect the same 

relationships observed in the current study, confounding the results. 

By conducting analyses with diverse datasets and experimenting 

with various knowledge tracing models, it will be possible to 

develop a more comprehensive understanding of where the mastery 

threshold should be, contributing to the ongoing discussion of how 

much mastery is enough mastery. Such findings can help improve 

adaptivity in digital learning systems, better optimize personalized 

learning, and facilitate future learning. 
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