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ABSTRACT
The growing need for automated and personalized feedback
in programming education has led to recent interest in lever-
aging generative AI for feedback generation. However, cur-
rent approaches tend to rely on prompt engineering tech-
niques in which predefined prompts guide the AI to generate
feedback. This can result in rigid and constrained responses
that fail to accommodate the diverse needs of students and
do not reflect the style of human-written feedback from tu-
tors or peers. In this study, we explore learnersourcing as a
means to fine-tune language models for generating feedback
that is more similar to that written by humans, particu-
larly peer students. Specifically, we asked students to act
in the flipped role of a tutor and write feedback on pro-
grams containing bugs. We collected approximately 1, 900
instances of student-written feedback on multiple program-
ming problems and buggy programs. To establish a baseline
for comparison, we analyzed a sample of 300 instances based
on correctness, length, and how the bugs are described. Us-
ing this data, we fine-tuned open-access generative models,
specifically Llama3 and Phi3. Our findings indicate that
fine-tuning models on learnersourced data not only produces
feedback that better matches the style of feedback written by
students, but also improves accuracy compared to feedback
generated through prompt engineering alone, even though
some student-written feedback is incorrect. This surpris-
ing finding highlights the potential of student-centered fine-
tuning to improve automated feedback systems in program-
ming education.
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1. INTRODUCTION
Generative AI offers great potential to enhance program-
ming education by providing personalized feedback to stu-
dents. This can complement feedback from human tutors by
offering continuous, around-the-clock support [6, 41]. How-
ever, students often perceive AI-generated feedback as less
effective than human-written feedback because it may not
fully address their needs or provide the depth of support
they expect [28]. In particular, students value the emotional
sensitivity of human feedback. Therefore, to maximize stu-
dent adoption, it is essential to refine AI models to deliver
feedback with human-like characteristics, similar to what
students would receive from tutors or peers.

Most previous studies have focused on the use of prompt-
engineering techniques to customize feedback to meet expert
educators’ standards [18, 42]. Furthermore, the quality of
feedback is typically evaluated via educator-created rubrics
[32, 33], emphasizing conciseness and appropriateness (i.e.,
not explicitly pointing out how to fix bugs). This approach
suffers from several limitations. First, it demands exten-
sive effort from experts to engineer prompts which may not
generalize across domains. Second, the generated feedback
tends to be rigid and constrained (e.g., spanning one or two
sentences and not containing code), lacking flexibility for
addressing specific needs and different types of bugs. More
generally, this approach does not capture student prefer-
ences as well as the dynamic and adaptable characteristics
of humans, such as tutors and peers.

To address this gap, we leverage learnersourced data for
fine-tuning generative models, combining the relatability of
student-written feedback with generative models’ ability to
generate consistent feedback at scale. By fine-tuning on
1, 920 student-created feedback instances, we align feedback
generated by AI more closely with student communication
styles, making it more concise, peer-like, and adaptable, as

434

Victor-Alexandru P?durean, Tung Phung, Nachiket Kotalwar,
Michael Liut, Juho Leinonen, Paul Denny, and Adish Singla. Hu-
manizing Automated Programming Feedback: Fine-Tuning Genera-
tive Models with Student-Written Feedback. In Caitlin Mills, Giora
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I’d be happy to help!
The main issue with your original program is that you’re adding the index ‘i’ to the sum instead of the value at that index ‘values[i]’.
This is why you’re getting the wrong output.
Here’s a breakdown of what’s happening:
* When ‘i’ is 0, ‘values[i]’ is 10, which is positive, so you add 0 to the sum (because ‘i’ is 0).
* When ‘i’ is 1, ‘values[i]’ is 20, which is positive, so you add 1 to the sum (because ‘i’ is 1).
* When ‘i’ is 2, ‘values[i]’ is 30, which is positive, so you add 2 to the sum (because ‘i’ is 2).
So, the sum becomes 0 + 1 + 2 = 3, which is why you’re getting the output 3.
By changing the line ‘sum += i;’ to ‘sum += values[i];’, you’re correctly adding the positive values to the sum, which is why the fixed
program produces the correct output.
Here are some additional suggestions to improve your code:
* Consider adding a check to ensure that the input array is not null before trying to access its elements. This can help prevent crashes
or unexpected behavior if the input array is invalid.
* You might want to consider adding a comment to explain what the function does and what it returns. This can make it easier for
others (or yourself!) to understand the code.
* If you’re working with large arrays, you might want to consider using a more efficient algorithm or data structure to store and
process the values. However, for small arrays like the one in your example, the simple loop-based approach should be sufficient.
Overall, your code is simple and easy to understand, and the fix is a good one. With a few minor tweaks, it should be even better!

(a) Feedback with Llama3-8B and basic prompt.

Think about what you’re actually trying to sum up in your loop. Are
you trying to sum up the indices of the array, or the values themselves?
Take a closer look at the condition in your if statement and see if it’s
doing what you intend it to do.

(b) Feedback with Llama3-8B and engineered prompt.

The problem with the code is where you are adding the
sum. Rather than adding the value of the element, you
are adding the index of that element.

(c) Feedback with Llama3-8B-fine-tuned and basic prompt.

Figure 1: Examples of feedback by Llama3-8B with different settings for a buggy program attempting the “Sum Positive
Values” problem (see Figure 2). Feedback with the fine-tuned model is correct in contrast to the feedback given with the
engineered prompt which contains redundant information that may confuse the student.

illustrated in Figure 1. This approach reduces reliance on
manual prompt engineering while enhancing the human-like
qualities of automated feedback in programming education.
Our contributions are as follows:

I. We introduce a fine-tuning method using learnersourced
data to align AI-generated feedback with student-written
feedback, reducing reliance on prompt engineering.

II. We propose a flipped-role setup for feedback collection
and define key attributes for analyzing feedback style.

III. Our fine-tuned models produce feedback that is both
more similar to student-written feedback and more ac-
curate than basic and prompt-engineered approaches.

IV. We publicly release our fine-tuning implementation to
support future research in educational data mining.

2. RELATED WORK
Expert-designed feedback. Even prior to the advent of gener-
ative AI, significant efforts were made to provide automated
feedback to students in introductory programming courses.
Early work utilized unit test-based feedback in automated
assessment systems, where students are shown specific error
messages depending on which tests pass or fail [3, 11, 30].
Other studies relied on expert-crafted or learned rules to
identify specific bugs, thereby providing tailored feedback
[4, 15, 34, 40]. While these methods ensured high-quality
feedback, they required substantial expert involvement and
large training datasets, limiting scalability.

Crowdsourced programming feedback. To overcome the lim-
itations of expert-designed feedback, researchers explored

crowdsourcing to collect errors and fixes contributed by the
programming community [2, 9, 13, 24]. Initiatives like Help-
MeOut [8] focused on collecting and matching code fixes
for buggy programs, but these methods faced challenges in
generalizability and struggled to adapt to new bug types.
Learnersourcing builds on this concept by engaging students
directly in creating feedback [36–38], which has been shown
to generate valuable, relatable feedback and improve student
learning [19, 35]. Learnersourcing remains relevant alongside
generative AI [14], with recent studies exploring their syn-
ergy by examining student-written hints for programming
bugs, both with and without AI assistance [39]. In contrast,
our work focuses on leveraging learnersourced data to en-
hance generative AI models for better feedback generation.

Generative AI-powered programming feedback. The rise of
generative models has opened new possibilities for auto-
mated feedback in education. Tools like GPT-3 and Codex [27]
have been used to enhance compiler error messages and pro-
vide syntax bug fixes [20, 31]. Efforts to improve the quality
of AI-generated feedback include incorporating symbolic in-
formation [12, 33, 42], validation mechanisms [31, 33], and
retrieval-augmented generation (RAG) [7, 21]. However,
these studies have primarily focused on generating feedback
that meets the standards of expert educators, often over-
looking student preferences. Our work bridges this gap by
focusing on generating feedback that aligns with learner-
sourced data, thereby enhancing the overall experience.

Language model fine-tuning. Recent work has explored fine-
tuning generative models, particularly small open-access mod-
els like Llama3-8B [23] and Phi3-3.8B [1], to optimize for
specific tasks in education [22, 43]. Fine-tuning with syn-
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Problem Description
Sum Positive Values
Define a function called SumPositiveValues() which is
passed two inputs: an array of integers, and an integer
indicating how many elements are in the array. The func-
tion should return the sum of all positive integers in the
input array.

Buggy Program
1 i n t SumPos i t i v eVa lue s ( i n t v a l u e s [ ] , i n t l e n g t h ) {
2 i n t sum = 0 ;
3 f o r ( i n t i = 0 ; i < l e n g t h ; i++) {
4 i f ( v a l u e s [ i ] > 0){
5 sum += i ;
6 }
7 }
8 r e t u r n sum ;
9 }

(a) Scenario

Instruction for the Flipped Role Task

Imagine you are a tutor. A student in the course is asking
for your help. Here is the problem description and the stu-
dent’s buggy C program. You should provide feedback so
that the student can understand the issues in their buggy
program and fix it. Provide your feedback in the textbox
below.

Student-Written Feedback

The program needs to output the sum of all the positive
values. This program is outputting the sum of all of the
indexes of the values. To fix it make sure you add the
values not the index i.

(b) Student acts in a flipped role as a tutor

Figure 2: (a) shows the scenario including the problem description and the buggy code. (b) shows the instruction given to the
student asking them to act in the flipped role as a tutor and give feedback and a genuine example of student-written feedback.

Problem and
Buggy Program

« @q

Student’s Understanding
about Bug(s)

  D
✓ p

Student Writes
Feedback as Tutor

ª Av

Figure 3: Feedback-writing task (Sections 3.1 and 3.2)

thetically generated data has been shown to significantly
improve feedback quality for programming tasks [16]. In
contrast, we use real student-written hints for fine-tuning,
aiming to mimic human-like styles while improving the ac-
curacy and alignment of AI-generated feedback.

3. METHODOLOGY
This section details our methodology for collecting and an-
alyzing learnersourced feedback, as well as generating and
evaluating AI-generated feedback. First, we describe the
flipped-role feedback-writing task used to collect student-
written feedback. Next, we outline the dataset, including
problems, buggy programs, and collected responses. We
then present our approach for feedback generation using dif-
ferent prompting strategies and our fine-tuning techniques.
Finally, we explain the evaluation setup, including the rubric
and expert annotation process used to analyze the attributes
of the learnersourced and AI-generated feedback.

3.1 Feedback-Writing Task
Flipped role task. To leverage learnersourcing, we designed
a feedback-writing task where students take on the role of
tutors, providing feedback on buggy code. Figure 3 illus-
trates the overall process, detailing the key components of
the task. Students receive a problem description, a buggy
implementation, and an instruction asking them to provide
feedback from a tutor’s perspective. This setup encourages
students to analyze errors, articulate their reasoning, and
mimic the peer feedback process in programming education.
Figure 2 presents an example of this task, showing a specific
problem along with the buggy code, the instruction given
to the student, and a genuine example of student-written
feedback. Since students typically have less programming

experience than real tutors, providing meaningful feedback
can be challenging. To support them, we incorporated a
structured pre-feedback activity to help them better under-
stand the bug before writing feedback.

Pre-feedback activity. When presented with the problem and
the buggy code, students first complete an activity where
they are required to provide an input for a failing test case
that would trigger a bug in the program, the buggy output
on this input, and the correct output for this input. Based
on whether they successfully complete this step, we catego-
rize their understanding into two groups: Understanding=1
(successful) and Understanding=0 (unsuccessful). Regard-
less of their performance, all students are then shown a fixed
version of the buggy code to help them better understand
the problem and the bug. Finally, they write feedback on the
buggy program from a tutor’s perspective, aiming to explain
the issue and suggest how to fix it. This structured process
ensures students reflect on errors before providing guidance.

3.2 Student-Written Feedback Data
Set of feedback-writing tasks. To prepare tasks, we started
with 3 programming problems and 10 buggy programs for
each. The problems and buggy programs were pre-selected
by experts to cover different introductory programming con-
cepts and capture diverse types of bugs. For each task, the
student is given a problem and a buggy program and asked
to act in the flipped role of a tutor to write feedback for that
buggy program. In total, we obtained 30 feedback-writing
tasks. Below are the three problem descriptions:

• Problem 1: “Sum Positive Values” – Return the sum of
the positive values in the input array.

• Problem 2: “Print Summary” – Print “Positive”, “Nega-
tive”, or “Equal”, depending on whether there are more
positive or negative numbers in the input array until the
terminating value 0.

• Problem 3: “Print Average Rainfall” – Compute the aver-
age of non-negative integer values in the input array until
the terminating value of −999.
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Figure 4: Data analysis workflow (Sections 3.3 and 3.4)

In terms of difficulty, Problem 1 is generally considered sim-
pler, while Problems 2 and 3 are more challenging.

Course and students. The data collection process used a
setup similar to a prior work [29]. Following this approach,
we conducted our study in an introductory C programming
course at the University of Auckland. There are about 750
students enrolled in the course, who typically have little to
no prior experience in programming. To allow for a large
number of students to work on the feedback-writing tasks,
we developed a web application and deployed it as part
of a laboratory exercise, conducted towards the end of the
course. During this exercise, each student was given three
feedback-writing tasks, one for each problem in a fixed order
(Problem 1 −→ Problem 2 −→ Problem 3).

Data. Over 700 students completed all three tasks. Regard-
ing providing a correct failing test case that identified a bug,
503 (67.9%) students succeeded in Problem 1, 308 (41.6%) in
Problem 2, and 314 (42.4%) in Problem 3. After excluding
empty entries, we collected 1920 feedback instances across
all tasks. The feedback ranged from concise single-word re-
sponses to detailed explanations of up to 295 words. In
general, the feedback consisted of complete well-structured
sentences, as shown in Figure 2b (bottom).

3.3 AI-Generated Feedback Data
Technique for AI-generated feedback. To investigate AI-
generated feedback, we use a technique grounded in liter-
ature, which involves leveraging a problem description and
a buggy code, along with additional symbolic information
(failing test case and a fixed version of the code) to generate
feedback [32, 33, 42].

The fixed version of the code is typically obtained using
a generative model with a separate prompt before asking
the model for feedback.1 Beyond this information, another
important aspect is the instruction given to guide the model
regarding the style of feedback it should generate. Here, we
will investigate two prompting strategies:

• Basic prompt: This prompt uses a basic instruction for
the model to generate feedback without any style guidance
(see Figure 5a).

• Engineered prompt: This prompt adopts instructions from
techniques shown to be effective, developed through ex-
pert engineering in existing work [33, 42] (see Figure 5b).

Generative models. Our analysis involves models from Ope-
nAI’s GPT family, specifically GPT-3.5 Turbo [25, 27] and
1As the focus of this study is to investigate AI-generated
feedback in terms of style and structure, we used the same
fixed code for all models when asking for feedback – this
allows us to compare more directly the impact of prompt
instructions and fine-tuning.

Basic Prompt for Feedback Generation
I am working on a C programming problem. The current
program below is not working well. Can you help by giving
feedback?

Problem description: {problem description}
Failing test cases: {failing test case}
Buggy program: {buggy program}
Fixed program for the buggy program: {fixed program}
Can you help by giving feedback?

(a) Basic prompt

Engineered Prompt for Feedback Generation
I am working on a C programming problem. The current
program below is not working well. Can you help by giving
feedback?

Problem description: {problem description}
Failing test cases: {failing test case}
Buggy program: {buggy program}
Fixed program for the buggy program: {fixed program}

1. Describe the bugs and provide an explanation along
with fixes.

2. Provide a concise hint about one bug in the buggy code.
Do not give out the answer or any code. If there’s an obvious
bug, direct to the location of the bug. If there’s a conceptual
misunderstanding, offer a conceptual refresher. Limit your
response for the hint to a sentence or two at most. Be as
socratic as possible, and be super friendly.

(b) Engineered prompt

Figure 5: Comparison of prompts using two kinds of instruc-
tions (highlighted in yellow) for generating feedback.

GPT-4 Turbo [26, 27], which have previously demonstrated
their efficacy in providing feedback for debugging purposes
[32, 33]. Additionally, we used small open-access models for
fine-tuning, namely Llama3-8B [23] and Phi3-3.8B [1] due to
their growing popularity in educational settings for a lower
cost, convenience, and better data privacy [16, 17].

Fine-tuning setup. To examine the effects of model fine-
tuning on generated feedback, we conducted supervised fine-
tuning on Llama3-8B and Phi3-3.8B with student-written
feedback2. From the total of 1920 collected instances, we
applied a filtering step to keep only those between 5 and 200
words, resulting in 1903 feedback instances. Our fine-tuning
prompt mirrors the basic prompt as shown in Figure 5a but
includes formatting instructions (i.e., asking the model to
include in its answer a start and an end token). We picked
hyperparameters based on existing literature [44].

3.4 Evaluation Setup
Evaluation rubric. Our aim is to first understand student-
written feedback characteristics and then align generative
models with them. To achieve this, we develop a detailed
rubric capturing various attributes of feedback:

• Correct (binary): Indicates whether the feedback pro-
vides correct information that can help with debugging
the code.

2The code used for fine-tuning these models is avail-
able at https://github.com/machine-teaching-group/
edm2025-humanizing-feedback.
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Table 1: Results for a sample of 300 instances of student-written feedback. We first break down the numbers per problem,
then by the student’s ability to provide a test case (i.e., Understanding), and finally we combine the two conditions.

Problem{1/2/3}: Sample
Correct %

Num. Num. Gives Mentions Mentions
Understanding{Any/1/0} Size Words Sentences Fix % Variables % Lines %

Three problems:Understanding=Any 300 77.3 46.1 2.7 46.0 36.3 11.3

Problem 1:Understanding=Any 100 78.0 49.4 2.9 48.0 41.0 14.0
Problem 2:Understanding=Any 100 79.0 47.4 2.8 48.0 31.0 9.0
Problem 3:Understanding=Any 100 75.0 42.3 2.6 42.0 37.0 11.0

Three problems:Understanding=1 172 84.3 49.5 2.9 49.4 40.7 14.5
Three problems:Understanding=0 128 68.0 41.5 2.5 41.4 30.5 7.0

Problem 1:Understanding=1 74 85.1 50.3 2.9 51.4 40.5 14.9
Problem 1:Understanding=0 26 57.7 43.8 2.7 38.5 42.3 11.5
Problem 2:Understanding=1 47 83.0 57.2 3.4 53.2 36.2 10.6
Problem 2:Understanding=0 53 75.5 38.8 2.3 43.4 26.4 7.5
Problem 3:Understanding=1 51 84.3 41.5 2.4 43.1 45.1 17.6
Problem 3:Understanding=0 49 65.3 43.2 2.7 40.8 28.6 4.1

• Num. words (integer): Counts the number of whitespace-
separated words in the feedback.

• Num. sentences (integer): Counts the number of sen-
tences in the feedback, identified by end-of-sentence punc-
tuation or new lines.

• Gives fix (binary): Indicates whether the feedback explic-
itly suggests how to fix the buggy program, either concep-
tually or by specifying changes.

• Mentions variables (binary): Indicates whether the feed-
back mentions specific variables from the buggy code.

• Mentions lines (binary): Indicates whether the feedback
mentions line numbers in the code.

The attributes Num. words and Num. sentences were com-
puted automatically. The remaining attributes were manu-
ally annotated, as discussed below.

Expert annotation for student-written feedback. We asked
two experts to evaluate the feedback in a scheme similar to
prior work [10, 31] according to the rubric described above.
The experts assessed a random sample of 300 student-written
feedback instances, with 100 instances for each of the three
problems. First, each expert independently annotated 10
instances per problem to assess inter-rater reliability. They
achieved a substantial agreement with a Cohen’s kappa of
0.63 [5].3 Afterward, one expert annotated the entire sam-
ple of student feedback.

Expert annotation for AI-generated feedback. As described
in Section 3.2, there is a set of 10 buggy programs for each
of the three problems. We generated the feedback using
all of the models for each of the programs. The same two
experts mentioned above independently annotated each in-
stance based on the described rubric.

4. RESULTS
In this section, we analyze the characteristics of student-
written feedback and evaluate the effectiveness of fine-tuning

3The evaluation rubric can be refined iteratively to improve
the inter-rater agreement. Future work could explore rubric
refinement to further improve reliability and robustness.

generative models to align with it. First, we examine the
correctness, conciseness, and structure of student feedback,
considering factors such as problem complexity and student
understanding of the bug. Then, we compare AI-generated
feedback across different prompting strategies and fine-tuned
models, assessing how well they replicate student feedback
in both style and accuracy.

4.1 Analysis of Student-Written Feedback
To understand the characteristics of student-written feed-
back, we analyze three key aspects: (a) whether students
provide correct feedback and if they prefer concise hints
or detailed explanations, (b) how problem complexity in-
fluences feedback characteristics, and (c) how a student’s
understanding of the bug affects the quality and detail of
their feedback.

Student feedback is mostly correct and concise. First, we ex-
plore the student-written feedback in terms of correctness
and style. As shown by the first row in Table 1, the overall
feedback correctness is high, approaching 80%. This indi-
cates that students are generally capable of providing ac-
curate feedback for programming bugs. We note that this
high rate could be partly affected by the fact that we tried
to increase feedback correctness by showing the students the
fixed program, as described in Section 3. A feedback in-
stance on average comprises only 46 words spanning fewer
than 3 sentences, with slightly fewer than half of them ex-
plicitly mentioning how to fix the buggy code. This sug-
gests that students generally favor short, concise feedback
but some students are flexible and include actionable ideas
for fixing the code. Additionally, we observe that students
prefer using variable names rather than line numbers for
localizing bugs and fixes.

Problem complexity has little effect on feedback style. Next,
we investigate whether the complexity of the problem af-
fects the type of feedback students provide. Despite the
assumption that Problem 1 is simpler and Problems 2 and 3
are more complex, no clear differences emerged between the
three problems in terms of feedback correctness as well as the
percentages of giving fixes and mentioning variables or line
numbers. The only noticeable variation is in the length of

438



Table 2: Results for the AI-generated feedback aggregated over two experts, compared to student-written feedback. We
assessed the models for 10 buggy programs for each of the 3 problems. Rows are grouped by model family.

Feedback Source
Prompting Num. Num. Programs

Correct %
Num. Num. Gives Mentions Mentions

Strategy Problems per Problem Words Sentences Fix % Variables % Lines %

Human students 3 100 77.3 46.1 2.7 46.0 36.3 11.3

GPT-4 Turbo basic 3 10 81.7 411.3 47.7 96.7 100.0 1.7
GPT-4 Turbo engineered 3 10 96.7 35.6 2.4 6.7 23.3 0.0

GPT-3.5 Turbo basic 3 10 63.3 140.2 11.8 80.0 71.7 3.3
GPT-3.5 Turbo engineered 3 10 90.0 20.1 1.4 0.0 15.0 1.7

Llama3-8B basic 3 10 56.7 256.3 32.2 100.0 90.0 3.3
Llama3-8B engineered 3 10 71.7 27.8 3.3 3.3 20.0 0.0

Phi3-3.8B basic 3 10 55.0 210.6 35.1 100.0 58.3 0.0
Phi3-3.8B engineered 3 10 80.0 25.7 1.9 5.0 5.0 0.0

Llama3-8B-fine-tuned basic 3 10 86.7 47.7 2.7 71.7 40.0 1.7
Phi3-3.8B-fine-tuned basic 3 10 88.3 68.0 3.9 98.3 60.0 1.7

the feedback, with the number of words and sentences tend-
ing to gradually decrease. We note that this trend might
be attributed to the fixed order in which the problems were
presented to the students.

Better understanding yields more targeted feedback. Finally,
we analyze whether the students’ performance in under-
standing bugs affects their feedback style. The last eight
rows in Table 1 illustrate the results concerning students’
understanding of the problem and buggy code, as indicated
by their ability to provide a failing test case. Correctness
is higher among students who provided a good test case for
the bug, even though an example of a good test case and
fixed code were provided afterward before they wrote feed-
back. Additionally, these students tend to offer longer and
more detailed explanations, include fixes more frequently,
and provide more targeted feedback by referencing specific
aspects of the buggy code.

4.2 Fine-Tuning for Feedback Generation
We now analyze the impact of prompt engineering and fine-
tuning on AI-generated feedback. First, we examine how
prompting strategies influence the style and correctness of
model-generated feedback. Then, we evaluate whether fine-
tuning models on learnersourced data improves accuracy
and alignment with student-written feedback.

Engineered prompts reduce verbosity. We first investigate
the effects of prompting strategies on generated feedback,
and how well the engineered prompt guides the model’s out-
put toward resembling student feedback. The first nine rows
in Table 2 present a comparison between feedback from stu-
dents and various generative models, differentiating on base
models and prompting strategies. It is evident that all base
models using the basic prompt tend to be verbose and usu-
ally provide fixes. However, the engineered prompt sub-
stantially reduces verbosity and enhances correctness, more
closely aligning the feedback style with that of students. Fig-
ures 1a and 1b show contrastive examples of the verbosity
between the basic and engineered prompts. Because the en-
gineered prompt is based on existing expert-crafted designs,
it explicitly instructs AI models not to provide fixes. While
this enables direct comparison with prior work, it may not
always align with how students naturally write feedback.

Fine-tuning improves alignment and accuracy. Next, we an-
swer whether fine-tuning open-access models with student-
written feedback can potentially replace more complex prompt
engineering approaches for generating feedback. We investi-
gated the effectiveness of fine-tuning Llama3-8B and Phi3-
3.8B. The last two rows in Table 2 indicate that both mod-
els produced short feedback, more closely resembling the
style of students. The feedback generated by Llama3-8B-
fine-tuned is closest to student-written feedback in terms of
length and frequency of mentioning variables. Another ob-
servation is that these AI models tend to use line numbers
less frequently than students, preferring to name variables
instead. Remarkably, the correctness of AI-generated feed-
back improves after fine-tuning, surpassing that of the base
model with the engineered prompt even though some of the
feedback instances used for fine-tuning are incorrect. This
improvement may result from the models becoming more
familiar with the domain and generating shorter output, re-
ducing the chances of errors.

5. CONCLUDING DISCUSSIONS
This study explored how learnersourced data can enhance
AI-generated feedback, aligning it more closely with stu-
dent communication styles. We first characterized student-
written feedback on buggy code, focusing on correctness,
length, inclusion of explicit fixes, and methods of bug iden-
tification. Our findings reveal that students tend to write
concise feedback while remaining flexible in suggesting fixes,
highlighting key patterns that AI-generated feedback should
replicate. Building on these insights, we fine-tuned gener-
ative models on learnersourced data, reducing reliance on
expert prompt engineering. This approach improves the
adaptability of AI-generated feedback, making it more peer-
like and responsive to diverse student needs. Notably, even
when some student feedback was incorrect, fine-tuning still
led to substantial improvements in accuracy, showcasing the
potential of student-centered fine-tuning for scalable and
personalized feedback systems in programming education.

While our findings are promising, several limitations suggest
avenues for future research. First, we did not evaluate the
models’ effectiveness in real classroom settings. Deploying
these models in real classrooms and gathering student reflec-
tions on their utility and relevance would provide insights
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into their practical impact. Second, students in our study
were given a test case and a corrected program to maxi-
mize feedback accuracy. While this ensured high correctness
rates (close to 80%), it may not reflect real-world scenarios
where such guidance is unavailable. Future work could ex-
amine how feedback quality and correctness change when
students must identify bugs without prior guidance, evalu-
ating model robustness in more realistic settings. Third, we
did not explore the potential of fine-tuning models for spe-
cific courses, which could improve feedback relevance and
better support course-specific learning needs. Employing
learnersourced data in this context also introduces ethical
considerations, such as ensuring data protection, respecting
intellectual property rights, and transparently communicat-
ing how content created by students is utilized. Although
our analysis did not reveal that models inherited miscon-
ceptions from student-written feedback, future applications
should explicitly monitor and mitigate this risk. Addressing
these ethical and methodological aspects thoughtfully can
strengthen the reliability and effectiveness of fine-tuned gen-
erative models. Ultimately, combining crowdsourcing with
fine-tuning remains a promising and scalable approach to de-
livering personalized, high-quality feedback, especially valu-
able in low-resource educational settings.
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