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ABSTRACT
Curricular design in higher education significantly impacts
student success and institutional performance. However,
academic programs’ complexity—shaped by pass rates, pre-
requisite dependencies, and course repeat policies—creates
challenges for administrators. This paper presents a method
for modeling curricular pathways including development of
a Curricular Analytics App, a scalable platform that mod-
els curricula as directed acyclic graphs (DAGs) to detect
structural inefficiencies and bottlenecks. This method inte-
grates Critical Path Analysis to highlight bottleneck courses
delaying student progression, enhanced Monte Carlo simu-
lations to capture real-world variability in course pass rates
and retakes, and introduces Passability Complexity, a novel
metric incorporating probabilistic pass rates into structural
complexity. These features provide deeper insights into cur-
riculum difficulty and graduation timelines. As a proof of
concept that allows for applied analysis, the Curricular Ana-
lytics App has an interactive interface which users can mod-
ify courses and prerequisites in real time, enabling data-
driven curriculum optimization. The app’s efficient graph-
based algorithms ensure scalability for large academic pro-
grams. By linking curriculum structure to student out-
comes, it supports institutions in improving graduation rates
and streamlining degree pathways through evidence-based
decision-making.

Keywords
Student success, graduation rate, critical path, Monte Carlo
simulation, curricular complexity

1. INTRODUCTION
Higher education institutions face persistent challenges in
designing curricula that balance academic rigor with timely
degree completion. Complex prerequisite structures, bottle-
neck courses with low pass rates, and uneven course offer-
ings often impede student progression and graduation rates

[7, 16]. Traditional curriculum reviews rely on qualitative
assessments, which are subjective and fail to account for dy-
namic factors such as pass rates and course repeat policies.
In contrast, data-driven approaches provide quantitative in-
sights, enabling institutions to model curriculum structures
and optimize student success [6, 2]. Curricular modeling
as described in this paper has the added benefit of under-
standing the potential impacts of curricular changes without
waiting several years for students to progress through the
curriculum. This paper introduces the Curricular Analyt-
ics App, a web-based platform that integrates graph theory,
simulation techniques, and optimization algorithms to ana-
lyze academic curricula. By modeling curricula as directed
acyclic graphs (DAGs), where nodes represent courses and
edges denote prerequisites, the app identifies structural inef-
ficiencies and supports data-driven interventions. Users can
interactively refine curricula by modifying course dependen-
cies, offering a flexible tool for institutional planning. A key
feature of the app is its Critical Path Analysis, which de-
termines the longest dependency chains in a curriculum to
identify bottleneck courses that delay student progression.
Additionally, the app incorporates two complexity metrics:
Structural Complexity, which quantifies curriculum difficulty
based on prerequisite dependencies [14, 13, 8, 15, 12, 10],
and Passability Complexity, introduced in this work, which
extends Structural Complexity by incorporating course pass
rates to reflect real-world student challenges. The app also
employs Monte Carlo simulations to model student progres-
sion under varying conditions, estimating graduation rates
and assessing policy changes, such as adjustments to pass
rates or prerequisite structures [17]. These simulations pro-
vide critical insights into the cascading effects of curricu-
lum modifications, helping institutions identify high-impact
courses and refine degree pathways. By integrating criti-
cal path analysis, structural complexity assessment, proba-
bilistic modeling, and interactive curriculum design, the app
bridges the gap between curriculum structure and student
outcomes. The remainder of this paper is organized as fol-
lows: Section 2 reviews related work in curricular analytics.
Section 3 outlines the app’s main contributions, including
Passability Complexity and interactive curriculum modifi-
cation. Section 4 describes the methodology, including algo-
rithms and time complexity analysis. Section 5 provides a
walkthrough demonstrating the app’s capabilities. Finally,
Section 6 discusses conclusions and future directions.
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Figure 1: Curriculum graph visualization. Nodes represent
courses, and edges denote prerequisite relationships.

2. BACKGROUND
Curricular analytics plays a crucial role in optimizing aca-
demic pathways and improving student success [12, 10, 11,
9]. A fundamental approach in this field involves mod-
eling curricula as directed acyclic graphs (DAGs), where
nodes represent courses and edges denote prerequisite re-
lationships. This structural representation enables the iden-
tification of bottleneck courses and critical pathways that
impact student progression and time-to-degree. Slim et al.
[14, 13] introduced key structural metrics such as the block-
ing factor, which quantifies a course’s influence on down-
stream dependencies, and the delay factor, which measures
the impact of prerequisite chains on graduation timelines.
These metrics have been instrumental in curriculum redesign
to enhance flexibility and reduce barriers. Figure 1 illus-
trates a curriculum graph, highlighting course dependencies.
While traditional structural analyses provide valuable in-
sights, they often assume static curriculum structures, lim-
iting their adaptability in evolving academic programs. Re-
cent advancements [8, 12, 10] integrate data-driven tech-
niques to offer more dynamic solutions. Probabilistic mod-
els address variations in student progression by incorpo-
rating pass rates, course repeat behaviors, and enrollment
constraints. Markov chain models have been particularly
effective in identifying high-risk courses and critical aca-
demic transitions [15, 3, 1]. Monte Carlo simulations extend
these approaches by generating thousands of potential stu-
dent trajectories, providing detailed insights into graduation
rates, time-to-degree, and the impact of academic policies
[5]. Structural complexity metrics remain essential for quan-
tifying curriculum difficulty. The blocking factor identifies
courses that strongly influence student progression, while
the delay factor highlights the impact of prerequisite chains
on graduation timelines [14, 13, 4]. However, existing meth-
ods primarily focus on static analyses, overlooking the role
of fluctuating pass rates and student retake behaviors. In-
tegrating these dynamic elements into real-time curriculum
analysis presents a promising avenue for future research, en-
abling institutions to implement more adaptive, data-driven
interventions. Figure 2 illustrates Critical Path Analysis,
which identifies the sequence of courses imposing the most
significant constraints on student progression. This analy-
sis demonstrates how graph theory and probabilistic models
can work together to address curriculum bottlenecks.

3. MAIN CONTRIBUTIONS

Figure 2: Critical path analysis. The graph highlights the
critical path in red.

This paper presents the Curricular Analytics App, a web-
based platform designed to enhance curriculum evaluation
and optimization through data-driven analysis, efficient al-
gorithms, and an interactive interface. The app is used as
a proof of concept to demonstrate possibilities for applied
research using the concepts developed in this paper. The
primary contributions of this work include:

• Enhanced Monte
Carlo Simulation: Unlike traditional deterministic mod-
els, the app employs a dynamic Monte Carlo simula-
tion framework that integrates real-world pass rates,
course repeat thresholds, and enrollment constraints.
This enables scenario analysis to estimate graduation
rate distributions and assess the impact of curriculum
modifications on time-to-degree.
• Optimized Critical Path Analysis: The app efficiently

identifies bottleneck courses and prerequisite chains
that delay graduation. Using topological sorting, the
algorithm achieves a time complexity of O(|V |+ |E|),
enabling real-time curriculum analysis for large aca-
demic programs.
• Interactive Curriculum Exploration and Editing: The

app provides a user-friendly interface that allows ad-
ministrators and faculty to modify curriculum struc-
tures dynamically. Features include:

– Graph-based visualization of course dependencies.
– Dynamic highlighting of critical paths and bottle-

neck courses.
– Course-specific complexity metrics, displayed in

extendable tables.
– Interactive controls for adjusting simulation pa-

rameters and analyzing graduation outcomes.
– Direct modification of course structures and pre-

requisite relationships.

By integrating these analytical methods with interactive vi-
sualization, the Curricular Analytics App provides institu-
tions with a scalable, data-driven tool to enhance student
success, reduce time-to-degree, and optimize resource allo-
cation. Figure 3 illustrates the interactive course editing
interface, where users can modify curriculum structures and
observe real-time impacts. These contributions align with
broader educational goals of optimizing academic pathways
and supporting evidence-based policy interventions.
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Figure 3: Interactive editing of course details. Changes are
dynamically reflected in the analysis.

4. METHODOLOGY
This section describes the methodologies and algorithms un-
derpinning the Curricular Analytics App. The methodolo-
gies employ graph theory and probabilistic modeling to an-
alyze curricula, predict graduation rates, and compute com-
plexity metrics. By leveraging computationally efficient al-
gorithms and data-driven modeling, the app provides in-
sights into student progression bottlenecks and supports cur-
riculum design improvements. Each component is designed
with scalability in mind, ensuring that the system can han-
dle large-scale academic programs effectively while enabling
real-time decision-making.

4.1 Graph-Based Representation of Curricula
Our analytical framework models curricula as directed acyclic
graphs (DAGs), where nodes represent courses and directed
edges denote prerequisite relationships. The curriculum graph
is defined as G = (V,E), with V as the set of courses
and E as the set of prerequisite dependencies. Additional
attributes, such as PassRate(v) (probability of successful
completion) and RetakeThreshold(v) (maximum retakes al-
lowed), further refine the model. The acyclic nature of the
graph ensures the absence of circular dependencies, allow-
ing for efficient topological sorting to determine valid course
sequences. This representation scales effectively to large
curricula while enabling key analyses such as critical path
computation, bottleneck identification, and complexity mea-
surement. Essential graph operations include topological
sorting (O(|V |+ |E|)) to order courses sequentially, reacha-
bility analysis to determine downstream dependencies, and
longest path analysis to identify delays in student progres-
sion. These operations underpin the app’s core functionali-
ties, providing actionable insights for optimizing curriculum
design and improving student success.

4.2 Critical Path Analysis
The critical path is a fundamental concept in curriculum
analysis, representing the sequence of courses that imposes
the longest cumulative delay on student progression. Identi-
fying this path is crucial for recognizing bottleneck courses—those
that disproportionately contribute to delays due to prereq-
uisite dependencies and low pass rates. Addressing these
bottlenecks enables institutions to improve graduation time-
lines and reduce student attrition rates. The critical path in
a curriculum graph is defined as the longest path, in terms
of cumulative delay, from a starting course (with no prereq-

uisites) to an ending course (a terminal course in the cur-
riculum). Each course contributes to this delay based on its
prerequisite relationships, which enforce sequential depen-
dencies, and its pass rate, which probabilistically determines
the likelihood of successful completion in a given semester.
The critical path highlights courses that most influence the
time required to complete the curriculum, often acting as
major bottlenecks. The delay of each course v is computed
as:

Delay(v) = max
u∈Prereqs(v)

(Delay(u)) +
1

PassRate(v)
.

This formula captures both structural dependencies and the
impact of course difficulty on student progression. The first
term, maxu∈Prereqs(v)(Delay(u)), ensures that the delay ac-
cumulates sequentially from prerequisites, meaning a course
cannot begin until all its prerequisite courses are completed.
The second term, 1

PassRate(v)
, models the expected time re-

quired to pass the course, accounting for student success
rates. The intuition behind this term is as follows:

• If a course has a pass rate of 1.0 (100% success on the
first attempt), then 1

1.0
= 1, meaning the student is

expected to complete the course in one term.
• If the pass rate is 0.5, meaning students succeed on

average every two attempts, then 1
0.5

= 2, indicating
that the expected delay is two terms.
• Lower pass rates further increase the expected delay,

emphasizing courses where students frequently need
multiple attempts to pass.

By incorporating pass rates directly into the delay computa-
tion, this approach provides a realistic estimation of course
completion times rather than assuming deterministic pro-
gression. This formulation allows institutions to identify
courses where improving pass rates would have the most sig-
nificant impact on reducing time-to-degree. To compute the
critical path efficiently, a dynamic programming approach
is employed, where delays are calculated for each course
in topological order, ensuring valid prerequisite sequences.
This approach is significantly more computationally efficient
than brute-force methods, which would require evaluating
all possible paths in the graph. The algorithm follows the
steps in Algorithm 1.

Algorithm 1 Critical Path Analysis

Input: G = (V,E), PassRate(v), RetakeThreshold(v), ∀v ∈
V .
Output: Critical path with maximum cumulative delay.

1: Perform a topological sort of G to process courses in a
valid sequence.

2: Initialize Delay(v) = 0 for all v ∈ V .
3: for each course v in topological order do
4: Compute:

Delay(v) = max
u∈Prereqs(v)

(Delay(u)) +
1

PassRate(v)
.

5: end for
6: Identify the course with the maximum delay as the end-

point of the critical path.
7: Trace back through prerequisites to construct the critical

path.
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4.3 Monte Carlo Simulation for Graduation
Rate Estimation

Traditional curriculum analysis methods often rely on de-
terministic models that assume fixed student success rates
and course completion timelines. However, real-world stu-
dent progression is inherently probabilistic, influenced by
dynamic pass rates, course repeat behaviors, and course
availability constraints. To address these complexities, we
employ Monte Carlo simulation, a probabilistic approach
that models graduation outcomes under varying conditions.
By incorporating stochastic variations in student performance,
this method enables institutions to assess curriculum feasi-
bility, identify high-risk courses, and evaluate policy inter-
ventions such as adjustments to pass rates or course repeat
thresholds. The simulation framework is built on the cur-
riculum graph representation, where each course v ∈ V has
a pass rate PassRate(v, t) that evolves based on the number
of attempts. Specifically, the pass rate follows:

PassRate(v, t) = min(p+ (t− 1)∆p, 1),

where p represents the initial pass probability, ∆p is the
improvement per additional attempt, and t denotes the at-
tempt count. This formulation reflects the intuitive idea
that a student’s probability of passing a course generally in-
creases with each attempt due to accumulated learning and
experience. The use of the min function ensures that the
probability remains bounded at 1, preventing artificially in-
flated pass rates that exceed certainty. For instance: - If a
student’s initial pass rate is 0.6 and the improvement per
attempt is 0.1, then on the second attempt, the pass rate
becomes 0.7, on the third attempt 0.8, and so on. - If the
formula were not bounded by min, the probability could ex-
ceed 1, which is unrealistic as no student can have a greater
than 100% chance of success. Additionally, each course has
a predefined retake threshold, RetakeThreshold(v), specify-
ing the maximum number of attempts a student can make
before being considered unsuccessful in that course. This
constraint models institutional policies that limit course re-
peats, ensuring that students do not indefinitely attempt
the same course. The simulation runs over T semesters for
a cohort of N students, where each student selects eligi-
ble courses based on prerequisite completion and enrollment
constraints:

MinCourses(t) ≤ |Cattempted| ≤ MaxCourses(t).

At each step, students attempt courses, pass or fail proba-
bilistically, and update their course states accordingly. The
graduation rate for each term t is computed as:

GradRate(t) =
Number of Students Graduating by Term t

N
.

Algorithm 2 implements this simulation process.

This simulation provides a flexible and scalable method for
estimating student outcomes under various academic poli-
cies. By modeling the effects of prerequisite structures, pass
rates, and course repeat limits, institutions can test curricu-
lum modifications and assess their impact on student suc-
cess. The integration of dynamic pass rates ensures a more
realistic representation of student progression, while Monte
Carlo sampling accounts for uncertainty in academic out-
comes. These insights help educators design interventions
that maximize graduation rates and reduce time-to-degree

Algorithm 2 Monte Carlo Simulation for Graduation Rates

Input: G = (V,E), PassRate(v, t), RetakeThreshold(v),
MinCourses(t),MaxCourses(t), N : number of students, T :
maximum number of terms.
Output: GradRate(t): Graduation rate by term t.

1: for each student s ∈ {1, 2, . . . , N} do
2: Initialize all courses as ”Not Attempted.”
3: Initialize attempt counts for all courses as 0.
4: end for
5: for each term t ∈ {1, 2, . . . , T} do
6: for each student s do
7: Identify eligible courses Celigible where

prerequisites are completed and attempts
< RetakeThreshold(v).

8: Select courses to attempt, ensuring:

MinCourses(t) ≤ |Cattempted| ≤ MaxCourses(t).

9: Simulate outcomes for Cattempted based on dy-
namic pass rates:

PassRate(v, t) = min(p+ (t− 1)∆p, 1).

• Pass: Mark course as ”Completed.”

• Fail: Increment attempt count. If attempts ex-
ceed RetakeThreshold(v), mark as ”No Further At-
tempts.”

10: Update course states.
11: end for
12: end for
13: Compute:

GradRate(t) =
Number of Graduates by Term t

N
.

with immediate data-informed feedback that demonstrates
predicted impact of any given combination of policy, cur-
riculum, or course pass rate change.

Key Advantages: Unlike deterministic models with fixed
pass rates and rigid semester structures, Monte Carlo simu-
lation accounts for student variability, allowing institutions
to model diverse graduation scenarios and assess interven-
tions. These include increasing pass rates through instruc-
tional improvements, adjusting retake thresholds to reduce
delays, and restructuring prerequisites to enhance course
availability. By integrating Monte Carlo simulation into the
Curricular Analytics App, institutions gain a flexible, data-
driven approach to optimizing curriculum structures, im-
proving retention, and enhancing graduation outcome with-
out waiting for students to move all of the way through the
program to understand the predicted results of changes and
interventions.

4.4 Structural and Passability Complexity
The complexity of a curriculum is determined by its struc-
tural dependencies, prerequisite relationships, and the prob-
abilistic nature of course completion. Two key metrics quan-
tify this complexity: Structural Complexity and Passability
Complexity. Structural Complexity is purely topological,
capturing the intrinsic difficulty of the curriculum struc-
ture by considering the Blocking Factor, which quantifies
the number of downstream courses dependent on a given
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Figure 4: Graduation rate simulation. The bar chart visual-
izes the percentage of students graduating each semester.

course, and the Delay Factor, which measures the cumula-
tive delay introduced by a course based on its position within
the curriculum graph [14]. The Blocking Factor of a course
v is defined as: BlockingFactor(v) = |Descendants(v)|, rep-
resenting the number of courses that are reachable from v.
The Delay Factor of a course v is computed as:

DelayFactor(v) =

LongestPathTo(v) + LongestPathFrom(v)− 1,

where LongestPathTo(v) represents the longest path ending
at v, and LongestPathFrom(v) represents the longest path
starting from v. The total Structural Complexity of a cur-
riculum is given by:

Structural Complexity =
∑

v∈V

(
BlockingFactor(v) + DelayFactor(v)

)
.

While Structural Complexity identifies bottleneck courses
based on dependencies, it does not account for the likelihood
of students successfully completing those courses. Passabil-
ity Complexity extends this measure by incorporating pass
rates, weighting each course’s impact according to its prob-
ability of successful completion. This adjustment highlights
courses that pose both structural and probabilistic chal-
lenges. The formula for Passability Complexity is:

Passability Complexity =
∑

v∈V

(BlockingFactor(v) + DelayFactor(v)) · 1

PassRate(v)
.

Courses with lower pass rates contribute more significantly
to Passability Complexity, emphasizing their potential to de-
lay student progression. The algorithm for computing both
complexity metrics is outlined in Algorithm 3:

Consider a simple curriculum with three courses: A (no pre-
requisites, PassRate(A) = 0.9), B (requiresA, PassRate(B) =
0.7), and C (requires B, PassRate(C) = 0.6). Their Block-
ing Factor and Delay Factor values are:

Algorithm 3 Structural and Passability Complexity Compu-
tation
Input: G = (V,E), PassRate(v), ∀v ∈ V .
Output: Structural and Passability Complexity.

1: Compute BlockingFactor(v) = |Descendants(v)|, ∀v ∈ V .
2: Compute DelayFactor(v) = LongestPathTo(v) +

LongestPathFrom(v)− 1.
3: Compute Structural Complexity:

∑
v∈V (BlockingFactor(v)+

DelayFactor(v)).
4: Compute Passability Complexity:∑

v∈V (BlockingFactor(v) + DelayFactor(v)) · 1
PassRate(v)

.

• BlockingFactor(A) = 2, DelayFactor(A) = 3
• BlockingFactor(B) = 1, DelayFactor(B) = 2
• BlockingFactor(C) = 0, DelayFactor(C) = 1

The Structural Complexity is 9, while Passability Complex-
ity, incorporating pass rates, is computed as: 5 × 0.9 +
3 × 0.7 + 1 × 0.6 = 11.52. This example highlights how
Passability Complexity identifies high-risk bottlenecks that
Structural Complexity alone may not capture. The com-
bined use of these metrics enables institutions to pinpoint
courses that disproportionately impact student success, as-
sess curriculum modifications, and prioritize interventions
for optimizing academic pathways.

4.5 Time Complexity Analysis
The computational efficiency of the Curricular Analytics
App ensures scalability for large curricula. The Critical
Path Analysis algorithm operates in linear time, first per-
forming a topological sort in O(|V |+ |E|), followed by delay
computation for each course in O(|V | + |E|), maintaining
an overall complexity of O(|V | + |E|). Monte Carlo sim-
ulation, modeling N students over T semesters, involves
course selection in O(|V |), outcome simulation in O(|V |),
and state updates per term. This results in a total complex-
ity of O(N ·T · |V |), which, while computationally intensive,
benefits from parallelization for improved efficiency. The
computation of Structural and Passability Complexity in-
volves depth-first search for Blocking Factor in O(|V |+ |E|),
longest-path traversal for Delay Factor in O(|V |+ |E|), and
pass rate adjustments in O(|V |), ensuring the overall com-
plexity remains O(|V | + |E|). Interactive visualization, in-
cluding graph layout updates and critical path highlighting,
operates in O(|V |+ |E|), ensuring real-time responsiveness.
Performance is further optimized through caching, paral-
lel processing, and dynamic adjustments to prevent redun-
dant computations. By leveraging these techniques, the app
achieves timely, scalable, high-performance curriculum anal-
ysis, making it practical for institutional use.

5. EXAMPLE WALKTHROUGH
This section demonstrates how the Curricular Analytics App
enables users to analyze curricula, identify bottlenecks, and
evaluate student progression through an interactive work-
flow. The app supports curriculum upload, critical path
analysis, graduation rate simulation, and complexity assess-
ment, offering a streamlined approach to data-driven decision-
making. Users begin by uploading a curriculum file in the
prescribed Excel format, which includes course names, pre-
requisite relationships, and pass rates. The Upload Curricu-
lum File section allows users to import data, which is then
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Figure 5: Curricular complexity analysis. The app displays
structural and passability complexity, helping users pinpoint
high-impact courses.

parsed and visualized as a directed acyclic graph (DAG),
where nodes represent courses and edges indicate prerequi-
site dependencies. This visualization provides an intuitive
overview of curriculum structure and highlights key depen-
dencies. The curriculum graph (Figure 1) allows users to
explore course relationships interactively. Nodes are color-
coded based on attributes such as pass rates and critical
path inclusion, while clicking on a node reveals detailed pre-
requisite and retake threshold information. Users can then
navigate to the Critical Path tab, where the app highlights
the longest sequence of courses that contribute to delays in
student progression (Figure 2). A corresponding table (Fig-
ure 6) quantifies each course’s delay impact, helping admin-
istrators assess modifications such as prerequisite reductions
or additional course offerings. The Graduation Rate tab al-
lows users to run Monte Carlo simulations, estimating the
likelihood of students graduating within a given timeframe

Figure 6: Critical path analysis. The table shows delay con-
tributions for each course, highlighting key bottlenecks.

Figure 7: Graduation rate simulation. A table summarizes
term-wise results, aiding institutional policy evaluation.

under varying conditions. Users configure parameters such
as cohort size, course load limits, and pass rate adjustments.
The app generates a graduation rate distribution plot (Fig-
ure 4) and a summary table (Figure 7), offering insights into
expected graduation timelines and the impact of curriculum
modifications. The Curricular Complexity tab provides an
assessment of curriculum difficulty through Structural Com-
plexity, which quantifies dependencies, and Passability Com-
plexity, which incorporates pass rates. Users can analyze
these metrics in a sortable table (Figure 5), dynamically
observing how curriculum modifications affect complexity.
This feature is particularly useful for balancing rigor and
accessibility in curriculum design. This walkthrough high-
lights the app’s capabilities in visualizing curriculum struc-
tures, analyzing graduation rates, and assessing complex-
ity. The integration of interactive tools enables educators
and administrators to make data-driven decisions, optimiz-
ing academic pathways and improving student success.

6. CONCLUSION
The Curricular Analytics App offers a data-driven approach
to curriculum analysis, integrating graph-based modeling
and probabilistic simulations to address key challenges in
higher education. By representing curricula as directed acyclic
graphs and incorporating Monte Carlo simulations, the app
provides insights into structural inefficiencies, student pro-
gression, and graduation rates. Critical Path Analysis high-
lights bottleneck courses, while the Passability Complexity
metric extends traditional structural measures by factoring
in course pass rates, identifying hidden obstacles to timely
graduation. The app’s scalable algorithms and real-time
editing capabilities enable institutions to dynamically as-
sess curricular modifications, optimize resource allocation,
and implement targeted interventions. Future areas or re-
search include machine learning-based pass rate predictions,
personalized course scheduling, and integration with learn-
ing management systems for real-time analytics. By equip-
ping educators and administrators with actionable insights,
the app supports evidence-based curriculum design, foster-
ing more efficient and equitable academic pathways.
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