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ABSTRACT 
Online learning has enhanced accessibility in education, but also 
poses significant challenges in maintaining academic integrity dur-
ing online exams, particularly when students are prohibited from 
accessing unauthorized resources through the Internet. Nonethe-
less, students must remain connected to the Internet in order to take 
the online exam. This paper presents a machine-learning-based as-
sistant designed to assist instructors in detecting the use of 
unauthorized resources that may involve cheating during online 
programming exams. The system employs a convolutional neural 
network, followed by a recurrent neural network and a dense layer, 
to analyze sequences of screenshot frames from students’ screens. 
The model achieved 95.18% accuracy and an F2-score of 94.2%, 
with a focus on recall to prioritize the detection of cheating while 
minimizing false positives. Notably, data augmentation and class-
weight adjustments significantly enhanced the model’s perfor-
mance, whereas transfer learning and alternative loss functions did 
not yield additional improvements. Although human oversight is 
still necessary to verify and act upon flagged activities, the system 
demonstrates the potential of machine learning to support real-time 
monitoring in large-scale online exams. 

Keywords 
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1. INTRODUCTION 
The rapid growth of online learning has transformed traditional ed-
ucational models, offering a more flexible and inclusive approach 
to education [1]. Distance education powered by digital tools pro-
vides significant advantages, such as removing geographic barriers, 
allowing students to participate in courses globally, and granting 
learners from diverse backgrounds access to high-quality education 
without needing to be physically present on a campus. 

Synchronous online lecturing typically relies on web conferencing 
platforms like Microsoft Teams, Zoom, Google Meet, or BigBlue-
Button, which enable real-time communication, screen sharing, and 
interactive discussions [2]. However, delivering effective distance 
laboratory sessions (particularly synchronous programming labs) 
can be challenging, as strong lecturer-student interaction is neces-
sary [3]. In these settings, instructors need to monitor code written 
by students in real time, addressing mistakes and deviations 
promptly, much like in traditional face-to-face labs. 

To address these challenges, the authors developed an infrastruc-
ture for delivering remote synchronous programming labs over the 
Internet in response to the COVID-19 pandemic [3]. The system 
allows students to attend online classes from their own computers 
while the instructor monitors students’ activities. This setup pro-
vides instant feedback, improving student engagement and 
satisfaction, and has been successfully applied to various distance 
flipped learning environments [4]. 

Our infrastructure replicates the face-to-face programming lab ex-
perience in a synchronous online format. It includes a computer 
monitoring system, a virtual private network (VPN) for remote ac-
cess, and scripts to simplify setup and system management for 
students. The system integrates a web conferencing platform, along 
with additional scripts to support instructors in managing program-
ming labs. Our remote synchronous infrastructure has already been 
published in [3]. 

A significant challenge in distance learning is maintaining aca-
demic integrity during online exams [5]. In some cases, students 
are prohibited from connecting to the Internet during exams to pre-
vent access to unauthorized resources or cheating tools. However, 
this creates a paradox, as students need to be online to take exams 
but should be restricted from accessing certain materials. Various 
online proctoring systems have been developed to monitor student 
behavior in order to detect exam integrity violations [6]. More ad-
vanced systems use machine learning (ML) algorithms to analyze 
student behavior patterns and flag potential instances of cheating 
for review by human proctors [7]. However, these systems typically 
rely on real-time video surveillance and do not analyze the stu-
dents’ activities within their computers. 

In addition to webcam activation and real-time supervision, our in-
frastructure supports continuous monitoring of students’ work 
throughout online exams. However, for large courses with enroll-
ments up to of 150 students, it becomes increasingly difficult for 
instructors to detect fraudulent activities during exams. 

To tackle this challenge, we developed a machine learning-based 
system to assist instructors in identifying potential cheating in-
stances during synchronous online programming exams. This ML 
assistant analyzes screenshot frames from students’ screens, cap-
tured by our infrastructure, and alerts the instructor to potentially 
fraudulent activity. If suspicious behavior is detected, the instructor 
is shown the screenshot sequence (Figure 1). They can either dis-
miss the alert if it is a false positive or take action, such as sending 
a popup message to the student via the remote infrastructure. 

The primary contribution of this work is the development and im-
plementation of the mentioned ML-based assistant for potential 
cheating detection that helps instructors monitor large-scale online 
exams, safeguarding academic integrity and reducing the risk of 
cheating. The system requires only a computer with an Internet con-
nection, though it can be integrated with other proctoring systems 
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that use additional hardware to monitor students’ actions and envi-
ronments during exams. 

2. RELATED WORK 
Migut et al. conducted preliminary experiments where screen vid-
eos of four exams were recorded from two students, with volunteers 
intentionally introducing unauthorized actions according to a pro-
tocol [8]. Their system detects changes in screen content, such as 
application switches, by comparing visual similarity between suc-
cessive frames. This approach reduces the need for full video 
review. Then, the next steps will involve annotating fraudulent 
frames and training machine learning (ML) algorithms to further 
reduce suspicious frames. However, the system remains a proposal 
without implementation or results [8]. 

Smirani and Boulahia proposed a system based on a convolutional 
neural network (CNN) that, similar to our work, does not require a 
webcam [9]. The system uses personal and geographical infor-
mation along with screenshots from the Blackboard Learning 
Management System (LMS) to detect cheating, achieving 98% ac-
curacy. However, their system only detects Internet browsing, with 
no real-time intervention. Consequently, it is unable to detect the 
use of instant messaging applications such as Discord or 
WhatsApp, which students may use to communicate during assess-
ments. Additionally, the system does not support direct 
communication with students regarding potential violations. Fi-
nally, students are restricted to completing tests exclusively within 
the LMS environment. 

Many online proctoring systems monitor student actions and envi-
ronments during exams to detect fraud [6]. Unlike our system, these 
approaches use technologies such as identity authentication, 
webcam monitoring, and keystroke recognition to track behavior 
and detect suspicious activity. One common approach is camera 
monitoring. Luan et al. [10] proposed a system that uses two cam-
eras—one to capture the student’s face and another to record their 
body and surroundings. By using a trained pose recognition model, 
the system can efficiently classify student actions as suspicious or 
not. ProctorExam enhances spatial controls with 360-degree 

monitoring, including webcam, screen-sharing, and smartphone 
cameras to observe everything around the student [11]. Atoum et 
al. use a combination of one webcam, one wearable camera, and a 
microphone to monitor both the visual and acoustic environment of 
the test location [5]. 

Machine learning techniques have been applied to detect cheating. 
Gopane et al. trained a deep learning model to detect patterns in 
students’ head and eye movements, achieving an F1-score of 0.94 
[7]. Their system combines a FaceNet-based face authentication 
module with Lucas-Kanade optical flow tracking and Active Ap-
pearance Models (AAM) for gaze estimation. This hybrid 
architecture enables the system to capture micro-expressions, eye 
blinks, gaze direction, and abnormal head movements during 
webcam-based online assessments. The inclusion of motion detec-
tion ensures robustness against static image spoofing, and the final 
output is a proctoring report generated automatically, documenting 
infractions based on predefined behavioral indicators. This ap-
proach highlights the efficacy of AI-driven, real-time proctoring 
systems for maintaining academic integrity during remote exams. 

Examus collects behavioral data from online lectures to improve 
proctoring during exams [12]. The platform integrates with learn-
ing management systems and uses AI-driven analysis of webcam 
feeds, screen activity, and user behavior to detect potential aca-
demic dishonesty. By continuously monitoring facial expressions, 
gaze direction, and environmental cues, Examus provides real-time 
alerts and detailed post-exam analytics to instructors. 

ProctorNet uses a pre-trained Inception CNN model to detect sus-
picious behaviors based on eye gaze and mouth movements [13]. 
Building upon this, the system integrates Inception-ResNet v1 
blocks to enhance face recognition accuracy and utilizes Attentive 
Net for aligned face detection in video frames. These modules op-
erate in tandem on all recognized faces, providing continuous 
monitoring for actions such as looking away from the screen or en-
gaging in conversation. Alerts are generated whenever the system 
detects behavior that deviates from expected norms. 

 
Figure 1. Machine learning assistant showing alerts of potentially cheating actions. 
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Some proctoring systems also incorporate student authentication 
methods. For example, ProctorU requires students to present ID 
cards to the webcam for authentication and maintain an uninter-
rupted audio-visual connection with the proctor throughout the 
exam [14]. Joshy et al. implemented a three-factor authentication 
scheme based on face recognition, one-time password verification, 
and fingerprint authentication [15]. 

TeSLA focuses on biometric verification for online tests, including 
facial and voice recognition, as well as keystroke and fingerprint 
analysis, to prevent impersonation and ensure the test-taker is the 
one providing the answers [16]. Other biometric technologies, such 
as fingerprint scanning, iris, retina and hand scanning, and facial 
recognition, are also used in online proctoring systems [17]. These 
approaches differ significantly from ours, as our system requires 
only a computer with an Internet connection and the straightfor-
ward installation of our infrastructure to support remote 
synchronous programming labs. 

3. ARCHITECTURE OF THE ASSISTANT 
Figure 2 illustrates the architecture of the assistant designed to de-
tect potentially fraudulent activities during online exams. Multiple 
students may participate in an exam, connected to our remote syn-
chronous infrastructure via the Internet. The infrastructure captures 
one 50x50-pixel screenshot per second of each student’s activity, 
storing a sequence of three consecutive frames as input for the ma-
chine learning assistant. The assistant analyzes these input 
sequences (rather than individual screenshots) to detect potentially 
fraudulent behavior, generating an alert (Figure 1) only when sus-
picious activity is first detected after a previously correct 
screenshot. This approach helps minimize unnecessary alerts, mak-
ing it easier for the instructor to monitor the students effectively. 

Once a sample of three consecutive frames is collected for a given 
student, the assistant passes the sample to the ML model, which has 
been trained to identify potentially fraudulent activities (as de-
scribed in Section 4). This model is deployed as a web API 
implemented in Flask, with the model loaded into memory at 
startup to optimize inference performance. The model functions as 
a binary classifier, returning “1” if fraudulent activity is detected 
and “0” otherwise. 

If potentially fraudulent activity is detected, the assistant triggers 
an alert, as shown in Figure 1, accompanied by a beep sound. The 
instructor should then revise the screenshots that triggered the alert 
and decide on the appropriate action. In the case of a false positive, 
the alert can be dismissed. Otherwise, the student is warned through 
a popup message sent by the instructor via the remote synchronous 
infrastructure or through an oral warning. In cases of repeated 
fraudulent behavior, further actions may be taken, such as suspend-
ing the student’s ability to continue the exam or escalating the issue 
to academic authorities for further investigation. Additionally, the 
suspicious activity frames recorded by the infrastructure are saved 
in their original image size, providing a detailed record for both the 
student and the institution to reference, if necessary. 

4. METHODOLOGY 
4.1 Context 
The system was utilized for online exams in the "Programming 
Technology and Paradigms" course of the Software Engineering 
degree at the University of Oviedo, Spain [18]. In this course, stu-
dents learn object-oriented and functional programming paradigms, 
concurrent and parallel programming, and basic meta-program-
ming concepts in dynamic languages [19]. The course consists of 

58 class hours (30 hours for programming labs and 28 hours for 
lectures) during the second semester, earning 6 ECTS credits. The 
exams involve programming tasks in C#, incorporating both object-
oriented and functional paradigms, with an emphasis on sequential 
and concurrent programming approaches. 

 

4.2 Dataset 
To create the dataset, we recorded the activity of various students. 
Most of the time, students performed permitted activities with a 
high variance in screenshots, such as writing code, browsing the 
desktop, navigating files, and editing text. The system was designed 
to account for variations such as different desktop configurations, 
light/dark mode settings, system colors, and screen resolutions. By 
accounting for these variations, the system can better differentiate 
between legitimate user actions and potential fraudulent behavior, 
minimizing false positives and improving overall accuracy. 

To enrich the dataset, we simulated common fraudulent activities 
prohibited during exams, such as Internet browsing, use of genera-
tive AI tools, unauthorized device interactions, and seeking 
external assistance via messaging or video calls. These simulated 
behaviors were carefully crafted to resemble real-world cheating 
scenarios, enabling us to train and evaluate the model’s ability to 
detect a variety of violations in a controlled environment. 

After collecting the screenshot frames, we need to label the image 
sequences. For that, we implemented a simple but useful sequence 
labeling Java application. This application facilitated the rapid la-
beling process by allowing users to navigate through the image 
sequences and categorize them as either cheating or non-cheating 
behavior. The labeled dataset was then used for training the model.  

 
Figure 2. Architecture of the assistant designed to detect poten-
tially cheating during online exams. 
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The final dataset comprised 8,329 sequences, each consisting of 
three 50x50 pixel images with three color channels (5,830 se-
quences for training and 2,499 for testing). To improve model 
performance, we augmented the training dataset using six different 
transformations: flipping, rotation, zooming, cropping, and modifi-
cations to contrast and brightness. This resulted in an expanded 
training dataset of 40,810 sequences. Since the training dataset was 
imbalanced, we applied undersampling to the majority class (non-
cheating), achieving a balanced dataset of 36,702 samples. 

4.3 ANN Models 
Figure 3 illustrates the architecture of the artificial neural network 
(ANN) used to build the model. Each frame in the input sequence 
is passed through a series of convolutional neural network (CNN) 
layers. The number of layers, as well as the number of convolu-
tional filters, kernel sizes, and strides, are hyperparameters defined 
in Section 4.5. The number of convolutional filters doubles with 
each subsequent layer, following conventional design principles 
[20]. 

After processing the frames through the CNN layers, the sequence 
is fed into a recurrent neural network (RNN) to capture the temporal 
dependencies between frames. Specifically, we employed either a 
Long Short-Term Memory (LSTM) or a Gated Recurrent Unit 
(GRU) network (another hyperparameter) to see which better cap-
tured the dependencies in the input sequence. The number of 
recurrent units in the RNN is another hyperparameter.  

To prevent overfitting, a dropout layer is applied following the 
RNN layer, randomly setting a fraction of the recurrent units to zero 
during training. The dropout rate is a hyperparameter fine-tuned to 
balance model complexity and generalization performance. The 
output is then passed through a fully connected (dense) layer that 
aggregates the features learned by the CNN and RNN components. 
Finally, a sigmoid activation function is used to produce a binary 
classification output (cheating or non-cheating). 

We also employed transfer learning to potentially enhance model 
performance by leveraging pre-trained weights from an image clas-
sification task [21]. Specifically, we tested the performance of 
replacing the convolutional layers in Figure 3 with the pre-trained 
models detailed in Section 4.5. The final classification layer from 
these pre-trained networks was excluded, and the weights were fro-
zen to retain low-level feature representations. The remaining 
layers (RNN, dropout, and dense) were trained from scratch. This 
approach helps the model benefit from previously learned low-level 
features, reducing the need for a large training dataset. 

4.4 Evaluation Metrics 
The training set was used for model training, while the validation 
set was used for hyperparameter tuning. Model evaluation was per-
formed on the test set, which was kept separate from both the 
training and validation sets. 

We used the classical accuracy, precision and recall measures for 
our binary classification problem. We also used F1- and F2-scores, 
both based on Fβ-score, the weighted harmonic mean of precision 
and recall depicted in Equation 1. F1-score gives equal weight to 
both precision and recall (β=1), while F2-score gives twice the 
weight on recall (β=2), reflecting the higher cost of false negatives 
(missing fraudulent activities). F2-score is particularly relevant in 
this model, where detecting fraudulent activities is more critical 
than minimizing false positives. 

𝐹! − score = (1 + β)"
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 · 	𝑟𝑒𝑐𝑎𝑙𝑙

β" 	 · 	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙 																						(1) 

4.5 Hyperparameter Search and Training 
The two topologies identified involve several hyperparameters that 
significantly influence the network’s learning and generalization 
ability. Some hyperparameters pertain to the architecture (e.g., the 
number of layers, neurons per layer), while others relate to the train-
ing process (e.g., batch size, learning rate). 

To leverage transfer learning, we experimented with several pre-
trained CNN models known for their good performance with small 
images: ResNet50 [22], MobileNetV2 [23], EfficientNetB0 [24], 
NASNetMobile [25], VGG16, and VGG19 [26]. These models 
were pre-trained on the ImageNet dataset, allowing us to use their 
learned low-level feature extraction capabilities. The selection of 
these models was based on their established success in a variety of 
computer vision tasks, particularly image classification, and their 
diverse architectural approaches, ranging from deep residual net-
works to lightweight models designed for mobile devices. 

We conducted an exhaustive grid search to identify the best hy-
perparameter combinations (Table 1). In each iteration, the model 
was trained with the training set using a specific hyperparameter 
set, and performance was assessed using the F2-score on the vali-
dation set (Equation 1). We explored various optimizers (Adam, 
RMSprop, Adamax) to determine the best one for training. 

Two training approaches were tested to improve the F2-score: 

1. Assigning twice the weight to the positive class (cheating) 
to encourage the model to minimize false negatives [27]. 
This adjustment encourages the model to be more sensitive 

	
Figure 3. ANN with CNN, RNN, dropout, and dense layers. 
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to detecting fraudulent activities, even at the cost of increas-
ing false positives (Section 4.4). 

2. Using an alternative loss function. In addition to the classi-
cal binary cross-entropy loss function for binary 
classification problems, we used a differentiable surrogate 
loss function designed to optimize F2-score [28]. 

After completing the hyperparameter search process, we selected 
the set of hyperparameters that yielded the best performance. Ta-
ble 1 provide the values used for each hyperparameter in both 
models (with and without transfer learning), along with the values 
corresponding to the best-performing configurations (bold font). 
For each iteration of the search, the models were trained for a max-
imum of 10 epochs, with early stopping applied based on F2-score 
performance and patience of two epochs. 

Regarding initialization methods, we applied Xavier (Glorot) ini-
tialization to the convolutional layers and the final output dense 
layer [29], and He initialization to the recurrent and hidden dense 
layers [30]. 

Table 1. Best hyperparameters found for the two different ar-
tificial neural networks used. 

 Hyperparameter Values 

CN
N

 +
 R

N
N

 

Convolutional layers 1, 2, 3 
Convolutional filters 4, 8, 16, 32 
Convolutional kernel size 3, 4, 5 
Strides 1, 2 
Convolutional activation 
function ReLU, Leaky ReLU 

RNN cells LSTM, GRU 
RNN activation function Tanh, ReLU 
RNN units 16, 32, 64, 128 
Hidden dense layer 0, 1, 2 
Units in hidden dense layer 16, 32, 64, 128 
Hidden layer activation  
function ReLU, Leaky ReLU 

Dropout rate 0.0, 0.2, 0.5 
Learning rate 10-4, 10-3, 10-2, 10-1 
Batch size 32, 64, 128 
Optimizer Adam, RMSprop, Adamax 

Tr
an

sf
er

 L
ea

rn
in

g 

Pre-trained model EfficientNetB0, Mo-
bileNetV2, NASNetMobile, 
ResNet50, VGG16, VGG19 

RNN cells LSTM, GRU 
RNN activation function Tanh, ReLU 
RNN units 16, 32, 64, 128 
Hidden dense layer 0, 1, 2 
Units in hidden dense layer 16, 32, 64, 128 
Hidden layer activation  
function ReLU, Leaky ReLU 

Dropout rate 0.0, 0.2, 0.5 
Learning rate 10-4, 10-3, 10-2, 10-1 
Batch size 32, 64, 128 
Optimizer Adam, RMSprop, Adamax 

Bold font denotes the hyperparameter value selected during the hy-
perparameter search. 

Once the optimal set of hyperparameters was determined, we con-
ducted a final fine-tuning training session. In the case of transfer 
learning, the weights of the pre-trained models were unfrozen to 
enable fine-tuning on the target task. This adjustment ensured that 
the pre-trained features were adapted to better align with the spe-
cific domain of the problem. The stopping criterion for fine-tuning 

in both topologies was based on an increase in validation loss over 
three consecutive epochs. Additionally, the learning rate was dy-
namically reduced by a factor of 0.2 if the validation loss did not 
improve in the last epoch. The model exhibiting the best F2-score 
performance on the validation set was selected for final evaluation 
with the test set. 

To assess the statistical significance of the results, we employed 
bootstrapping with 10,000 repetitions to calculate 95% confidence 
intervals for each metric [31]. This process involved repeatedly 
sampling with replacement from the test set to generate multiple 
resampled datasets. The confidence intervals for the average of 
each metric were then computed across all resampled datasets, en-
abling us to evaluate whether there were statistically significant 
differences between the compared systems [32].		

5. EVALUATION 
5.1 Results 
Table 2 presents the performance of the best models. The ANN ar-
chitecture shown in Figure 3, which combines CNN, RNN, and 
dense layers, achieves the best results based on the hyperparameters 
listed in Table 1. For accuracy, F1-score, and F2-score, this model 
shows no statistically significant difference when compared to the 
EfficientNetB0 transfer-learning approach, as indicated by the 
overlap in their 95% confidence intervals. However, recall is sig-
nificantly higher for the CNN + RNN model. Precision is the only 
metric in which EfficientNetB0 outperforms CNN + RNN. A nota-
ble distinction between the two models is the number of 
parameters: EfficientNetB0 requires 3.4 million more parame-
ters—2.6 times the number needed by CNN + RNN. 

5.2 Discussion 
As shown in Table 2, transfer learning did not yield a significant 
performance improvement compared to our CNN + RNN neural 
architecture (Figure 3). Additionally, Table 2 illustrates that the 
models with a larger number of parameters, except for Effcient-
NetB0, tend to perform worse. This may be attributed to the small 
image size (50x50 pixels) used in our dataset, which likely causes 
the pre-trained models to overfit due to the limited data available. 
The choice of small image dimensions was necessary to ensure the 
assistant could process all images generated by the remote synchro-
nous infrastructure in real time. Larger images would have hindered 
real-time processing. Furthermore, the CNN + RNN model, with 
the fewest parameters (1.3 million), facilitates faster inference, con-
tributing to the system’s ability to process frames in real time. 

Our evaluation focused on the F2-score metric, which gives twice 
the weight to recall compared to precision. By prioritizing recall, 
the F2-score emphasizes detecting fraudulent activities while also 
accounting for precision. The goal is to minimize undetected cheat-
ing behaviors, even if it means the instructor must review and 
dismiss a few false alarms. 

Several strategies were employed to optimize the F2-score perfor-
mance of our model. Data augmentation played a significant role, 
leading to a 31.3% improvement in this metric. This technique not 
only enriched the training data but also helped balance the training 
set, yielding very favorable results. Additionally, increasing the 
weight of the positive class during training resulted in a further 
4.35% gain in the F2-score. We also explored using a differentiable 
F2-score surrogate loss function [28], but it did not outperform the 
binary cross-entropy loss. 

An important feature of the assistant is its ability to facilitate the 
rapid detection of cheating activities. This allows instructors to 
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promptly warn students about potential consequences, thereby pre-
venting the continuation of fraudulent behavior. Such real-time 
intervention is undoubtedly more effective than merely storing 
frames and penalizing students after the exam has concluded. 

Our system serves as an assistant for detecting potentially fraudu-
lent activities in online exams, though human intervention remains 
necessary. It is not a standalone cheating detection system but ra-
ther a tool to assist instructors in monitoring student activity, 
especially in exams with large numbers of students. The use of our 
remote synchronous infrastructure is required for its operation, and 
could even be complemented by an online proctoring system. The 
optimization of the F2-score ensures that the system is highly effi-
cient in identifying potential cheating actions. However, the 
responsibility of verifying whether an activity is indeed fraudulent 
lies with the instructor, who must then take the appropriate actions, 
such as issuing a warning through the remote synchronous plat-
form. 

6. CONCLUSIONS 
We show how an artificial neural network, consisting of CNN lay-
ers followed by RNN and dense layers, can assist instructors in 
detecting potentially fraudulent activities in online exams where In-
ternet access is restricted. The proposed system analyzes sequences 
of screenshot frames to identify cheating behaviors, achieving an 
accuracy of 95.18% and an F2-score of 94.2%. We explored several 
techniques to enhance the model’s performance, including transfer 
learning, data augmentation, class-weight adjustments during train-
ing, and an alternative loss function. Notably, data augmentation 
and increasing the weight of the positive class significantly im-
proved the model’s performance. The primary evaluation metric 
used was the F2-score, which prioritizes the model’s ability to cor-
rectly identify fraudulent activities (i.e., recall) over its precision. 
Our system provides valuable assistance in detecting potentially 
fraudulent activities in online exams, though human intervention 
remains necessary.  

As previously noted, our model was trained on screenshot frames 
that depict fraudulent activity specific to the course for which it was 
designed. Future work will explore the extent to which this pre-
trained model can be adapted to other courses [33] by retraining 
only the final dense layer. Additionally, it would be valuable to in-
vestigate the development of a meta-model capable of adapting to 
various courses [34]. Meta-learning techniques, such as few-shot 

learning, could be explored to allow the system to generalize effec-
tively across different subjects without the need for extensive 
retraining [35]. 

All the code used in our research, including the training, 
hyperparameter search, and fine-tuning of the models, the 
implementation of the assistant, the image sequence labeler, and the 
Flask Web API, along with the training and test datasets and the 
data files generated during the experiments presented in this article, 
are freely available for download at   
https://reflection.uniovi.es/download/2025/edm. 
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