
Assistant for the Detection of Potential Cheating Behavior
in Synchronous Online Programming Exams

Francisco Ortin, Alonso Gago, Jose Quiroga, and Miguel Garcia
Computer Science Department, University of Oviedo, Oviedo, Spain

{ortin, UO269424, quirogajose, garciarmiguel}@uniovi.es

ABSTRACT
Online learning has enhanced accessibility in education, but also
poses significant challenges in maintaining academic integrity dur-
ing online exams, particularly when students are prohibited from
accessing unauthorized resources through the Internet. Nonethe-
less, students must remain connected to the Internet in order to take
the online exam. This paper presents a machine-learning-based as-
sistant designed to assist instructors in detecting the use of
unauthorized resources that may involve cheating during online
programming exams. The system employs a convolutional neural
network, followed by a recurrent neural network and a dense layer,
to analyze sequences of screenshot frames from students’ screens.
The model achieved 95.18% accuracy and an F2-score of 94.2%,
with a focus on recall to prioritize the detection of cheating while
minimizing false positives. Notably, data augmentation and class-
weight adjustments significantly enhanced the model’s perfor-
mance, whereas transfer learning and alternative loss functions did
not yield additional improvements. Although human oversight is
still necessary to verify and act upon flagged activities, the system
demonstrates the potential of machine learning to support real-time
monitoring in large-scale online exams.

Keywords
Machine learning, cheating detection, online exams, convolutional
neural network, synchronous programming exams

1. INTRODUCTION
The rapid growth of online learning has transformed traditional ed-
ucational models, offering a more flexible and inclusive approach
to education [1]. Distance education powered by digital tools pro-
vides significant advantages, such as removing geographic barriers,
allowing students to participate in courses globally, and granting
learners from diverse backgrounds access to high-quality education
without needing to be physically present on a campus.

Synchronous online lecturing typically relies on web conferencing
platforms like Microsoft Teams, Zoom, Google Meet, or BigBlue-
Button, which enable real-time communication, screen sharing, and
interactive discussions [2]. However, delivering effective distance
laboratory sessions (particularly synchronous programming labs)
can be challenging, as strong lecturer-student interaction is neces-
sary [3]. In these settings, instructors need to monitor code written
by students in real time, addressing mistakes and deviations
promptly, much like in traditional face-to-face labs.

To address these challenges, the authors developed an infrastruc-
ture for delivering remote synchronous programming labs over the
Internet in response to the COVID-19 pandemic [3]. The system
allows students to attend online classes from their own computers
while the instructor monitors students’ activities. This setup pro-
vides instant feedback, improving student engagement and
satisfaction, and has been successfully applied to various distance
flipped learning environments [4].

Our infrastructure replicates the face-to-face programming lab ex-
perience in a synchronous online format. It includes a computer
monitoring system, a virtual private network (VPN) for remote ac-
cess, and scripts to simplify setup and system management for
students. The system integrates a web conferencing platform, along
with additional scripts to support instructors in managing program-
ming labs. Our remote synchronous infrastructure has already been
published in [3].

A significant challenge in distance learning is maintaining aca-
demic integrity during online exams [5]. In some cases, students
are prohibited from connecting to the Internet during exams to pre-
vent access to unauthorized resources or cheating tools. However,
this creates a paradox, as students need to be online to take exams
but should be restricted from accessing certain materials. Various
online proctoring systems have been developed to monitor student
behavior in order to detect exam integrity violations [6]. More ad-
vanced systems use machine learning (ML) algorithms to analyze
student behavior patterns and flag potential instances of cheating
for review by human proctors [7]. However, these systems typically
rely on real-time video surveillance and do not analyze the stu-
dents’ activities within their computers.

In addition to webcam activation and real-time supervision, our in-
frastructure supports continuous monitoring of students’ work
throughout online exams. However, for large courses with enroll-
ments up to of 150 students, it becomes increasingly difficult for
instructors to detect fraudulent activities during exams.

To tackle this challenge, we developed a machine learning-based
system to assist instructors in identifying potential cheating in-
stances during synchronous online programming exams. This ML
assistant analyzes screenshot frames from students’ screens, cap-
tured by our infrastructure, and alerts the instructor to potentially
fraudulent activity. If suspicious behavior is detected, the instructor
is shown the screenshot sequence (Figure 1). They can either dis-
miss the alert if it is a false positive or take action, such as sending
a popup message to the student via the remote infrastructure.

The primary contribution of this work is the development and im-
plementation of the mentioned ML-based assistant for potential
cheating detection that helps instructors monitor large-scale online
exams, safeguarding academic integrity and reducing the risk of
cheating. The system requires only a computer with an Internet con-
nection, though it can be integrated with other proctoring systems

Do not delete, move, or resize this block. If the paper is accepted, this block will
need to be filled in with reference information.

373

Francisco Ortin, Alonso Gago, Jose Quiroga, and Miguel Garcia. As-
sistant for the detection of potential cheating behavior in synchronous
online programming exams. In Caitlin Mills, Giora Alexandron, Da-
vide Taibi, Giosuè Lo Bosco, and Luc Paquette (eds.) Proceedings
of the 18th International Conference on Educational Data Mining,
Palermo, Italy, July, 2025, pp. 373–380. International Educational
Data Mining Society (2025).

© 2025 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.15870282

https://doi.org/10.5281/zenodo.15870282

that use additional hardware to monitor students’ actions and envi-
ronments during exams.

2. RELATED WORK
Migut et al. conducted preliminary experiments where screen vid-
eos of four exams were recorded from two students, with volunteers
intentionally introducing unauthorized actions according to a pro-
tocol [8]. Their system detects changes in screen content, such as
application switches, by comparing visual similarity between suc-
cessive frames. This approach reduces the need for full video
review. Then, the next steps will involve annotating fraudulent
frames and training machine learning (ML) algorithms to further
reduce suspicious frames. However, the system remains a proposal
without implementation or results [8].

Smirani and Boulahia proposed a system based on a convolutional
neural network (CNN) that, similar to our work, does not require a
webcam [9]. The system uses personal and geographical infor-
mation along with screenshots from the Blackboard Learning
Management System (LMS) to detect cheating, achieving 98% ac-
curacy. However, their system only detects Internet browsing, with
no real-time intervention. Consequently, it is unable to detect the
use of instant messaging applications such as Discord or
WhatsApp, which students may use to communicate during assess-
ments. Additionally, the system does not support direct
communication with students regarding potential violations. Fi-
nally, students are restricted to completing tests exclusively within
the LMS environment.

Many online proctoring systems monitor student actions and envi-
ronments during exams to detect fraud [6]. Unlike our system, these
approaches use technologies such as identity authentication,
webcam monitoring, and keystroke recognition to track behavior
and detect suspicious activity. One common approach is camera
monitoring. Luan et al. [10] proposed a system that uses two cam-
eras—one to capture the student’s face and another to record their
body and surroundings. By using a trained pose recognition model,
the system can efficiently classify student actions as suspicious or
not. ProctorExam enhances spatial controls with 360-degree

monitoring, including webcam, screen-sharing, and smartphone
cameras to observe everything around the student [11]. Atoum et
al. use a combination of one webcam, one wearable camera, and a
microphone to monitor both the visual and acoustic environment of
the test location [5].

Machine learning techniques have been applied to detect cheating.
Gopane et al. trained a deep learning model to detect patterns in
students’ head and eye movements, achieving an F1-score of 0.94
[7]. Their system combines a FaceNet-based face authentication
module with Lucas-Kanade optical flow tracking and Active Ap-
pearance Models (AAM) for gaze estimation. This hybrid
architecture enables the system to capture micro-expressions, eye
blinks, gaze direction, and abnormal head movements during
webcam-based online assessments. The inclusion of motion detec-
tion ensures robustness against static image spoofing, and the final
output is a proctoring report generated automatically, documenting
infractions based on predefined behavioral indicators. This ap-
proach highlights the efficacy of AI-driven, real-time proctoring
systems for maintaining academic integrity during remote exams.

Examus collects behavioral data from online lectures to improve
proctoring during exams [12]. The platform integrates with learn-
ing management systems and uses AI-driven analysis of webcam
feeds, screen activity, and user behavior to detect potential aca-
demic dishonesty. By continuously monitoring facial expressions,
gaze direction, and environmental cues, Examus provides real-time
alerts and detailed post-exam analytics to instructors.

ProctorNet uses a pre-trained Inception CNN model to detect sus-
picious behaviors based on eye gaze and mouth movements [13].
Building upon this, the system integrates Inception-ResNet v1
blocks to enhance face recognition accuracy and utilizes Attentive
Net for aligned face detection in video frames. These modules op-
erate in tandem on all recognized faces, providing continuous
monitoring for actions such as looking away from the screen or en-
gaging in conversation. Alerts are generated whenever the system
detects behavior that deviates from expected norms.

Figure 1. Machine learning assistant showing alerts of potentially cheating actions.

374

Some proctoring systems also incorporate student authentication
methods. For example, ProctorU requires students to present ID
cards to the webcam for authentication and maintain an uninter-
rupted audio-visual connection with the proctor throughout the
exam [14]. Joshy et al. implemented a three-factor authentication
scheme based on face recognition, one-time password verification,
and fingerprint authentication [15].

TeSLA focuses on biometric verification for online tests, including
facial and voice recognition, as well as keystroke and fingerprint
analysis, to prevent impersonation and ensure the test-taker is the
one providing the answers [16]. Other biometric technologies, such
as fingerprint scanning, iris, retina and hand scanning, and facial
recognition, are also used in online proctoring systems [17]. These
approaches differ significantly from ours, as our system requires
only a computer with an Internet connection and the straightfor-
ward installation of our infrastructure to support remote
synchronous programming labs.

3. ARCHITECTURE OF THE ASSISTANT
Figure 2 illustrates the architecture of the assistant designed to de-
tect potentially fraudulent activities during online exams. Multiple
students may participate in an exam, connected to our remote syn-
chronous infrastructure via the Internet. The infrastructure captures
one 50x50-pixel screenshot per second of each student’s activity,
storing a sequence of three consecutive frames as input for the ma-
chine learning assistant. The assistant analyzes these input
sequences (rather than individual screenshots) to detect potentially
fraudulent behavior, generating an alert (Figure 1) only when sus-
picious activity is first detected after a previously correct
screenshot. This approach helps minimize unnecessary alerts, mak-
ing it easier for the instructor to monitor the students effectively.

Once a sample of three consecutive frames is collected for a given
student, the assistant passes the sample to the ML model, which has
been trained to identify potentially fraudulent activities (as de-
scribed in Section 4). This model is deployed as a web API
implemented in Flask, with the model loaded into memory at
startup to optimize inference performance. The model functions as
a binary classifier, returning “1” if fraudulent activity is detected
and “0” otherwise.

If potentially fraudulent activity is detected, the assistant triggers
an alert, as shown in Figure 1, accompanied by a beep sound. The
instructor should then revise the screenshots that triggered the alert
and decide on the appropriate action. In the case of a false positive,
the alert can be dismissed. Otherwise, the student is warned through
a popup message sent by the instructor via the remote synchronous
infrastructure or through an oral warning. In cases of repeated
fraudulent behavior, further actions may be taken, such as suspend-
ing the student’s ability to continue the exam or escalating the issue
to academic authorities for further investigation. Additionally, the
suspicious activity frames recorded by the infrastructure are saved
in their original image size, providing a detailed record for both the
student and the institution to reference, if necessary.

4. METHODOLOGY
4.1 Context
The system was utilized for online exams in the "Programming
Technology and Paradigms" course of the Software Engineering
degree at the University of Oviedo, Spain [18]. In this course, stu-
dents learn object-oriented and functional programming paradigms,
concurrent and parallel programming, and basic meta-program-
ming concepts in dynamic languages [19]. The course consists of

58 class hours (30 hours for programming labs and 28 hours for
lectures) during the second semester, earning 6 ECTS credits. The
exams involve programming tasks in C#, incorporating both object-
oriented and functional paradigms, with an emphasis on sequential
and concurrent programming approaches.

4.2 Dataset
To create the dataset, we recorded the activity of various students.
Most of the time, students performed permitted activities with a
high variance in screenshots, such as writing code, browsing the
desktop, navigating files, and editing text. The system was designed
to account for variations such as different desktop configurations,
light/dark mode settings, system colors, and screen resolutions. By
accounting for these variations, the system can better differentiate
between legitimate user actions and potential fraudulent behavior,
minimizing false positives and improving overall accuracy.

To enrich the dataset, we simulated common fraudulent activities
prohibited during exams, such as Internet browsing, use of genera-
tive AI tools, unauthorized device interactions, and seeking
external assistance via messaging or video calls. These simulated
behaviors were carefully crafted to resemble real-world cheating
scenarios, enabling us to train and evaluate the model’s ability to
detect a variety of violations in a controlled environment.

After collecting the screenshot frames, we need to label the image
sequences. For that, we implemented a simple but useful sequence
labeling Java application. This application facilitated the rapid la-
beling process by allowing users to navigate through the image
sequences and categorize them as either cheating or non-cheating
behavior. The labeled dataset was then used for training the model.

Figure 2. Architecture of the assistant designed to detect poten-
tially cheating during online exams.

VPN

Synchronous
Remote

Infrastructure

Lecturer

…

Internet
Connection

via VPN

Student 1 Student n

Monitorization
frames

Potentially Fraudulent
Activities Detection

Assistant

Web API
Internet

Connection
via VPN

Intranet
Connection

Predictive Model

375

The final dataset comprised 8,329 sequences, each consisting of
three 50x50 pixel images with three color channels (5,830 se-
quences for training and 2,499 for testing). To improve model
performance, we augmented the training dataset using six different
transformations: flipping, rotation, zooming, cropping, and modifi-
cations to contrast and brightness. This resulted in an expanded
training dataset of 40,810 sequences. Since the training dataset was
imbalanced, we applied undersampling to the majority class (non-
cheating), achieving a balanced dataset of 36,702 samples.

4.3 ANN Models
Figure 3 illustrates the architecture of the artificial neural network
(ANN) used to build the model. Each frame in the input sequence
is passed through a series of convolutional neural network (CNN)
layers. The number of layers, as well as the number of convolu-
tional filters, kernel sizes, and strides, are hyperparameters defined
in Section 4.5. The number of convolutional filters doubles with
each subsequent layer, following conventional design principles
[20].

After processing the frames through the CNN layers, the sequence
is fed into a recurrent neural network (RNN) to capture the temporal
dependencies between frames. Specifically, we employed either a
Long Short-Term Memory (LSTM) or a Gated Recurrent Unit
(GRU) network (another hyperparameter) to see which better cap-
tured the dependencies in the input sequence. The number of
recurrent units in the RNN is another hyperparameter.

To prevent overfitting, a dropout layer is applied following the
RNN layer, randomly setting a fraction of the recurrent units to zero
during training. The dropout rate is a hyperparameter fine-tuned to
balance model complexity and generalization performance. The
output is then passed through a fully connected (dense) layer that
aggregates the features learned by the CNN and RNN components.
Finally, a sigmoid activation function is used to produce a binary
classification output (cheating or non-cheating).

We also employed transfer learning to potentially enhance model
performance by leveraging pre-trained weights from an image clas-
sification task [21]. Specifically, we tested the performance of
replacing the convolutional layers in Figure 3 with the pre-trained
models detailed in Section 4.5. The final classification layer from
these pre-trained networks was excluded, and the weights were fro-
zen to retain low-level feature representations. The remaining
layers (RNN, dropout, and dense) were trained from scratch. This
approach helps the model benefit from previously learned low-level
features, reducing the need for a large training dataset.

4.4 Evaluation Metrics
The training set was used for model training, while the validation
set was used for hyperparameter tuning. Model evaluation was per-
formed on the test set, which was kept separate from both the
training and validation sets.

We used the classical accuracy, precision and recall measures for
our binary classification problem. We also used F1- and F2-scores,
both based on Fβ-score, the weighted harmonic mean of precision
and recall depicted in Equation 1. F1-score gives equal weight to
both precision and recall (β=1), while F2-score gives twice the
weight on recall (β=2), reflecting the higher cost of false negatives
(missing fraudulent activities). F2-score is particularly relevant in
this model, where detecting fraudulent activities is more critical
than minimizing false positives.

𝐹! − score = (1 + β)"
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 · 	𝑟𝑒𝑐𝑎𝑙𝑙

β" 	 · 	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙 																						(1)

4.5 Hyperparameter Search and Training
The two topologies identified involve several hyperparameters that
significantly influence the network’s learning and generalization
ability. Some hyperparameters pertain to the architecture (e.g., the
number of layers, neurons per layer), while others relate to the train-
ing process (e.g., batch size, learning rate).

To leverage transfer learning, we experimented with several pre-
trained CNN models known for their good performance with small
images: ResNet50 [22], MobileNetV2 [23], EfficientNetB0 [24],
NASNetMobile [25], VGG16, and VGG19 [26]. These models
were pre-trained on the ImageNet dataset, allowing us to use their
learned low-level feature extraction capabilities. The selection of
these models was based on their established success in a variety of
computer vision tasks, particularly image classification, and their
diverse architectural approaches, ranging from deep residual net-
works to lightweight models designed for mobile devices.

We conducted an exhaustive grid search to identify the best hy-
perparameter combinations (Table 1). In each iteration, the model
was trained with the training set using a specific hyperparameter
set, and performance was assessed using the F2-score on the vali-
dation set (Equation 1). We explored various optimizers (Adam,
RMSprop, Adamax) to determine the best one for training.

Two training approaches were tested to improve the F2-score:

1. Assigning twice the weight to the positive class (cheating)
to encourage the model to minimize false negatives [27].
This adjustment encourages the model to be more sensitive

	
Figure 3. ANN with CNN, RNN, dropout, and dense layers.

Input layer

Flatten

CNN Layers

Image1

Input1

CNN1

RNN Layer

Image2

Input2

Image3

Input3

CNN2

CNNn

…

CNN1

CNN2

CNNn

…

CNN1

CNN2

CNNn

…

RNN1 RNN2 RNN3

…

Dropout

Dense Layer

Output Layer

Output

376

to detecting fraudulent activities, even at the cost of increas-
ing false positives (Section 4.4).

2. Using an alternative loss function. In addition to the classi-
cal binary cross-entropy loss function for binary
classification problems, we used a differentiable surrogate
loss function designed to optimize F2-score [28].

After completing the hyperparameter search process, we selected
the set of hyperparameters that yielded the best performance. Ta-
ble 1 provide the values used for each hyperparameter in both
models (with and without transfer learning), along with the values
corresponding to the best-performing configurations (bold font).
For each iteration of the search, the models were trained for a max-
imum of 10 epochs, with early stopping applied based on F2-score
performance and patience of two epochs.

Regarding initialization methods, we applied Xavier (Glorot) ini-
tialization to the convolutional layers and the final output dense
layer [29], and He initialization to the recurrent and hidden dense
layers [30].

Table 1. Best hyperparameters found for the two different ar-
tificial neural networks used.

 Hyperparameter Values

CN
N

 +
 R

N
N

Convolutional layers 1, 2, 3
Convolutional filters 4, 8, 16, 32
Convolutional kernel size 3, 4, 5
Strides 1, 2
Convolutional activation
function ReLU, Leaky ReLU

RNN cells LSTM, GRU
RNN activation function Tanh, ReLU
RNN units 16, 32, 64, 128
Hidden dense layer 0, 1, 2
Units in hidden dense layer 16, 32, 64, 128
Hidden layer activation
function ReLU, Leaky ReLU

Dropout rate 0.0, 0.2, 0.5
Learning rate 10-4, 10-3, 10-2, 10-1
Batch size 32, 64, 128
Optimizer Adam, RMSprop, Adamax

Tr
an

sf
er

 L
ea

rn
in

g

Pre-trained model EfficientNetB0, Mo-
bileNetV2, NASNetMobile,
ResNet50, VGG16, VGG19

RNN cells LSTM, GRU
RNN activation function Tanh, ReLU
RNN units 16, 32, 64, 128
Hidden dense layer 0, 1, 2
Units in hidden dense layer 16, 32, 64, 128
Hidden layer activation
function ReLU, Leaky ReLU

Dropout rate 0.0, 0.2, 0.5
Learning rate 10-4, 10-3, 10-2, 10-1
Batch size 32, 64, 128
Optimizer Adam, RMSprop, Adamax

Bold font denotes the hyperparameter value selected during the hy-
perparameter search.

Once the optimal set of hyperparameters was determined, we con-
ducted a final fine-tuning training session. In the case of transfer
learning, the weights of the pre-trained models were unfrozen to
enable fine-tuning on the target task. This adjustment ensured that
the pre-trained features were adapted to better align with the spe-
cific domain of the problem. The stopping criterion for fine-tuning

in both topologies was based on an increase in validation loss over
three consecutive epochs. Additionally, the learning rate was dy-
namically reduced by a factor of 0.2 if the validation loss did not
improve in the last epoch. The model exhibiting the best F2-score
performance on the validation set was selected for final evaluation
with the test set.

To assess the statistical significance of the results, we employed
bootstrapping with 10,000 repetitions to calculate 95% confidence
intervals for each metric [31]. This process involved repeatedly
sampling with replacement from the test set to generate multiple
resampled datasets. The confidence intervals for the average of
each metric were then computed across all resampled datasets, en-
abling us to evaluate whether there were statistically significant
differences between the compared systems [32].		

5. EVALUATION
5.1 Results
Table 2 presents the performance of the best models. The ANN ar-
chitecture shown in Figure 3, which combines CNN, RNN, and
dense layers, achieves the best results based on the hyperparameters
listed in Table 1. For accuracy, F1-score, and F2-score, this model
shows no statistically significant difference when compared to the
EfficientNetB0 transfer-learning approach, as indicated by the
overlap in their 95% confidence intervals. However, recall is sig-
nificantly higher for the CNN + RNN model. Precision is the only
metric in which EfficientNetB0 outperforms CNN + RNN. A nota-
ble distinction between the two models is the number of
parameters: EfficientNetB0 requires 3.4 million more parame-
ters—2.6 times the number needed by CNN + RNN.

5.2 Discussion
As shown in Table 2, transfer learning did not yield a significant
performance improvement compared to our CNN + RNN neural
architecture (Figure 3). Additionally, Table 2 illustrates that the
models with a larger number of parameters, except for Effcient-
NetB0, tend to perform worse. This may be attributed to the small
image size (50x50 pixels) used in our dataset, which likely causes
the pre-trained models to overfit due to the limited data available.
The choice of small image dimensions was necessary to ensure the
assistant could process all images generated by the remote synchro-
nous infrastructure in real time. Larger images would have hindered
real-time processing. Furthermore, the CNN + RNN model, with
the fewest parameters (1.3 million), facilitates faster inference, con-
tributing to the system’s ability to process frames in real time.

Our evaluation focused on the F2-score metric, which gives twice
the weight to recall compared to precision. By prioritizing recall,
the F2-score emphasizes detecting fraudulent activities while also
accounting for precision. The goal is to minimize undetected cheat-
ing behaviors, even if it means the instructor must review and
dismiss a few false alarms.

Several strategies were employed to optimize the F2-score perfor-
mance of our model. Data augmentation played a significant role,
leading to a 31.3% improvement in this metric. This technique not
only enriched the training data but also helped balance the training
set, yielding very favorable results. Additionally, increasing the
weight of the positive class during training resulted in a further
4.35% gain in the F2-score. We also explored using a differentiable
F2-score surrogate loss function [28], but it did not outperform the
binary cross-entropy loss.

An important feature of the assistant is its ability to facilitate the
rapid detection of cheating activities. This allows instructors to

377

promptly warn students about potential consequences, thereby pre-
venting the continuation of fraudulent behavior. Such real-time
intervention is undoubtedly more effective than merely storing
frames and penalizing students after the exam has concluded.

Our system serves as an assistant for detecting potentially fraudu-
lent activities in online exams, though human intervention remains
necessary. It is not a standalone cheating detection system but ra-
ther a tool to assist instructors in monitoring student activity,
especially in exams with large numbers of students. The use of our
remote synchronous infrastructure is required for its operation, and
could even be complemented by an online proctoring system. The
optimization of the F2-score ensures that the system is highly effi-
cient in identifying potential cheating actions. However, the
responsibility of verifying whether an activity is indeed fraudulent
lies with the instructor, who must then take the appropriate actions,
such as issuing a warning through the remote synchronous plat-
form.

6. CONCLUSIONS
We show how an artificial neural network, consisting of CNN lay-
ers followed by RNN and dense layers, can assist instructors in
detecting potentially fraudulent activities in online exams where In-
ternet access is restricted. The proposed system analyzes sequences
of screenshot frames to identify cheating behaviors, achieving an
accuracy of 95.18% and an F2-score of 94.2%. We explored several
techniques to enhance the model’s performance, including transfer
learning, data augmentation, class-weight adjustments during train-
ing, and an alternative loss function. Notably, data augmentation
and increasing the weight of the positive class significantly im-
proved the model’s performance. The primary evaluation metric
used was the F2-score, which prioritizes the model’s ability to cor-
rectly identify fraudulent activities (i.e., recall) over its precision.
Our system provides valuable assistance in detecting potentially
fraudulent activities in online exams, though human intervention
remains necessary.

As previously noted, our model was trained on screenshot frames
that depict fraudulent activity specific to the course for which it was
designed. Future work will explore the extent to which this pre-
trained model can be adapted to other courses [33] by retraining
only the final dense layer. Additionally, it would be valuable to in-
vestigate the development of a meta-model capable of adapting to
various courses [34]. Meta-learning techniques, such as few-shot

learning, could be explored to allow the system to generalize effec-
tively across different subjects without the need for extensive
retraining [35].

All the code used in our research, including the training,
hyperparameter search, and fine-tuning of the models, the
implementation of the assistant, the image sequence labeler, and the
Flask Web API, along with the training and test datasets and the
data files generated during the experiments presented in this article,
are freely available for download at
https://reflection.uniovi.es/download/2025/edm.

7. ACKNOWLEDGMENTS
This work has been funded by the Government of the Principality
of Asturias, with support from the European Regional Develop-
ment Fund (ERDF) under project IDE/2024/000751 (GRU-GIC-
24- 070). Additional funding was provided by the University of
Oviedo through its support for official research groups (PAPI-24-
GR-REFLECTION).

8. REFERENCES
[1] Ally, M. 2004. Foundations of educational theory for online

learning. Theory and practice of online learning, Athabasca
University Press.

[2] Fita, A., Monserrat, J. F., Moltó, G., Mestre, E. M., and Ro-
driguez‐Burruezo, A. 2016. Use of synchronous e‐learning at
university degrees. Computer Applications in Engineering
Education 24, 6, 982-993. DOI=10.1002/cae.21773.

[3] Garcia, M., Quiroga, J., and Ortin, F. 2021. An Infrastructure
to Deliver Synchronous Remote Programming Labs. IEEE
Transactions on Learning Technologies 14, 2, 161-172.
DOI=10.1109/TLT.2021.3063298.

[4] Ortin, F., Quiroga, J., and Garcia, M. 2023. A Monitoring In-
frastructure to Improve Flipped Learning in Technological
Courses. In 7th International Conference on Education and
Distance Learning (ICEDL, Paris, France), 1541-1548.

[5] Atoum, Y., Chen, L., Liu, A. X., Hsu, S. D. H., and Liu, X.
2017. Automated Online Exam Proctoring. IEEE Transac-
tions on Multimedia 19, 7, 1609-1624 (July 2017).
DOI=10.1109/TMM.2017.2656064.

[6] Noorbehbahani, F., Mohammadi, A., and Aminazadeh, M.
2022. A systematic review of research on cheating in online

Table 2. Models with the highest performance metrics for the methodology described in Section 4.

Model Accuracy Precision Recall F1-score F2-score Parameters
(millions)

CNN + RNN 0.9518 ± 1.7% 0.9147 ± 1.6% 0.9710 ± 1.2% 0.9420 ± 1.2% 0.9592 ± 1.1% 1.3

EfficientNetB0 0.9547 ± 0.8% 0.9352 ± 1.4% 0.9580 ± 1.0% 0.9465 ± 2.0% 0.9534 ± 0.5% 4.7

MobileNetV2 0.9314 ± 1.5% 0.9010 ± 1.3% 0.9362 ± 1.7% 0.9183 ± 1.6% 0.9289 ± 0.6% 2.9

NASNetMobile 0.9007 ± 1.3% 0.8123 ± 1.8% 0.9482 ± 1.5% 0.8750 ± 0.7% 0.9175 ± 1.1% 4.8

ResNet50 0.8847 ± 1.1% 0.8055 ± 1.5% 0.9147 ± 0.7% 0.8566 ± 1.9% 0.8906 ± 0.7% 24.6

VGG16 0.8891 ± 1.8% 0.8259 ± 0.5% 0.9064 ± 1.1% 0.8643 ± 1.2% 0.8891 ± 0.5% 14.8

VGG19 0.8686 ± 1.5% 0.8123 ± 1.3% 0.8718 ± 1.8% 0.8410 ± 1.3% 0.8592 ± 1.4% 20.1
Average values of the 95% confidence intervals are shown in each cell. 95% confidence intervals values are presented as percentages in
each cell with ±. Bold values indicate the highest performance for each metric (with ties in cases of overlapping confidence intervals).
The final column lists the number of trainable parameters (in millions).

378

exams from 2010 to 2021. Education and Information Tech-
nologies 27, 8413–8460. DOI=10.1007/s10639-022-10927-7.

[7] Gopane, S., Kotecha, R., Obhan, J., and Pandey R. K. 2024.
Cheat detection in online examinations using artificial intelli-
gence. UTM Asean Engineering Journal 14, 1. DOI=
10.11113/aej.v14.20188.

[8] Migut, G., Koelma, D., Snoek, C. G. M., and Brouwer, N.
2018. Cheat me not: automated proctoring of digital exams
on bring-your-own-device. In Proceedings of the 23rd An-
nual ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2018).

[9] Smirani, L. K. and Boulahia, J.A. 2022. An Algorithm based
on Convolutional Neural Networks to Manage Online Exams
via Learning Management System Without using a Webcam.
International Journal of Advanced Computer Science and
Applications 13, 3, 290-299. DOI=
10.14569/IJACSA.2022.0130336.

[10] Luan, N.K., Ha, P.T.T., and Hung, P.D. 2022. An Automated
Proctor Assistant in Online Exams Using Computer Vision.
In Visualization, and Engineering (CDVE). DOI=
10.1007/978-3-031-16538-2_12.

[11] Turnitin. ProctorExam. https://proctorexam.com, 2025.
[12] Examus. Examus proctoring service. https://appsource.mi-

crosoft.com/en-us/product/web-
apps/examus.examusproctoring, 2025.

[13] Tejaswi, P., Venkatramaphanikumar, S., and Kishore, K. V.
K. 2023. Proctor net: An AI framework for suspicious activ-
ity detection in online proctored examinations. Measurement
206, 112266. DOI=10.1016/j.measurement.2022.112266.

[14] Milone, A. S., Cortese, A. M., Balestrieri, R. L., and Pitten-
ger, A. L. 2017. The impact of proctoredonline exams on the
educational experience. Currents in Pharmacy Teaching and
Learning 9, 1,108–114. DOI=10.1016/j.cptl.2016.08.037.

[15] Joshy, N., Ganesh Kumar, M., Mukhilan, P., Manoj Prasad,
V., and Ramasamy, T. 2018. Multi-factor authentication
scheme for online examination. International Journal of
Pure and Applied Mathematics 119, 15, 1705-1712.

[16] Draaijer, S., Jefferies, A., and Somers, G. 2018. Online proc-
toring for remote examination: A state of playing higher
education in the EU. Communications in Computer and In-
formation Science 829, 96–108. DOI=10.1007/978-3-319-
97807-9_8.

[17] Mahadi, N. A., Mohamed, M. A., Mohamad, A. I., Makhtar,
M., Kadir, M. F. A., and Mamat, M. 2018. A Survey of Ma-
chine Learning Techniques for Behavioral-Based Biometric
User Authentication. Recent Advances in Cryptography and
Network Security. DOI=10.5772/intechopen.76685.

[18] Ortin, F., Redondo, J. M., and Quiroga, J. 2017. Design and
evaluation of an alternative programming paradigms course.
Telematics & Informatics 34, 6, 813–823. DOI=
10.1016/j.tele.2016.09.014.

[19] Ortin, F., Redondo, J. M., and Quiroga, J. 2016. Design of a
programming paradigms course using one single program-
ming language. In Proceedings of World Conference on
Information Systems and Technologies (Recife, Brazil,
2016), 179–188, DOI=10.1007/978-3-319-31307-8_18.

[20] Li, H., Yue, X., Wang, Z., Wang, W., Tomiyama, H., and
Meng, L., 2021. A survey of Convolutional Neural Networks

—From software to hardware and the applications in meas-
urement. Measurement: Sensors 8, 100080. DOI=
10.1016/j.measen.2021.100080.

[21] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. 2014.
How transferable are features in deep neural networks? In
Proceedings of the 27th International Conference on Neural
Information Processing Systems (NIPS 2014), 3320–3328.

[22] He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(CVPR), 770-778.

[23] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L. 2018. MobileNetV2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR), 4510-4520.

[24] Tan, M. and Le, Q. V. 2019. EfficientNet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning (ICML), 6105-6114.

[25] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. 2018.
Learning transferable architectures for scalable image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), 8697-8710.

[26] Simonyan, K. and Zisserman, A. 2014. Very deep convolu-
tional networks for large-scale image recognition. In
Proceedings of the International Conference on Learning
Representations (ICLR), 1-14.

[27] Cui, Y., Jia, M., Lin, T. Y., Song, Y., and Belongie, S. 2019.
Class-Balanced Loss Based on Effective Number of Sam-
ples. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR, Long
Beach, CA, USA, 2019), 9260-9269.

[28] Lee, N., Yang, H., and Yoo, H. 2021. A surrogate loss func-
tion for optimization of Fβ score in binary classification with
imbalanced data. ArXiv 2104.01459, 1-17,
DOI=10.48550/arXiv.2104.01459.

[29] Glorot, X. and Bengio, Y. 2010. Understanding the difficulty
of training deep feedforward neural networks. In Proceed-
ings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS) 9, 249-256.

[30] He, K., Zhang, X., Ren, S., and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on
ImageNet classification. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 1026-1034.

[31] Davison, A. C. and Hinkley, D. V. 1997. Bootstrap methods
and their application. Cambridge University Press.

[32] Georges, A., Buytaert, D., and Eeckhout, L. 2007. Statisti-
cally rigorous Java performance evaluation. In Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada), 57–76.

[33] Ortin, F., Facundo, G., Garcia, M. 2023. Analyzing syntactic
constructs of Java programs with machine learning. Expert
Systems with Applications 215, 119398-119414.
DOI=10.1016/j.eswa.2022.119398.

[34] Rodriguez-Prieto, O., Pato, A., Ortin, F. 2025. PLangRec:
Deep-learning model to predict the programming language
from a single line of code. Future Generation Computer

379

Systems 166, 107640-107655. DOI=10.1016/j.fu-
ture.2024.107640.

[35] Álvarez-Fidalgo, D., and Ortin, F. 2025. CLAVE: A deep
learning model for source code authorship verification with

contrastive learning and transformer encoders. Information
Processing & Management 62, 3, 104005.
DOI=10.1016/j.ipm.2024.104005.

380

