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ABSTRACT

Solving a math word problem (MWP) requires understand-
ing the mathematical components of the problem and an
ability to decode the text. For some students, lower reading
comprehension skills may make engagement with the math-
ematical content more difficult. Readability formulas (e.g.,
Flesch Reading Ease) are frequently used to assess read-
ing difficulty. However, MWPs are typically shorter than
the texts traditional readability formulas were designed to
analyze. To identify metrics relevant to assessing the read-
ing difficulty of MWPs, we identified 28 candidate features
which may predict MWP readability. We then assessed
the performance of 297,072 middle and high school students
completing word problems in an intelligent tutoring system
as part of standard educational practice. From this, we iden-
tified 4,446 (out of 9,421) problems where performance gaps
between predicted less- and more-skilled readers were signifi-
cantly larger than typical gaps between the groups. Finally,
we tested how well the readability metrics could identify
problems with performance gaps. Of five models tested, a
random forest had the best predictive accuracy, AUC = .75.
The findings suggest readability of the text played some role
in less-skilled readers decreased performance and provide a
path towards better understanding how to assess the read-
ability of MWPs and make them more accessible to less-
skilled readers.

Keywords
readability, reading comprehension, math word problems,
K-12 math

1. INTRODUCTION

Reading comprehension ability is a well establish predictor
of math performance [3, 16, 48, 43, 44]. This relationship
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appears, at least in part, to be linked to the reading require-
ments inherent to solving math problems, especially math
word problems (MWP)! as interventions which support or
eliminate reading have improved performance among less-
skilled readers [1, 10, 18, 26, 44, 45]. Nevertheless, it is not
clear what makes a MWP readable. Although improvements
to text readability have improved outcomes in some cases,
they have had little to no effect in others [32, 34, 45]. Studies
which attempt to improve text readability often measure the
improvement using traditional readability formulas or other
text based metrics (e.g., [32, 34, 33]); however, it is not clear
if these metrics are indicative of improved readability in a
math domain [45, 44]. Improved understanding of how to
evaluate MWPs for readability can help curriculum writ-
ers make MWPs more accessible, decreasing cognitive load
related to reading comprehension and allowing students to
focus on the math.

In this study, we took a data driven approach to first iden-
tify sets of MWPs where deviations in performance between
more- and less-skilled readers were greater than expected.
We then calculated 32 reading ability metrics for each prob-
lem, ranging from surface-level patterns to deeper structural
elements, with the goal of assessing their ability to identify
problems where less-skilled readers’ performance was lower
than expected. Finally, we analyzed the feature space of the
best performing model to understand which features were
most important to the model fit.

1.1 Assessing Text Readability

Text readability can be assessed through multiple formulas,
arguably the most famous of which is the Flesch Reading
Ease (FRE) formula which was adapted into the Flesch-
Kincaid Grade Level (FKGL) formula to provide a suggested
grade level for a text [13, 22]. Early formulas, like the
FRE, focused on the interactions between simple text met-
rics which could be readily measured and calculated by hand
(e.g., number of words, average syllables per word, average
words per sentence). Some of these formulas also integrated
the prevalence of words in specific corpora (e.g., New Dale-

!Math word problems include problems where language is
used either in place of or in addition to symbols and include
tangible narrative elements, e.g., characters, places, or ac-
tions.
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Chall list of 3000 common words [7]) under the assumption
that increased use of high frequency words in a text makes
the text easier to read. These metrics are widely used and
effective outside of a math domain, but their efficacy for
MWPs is not understood [44].

These early formulas assessed some aspects of text complex-
ity but they were not able to speak to others. Latent se-
mantic analysis (LSA) filled one of these gaps, becoming
an important index for understanding the coherence of a
text [27, 30]. LSA constructs a term—document matrix from
a corpus and applies singular value decomposition to gen-
erate low-dimensional vector representations of texts [14].
Alternatively, word embeddings learn dense word-level vec-
tors from within large text corpora, allowing calculation of
similarity scores to capture semantic overlap and thematic
cohesion between texts [31, 35].

In a recent study, Walkington et al. [44] investigated a range
of linguistic factors related to MWP difficulty in algebra.
Prior research had suggested that vocabulary, and polyse-
mous words in particular, were a factor in MWP readability,
[11]; however, Walkington et al. found no significant effect of
polysemy on problem-solving performance in their sample of
algebra problems, suggesting the measure is context depen-
dent in math and depends on the nature of the polysemous
words.

Instead, Walkington et al. found that sentence count ex-
plained substantial variance in problem difficulty with per-
formance on texts stretching over four sentences sharply de-
clining. They also found that problems which had greater
topical shifts between adjacent sentences predicted lower
performance. While these findings address MWP readabil-
ity in algebra, their generalizability to other mathematical
domains remains uncertain. The inconsistent role of poly-
semy across studies highlights the need to identify broader
factors affecting the readability of MWP that are not con-
text dependent.

1.2 MATHia

The MPWs analyzed in this study are part of MATHia, an
ITS for math learning used by hundreds of thousands of
learners in the United States every year as a part of their
math curriculum [37]. Problems in MATHia are presented
to students as part of lessons on specific math topics. Most
lessons are focused on mastery learning whereby students
complete math problems in multiple steps, each associated
with a particular skill [23]. Progress mastering the skills
is tracked using Bayesian knowledge tracing [9]. A student
must respond correctly to all steps in a problem before mov-
ing forward to the next problem. Most steps in a problem
require free form entry; thus, completing a single step can
result in multiple errors.

1.3 Assessing Reading Ability

Acquiring student reading ability estimates typically requires
soliciting schools for their students’ end-of-year ELA scores.
Richey et al. [36] suggested that reading ability data could
be acquired for a larger proportion of an ITS’s user base
by inferring reading ability based on performance on lessons
not related to math. In MATHia, many students start their
work for the year by completing an introductory lesson to
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familiarize themselves with MATHia and how to use its tools
and features. Almoubayyed et al. [3] were able to use per-
formance on this non-math based, introductory activity to
make predictions about student’s reading ability. Specif-
ically, a neural network model was trained using students’
performance in this introductory activity to predict whether
a student would pass or fail the end-of-year ELA state exam
score. The model achieved high accuracy with an area un-
der receiver-operator characteristic curve (AUC) = 0.80 [3].
The model was also shown to generalize well on another
district and for a different ELA state exam score with an
AUC=0.76 [2]. We consider the lowest quartile of students
on this metric (who are least likely to pass their end-of-year
ELA state exam score) less-skilled at reading than the higher
three quartiles.?

1.4 Present Study

We took a data driven approach to developing a model which
can detect whether or not a math word problem may pose
reading difficulties for less-skilled readers. We first identified
problems where less skilled readers, as defined by the model
developed in Almoubayyed et al. [3], had greater error rates
than would otherwise be expected given baseline differences
between more- and less-skilled readers within the ITS. Prob-
lems for which error rate differences exceeded expectations
were considered flagged for potential readability concerns.
We then trained five candidate models to discriminate be-
tween the flagged and non-flagged MWPs and tested their
accuracy. Features in the models included 32 indices rep-
resenting five types of readability metrics: basic text struc-
ture metrics, vocabulary metrics, syntactic and coherence
metrics, and semantic analysis metrics. We included long-
standing readability metrics as well as metrics which are not
typically used to assess readability. A full explanation for
each metric is provided in Section 2.2.

If a model with features representing text readability can ac-
curately discriminate between MPWs flagged for readability
concerns and those that are not flagged, it suggests that less-
skilled readers error rates on these problems were driven in
part by their reading comprehension. Examining the feature
space of the model, including variable importance rankings,
can provide additional insight into which readability metrics
are important in a math domain.

2. METHOD

2.1 Problem Error Rates

All student data was collected from MATHia during the
2023-2024 school year and reflected student error rates on
MWPs in mastery workspaces. Only students whose schools
agreed to participate in research were included in the study.
Because we were interested primarily in less-skilled readers
performance, only students for whom we had reading abil-
ity predictions were included (n = 297,072 students). We
defined less- and more-skilled readers relatively and within
grade level. Students in the bottom quartile for each grade
were classified as less-skilled and the remaining students as

2 All comparisons were made at the aggregate level, minimiz-
ing the influence of students on the threshold of the bound-
ary while still retaining the full variance of more proficient
readers.



more-skilled readers. Each student completed 66 word prob-
lems on average, range = (1, 1030), n = 19,525,873 obser-
vations.

Problems in MATHia require students to complete multi-
ple steps associated with specific skills and not all prob-
lems in a lesson provide opportunities for all skills in that
lesson. As some combinations of skills are more difficult
than others, error rates can fluctuate across problems in
a workspace. Less-skilled readers tend to have higher er-
ror rates, i.e., Mumperofinconectansvers - than skilled readers
on all math problems, not just those related to reading, M
= 0.45, SE = 0.0002 for less-skilled readers in this sample
and M = 0.35, SE = 0.0001 for more skilled readers. To
compensate for this baseline difference, we calculated the
mean difference in error rates for each combination of skills
within a lesson. Subtracting the mean difference in error
rates from a less-skilled reader’s individual error rate gave
us their corrected error rate for that problem. We then used
a Wilcox test to determine if corrected aggregate error rates
for less-skilled readers were significantly higher than more
skilled readers for a given problem. 4,446 out of 9,421 word
problems across 74 workspaces showed significant deviation
in error rates based on reading ability and were flagged for
potential readability concerns.

2.2 Acquiring Readability Metrics

We took an exploratory approach to including candidate
readability metrics. We first included multiple popular read-
ability formulas. We next considered that even if the formula
as a whole was not predictive of MWP readability, elements
of the formula might be. Indeed, the simple measure of sen-
tence count predicted significant variance in performance in
Walkington et al. [44]. We then calculated measures of
vocabulary complexity. Here we included Shannon entropy
[38]. Though not a typical measure of readability, prediction
of the next word in a sentence is believed to play a role in lan-
guage processing [12, 25]. Texts with very low predictability
may be difficult to process, reflecting low readability.

The fourth category reflected syntactic considerations within
MWPs. These measures look at the structure and relation-
ship among the sentences. Finally, semantic metrics consider
the relationship between the text and other texts. Texts
which repeat common patterns from other texts may be eas-
ier to process [29].

We included multiple sometimes correlating metrics in or-
der evaluate a range of features, and nuances of each mea-
sure may affect their contributions to the models. Below
we briefly define each of our 32 metrics. However, while we
expected high correlation among the variables and included
models robust to correlation in our analysis, some variables
were nearly perfectly correlated, i.e., 7 > 0.90. When this
occurred, we dropped one of the variables as it was nearly
fully explained by an alternate variable. This left 28 metrics
for inclusion in the models Figure 1 illustrates these corre-
lations. Variables which were dropped are noted in their
description below.

2.2.1 Traditional Readability Formulas
All traditional readability formulas were calculated using the
textstat library [5]. For all metrics, except FRE, higher

values indicate more difficult texts.

e Flesch Reading Ease (FRE): 206.835 — 1.015 x ASL —
84.6 x ASW, where ASW is average syllables per word
and ASL is the average sentence length [13].

e Flesch-Kincaid Grade Level (FKGL): 0.39 x ASL +
11.8 x ASW — 15.59 [22]. FKGL is a modified form of
FRE and their correlation is almost perfectly negative,
r = -0.93. We kept FRE and dropped FKGL from
additional analyses.

e Gunning Fog Index (GFI):
0.4 x (ASL 4 100 x complex words ) 7],

total words

e Automated Readability Index (ARI):
4.71 x (charactersy 4 () 5 x AST, — 21.43 [39].

words

e Coleman-Liau Index: 0.0588L — 0.296S — 15.8, where
L is average number of letters per 100 words and S is
average number of sentences per 100 words [28]. This
metric correlated highly with ARI, » = 0.91. As ARI
is generally considered more reliable for short texts, it
was dropped from analysis.

e SMOG Index: 1.0434/30 x complexwords 4 371991 [39].

e New Dale-Chall (NDC): 0.1579 x (difficult words 7 9) 4
0.0496 x ASL where difficult words are words which do
not occur in a corpus of 3,000 frequent words [7].

. words long words x 100
o LIX: sentences + words [4]

e Spache Readability (SR): 0.141 x ASL + 0.086 x
percentage of unfamiliar words + 0.839 [40].

2.2.2  Basic Text Structure Metrics
All simple text characteristics were calculated using the Nat-
ural Language Toolkit (NLTK) for tokenization [6].

e Character Count: Total number of characters exclud-
ing spaces correlated nearly perfectly with word count,
r = .99, and was dropped from the analysis.

e Word Count (WC): Total number of tokens identified
by NLTK’s word_tokenize() function

e Sentence Count (SC): Total number of sentences iden-
tified by NLTK’s sent_tokenize() function

e Average Word Length (AWL): Mean number of char-
acters per word

e Average Sentence Length (ASL): Mean number of words
per sentence

2.2.3 Vocabulary Metrics

Variables related to vocabulary were calculated using spaCy’s
en_core_web_lg pipeline for lemmatization and token classi-
fication.

e Type-token Ratio (TTR): Ratio of unique lemmas to
total words. Higher values indicate a wider range of
vocabulary within the text.



e Lexical Density (LD): Ratio of content words (exclud-
ing stop words) to total words. Higher values indicate
more information heavy text.

e Hapax Ratio (HR): Ratio of words appearing exactly
once to total unique words. Higher values indicate a
wider range of vocabulary within the text.

e Shannon Entropy (SE): H = — "7, pi log,(pi), where
pi is the probability of word i appearing in the text,
calculated as the frequency of the word (according
to FregDist in NLTK) divided by the total number of
words in the text.

e Average Syllables per Word (ASW): Average num-
ber of syllables in each word of the text. This vari-
able correlated strongly with FRE, r = -0.93, and was
dropped.

e Complex Word Count (CWC): Number of words with
three or more syllables

2.2.4  Syntactic and Coherence Metrics
Measures related to the syntax of the text were calculated
using spaCy’s dependency parser [19].

e Clause Ratio (CR): Ratio of dependent clauses to total
clauses

e Mean Sentence Similarity (MSS): Mean cosine similar-
ity between consecutive sentence vectors reflects the
coherence of sentence pairs. When a text had only one
sentence (n = 221), this value was set to 1 to reflect
perfect coherence with itself.

e Standard Deviation of Sentence Similarity (SDSS): Stan-
dard deviation of cosine similarities between consecu-
tive sentence vector reflects the variation in coherence
between sentence pairs. When a text had only one or
two sentences (n = 980), this value was set to 0 to
reflect lack of variation in the mean.

2.2.5 Semantic Metrics

Vector representations were generated using three methods:
spaCy’s en_core_web_lg document embeddings, pre-trained
Word2Vec embeddings from Google News accessed via gen-
sim, and custom, latent semantic analysis based, document
embeddings generated using TF-IDF vectorization followed
by dimensionality reduction (Truncated SVD) on a corpus of
31,008 MATHia problems (each problem having at least one
sentence and more than seven words of text). We included
custom document embeddings because semantic overlap with
other math problems may be more informative to readabil-
ity than overlap with more general text embeddings. We
denoted these variables by what they measure and their vec-
tor representations (e.g., spaCy Cosine Similarity, gensim
Cosine Similarity, Custom Cosine Similarity).

For each vector representation, we computed three metrics
creating 9 variables:

e Cosine similarity (CS): Cosine similarity between each
problem’s vector and the corpus centroid (the mean of
all problem vectors) to assess how typical a problem’s
language is relative to the full corpus.
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Figure 1: Correlation Plot of Readability Metrics

e Magnitude (M): Euclidean norm of the 100-dimensional
for custom LSA embedding and 300 dimensions for the
pooled spaCy and Word2Vec embeddings. Higher val-
ues indicate greater semantic coherence or alignment
with dominant topics in the corpus.

e Neighbor similarity (NS): The mean cosine similarity
between a problem’s vector and its five nearest neigh-
bors. This reflects how consistent or typical the lan-
guage is within a local group of similar texts.

2.3 Model Selection and Evaluation

After flagging problems as posing potential readability con-
cerns for less-skilled readers, we sought to test how well
readability metrics could classify problems as flagged or not
flagged. The problems were spread across 72 different lessons
and a given problem within a lesson had more similar text
features to other problems within the same lesson than to
the broader set problems. We included lesson type as a final
predictive variable in the models to account for this varia-
tion between lessons. The readability metrics account for
additional variance beyond what can be explained by lesson
type alone.

Scenarios for MWPs in MATHia are sometimes repeated
across multiple problems. Each problem may have different
numbers, names, or minor contextual deviations, but prob-
lems within a given scenario are more similar to one another
than to the broader set of MATHia problems. To avoid over
fitting, we split the data into training and test sets, assigning
80% of the scenarios to training and 20% to testing. Thus,
performance on the test set reflects the model’s ability to
generalize to new scenarios.

We evaluated five models with the following configurations:

1. Random Forest (RF): We trained a random forest clas-
sifier using the ranger package with 1000 trees and
permutation-based variable importance measures [46].
Hyperparameter optimization via grid search yielded a
final model with an mtry value of 5, the Gini impurity
criterion for node splitting, and a minimum node size
of 10 observations.



2. Elastic Net: A penalized logistic regression was imple-
mented using the Elastic Net method with a = 0.5,
combining L1 (LASSO) and L2 (Ridge) regularization
[47, 15]. The lambda parameter was tuned over a se-
quence of 10 values ranging from 0.001 to 0.1.

3. Boosted Model: We implemented gradient boosting
using XGBoost for binary classification [8]. The model
was configured with 100 boosting rounds, a maximum
tree depth of 6, and a learning rate of 0.3. To mitigate
over fitting, both column and row subsampling were
applied at 80%, and the minimum child weight was
set to 1.

Neural Network: A feed-forward neural network was
developed using the nnet package [42]. The network
architecture was optimized by testing 5 candidate con-
figurations. The model was trained for a maximum of
1000 iterations with early stopping criteria to ensure
convergence without over fitting.

5. Support Vector Machine (SVM): An SVM classifier
using a Radial Basis Function (RBF) kernel was em-
ployed for non-linear classification, with default hyper-
parameters [41, 20].

We tested the random forest for its ability to capture non-
linear relationships and handle interactions, an elastic net to
examine linear relationships while managing multicollinear-
ity, a boosted model for its iterative optimization, a neu-
ral net for potential complex patterns, and an SVM for its
effectiveness with high-dimensional data. This diverse set
of approaches helped identify which modeling strategy best
captured the relationships between our predictors and read-
ability metrics.

All models were trained using 3-fold cross-validation with
the caret package in R for statistical programming [24].
Model performance was evaluated using the Area Under the
Receiver Operating Characteristic curve (ROC-AUC).

3. RESULTS

3.1 Descriptive Statistics

Table A.1 in Appendix A provides all mean and standard
error values for each metric split by whether or not the
problems was flagged for potential readability concerns. Al-
though some metric comparisons showed no visible differ-
ence in values based on problem flag (e.g., FRE: M =82 for
both groups), others demonstrated larger differences, par-
ticularly in structural elements like word count (M =82 for
non-flagged problems vs. M=70 for flagged) and sentence
count (M=5.5 for flagged problems vs. M=4.8 for non-
flagged problems. Both of these mean differences are infor-
mative on their own. Shorter texts appear at face value to
be associated with problems that are more difficult for less-
skilled readers than we would typically expect. However,
mean differences may mask more complex patterns in the
data. Following analysis of variable importance, we looked
at the shape of the relationships between the top four vari-
ables and the problems inferred readability.

3.2 Models
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Fit statistics for each model are provided in Table 1. The
random forest had the best overall performance on the hold
out test set. The results and variable importance rankings
(see Table 2) suggest that after accounting for features of
specific lessons, readability characteristics are able to ac-
count for some remaining variance with four of the five types
of variables included in this study emerging as the most im-
portant readability metrics.

Table 1: Performance Metrics Comparison Across Different
Models

Model Type AUC Acc. Sens. Spec.
Random Forest 0.75 0.70 0.69 0.71
Elastic Net 0.65 0.60 0.67 0.52
XGBoost 0.62 0.578 0.67 0.47
SVM 0.69 0.65 0.72 0.57
Neural Net 0.65 0.62 0.67 0.56

Table 2: Variable Importance Scores (Random Forest)

Variable Importance
Lesson 100.00
Word Count 28.99
Custom Magnitude 20.13
Type-Token Ratio 19.86
Clause Ratio 19.24
Mean Sentence Similarity 18.33
spaCy Cosine Similarity 17.63
Standard Deviation of Sentence Similarity 17.35
Word2Vec Cosine Similarity 15.70
Custom Neighbor Similarity 15.29
Hapax Ratio 15.07
spaCy Neighbor Similarity 14.84
Word2Vec Neighbor Similarity 14.65
Shannon Entropy 14.61
Sentence Count 13.35
Smog Index 10.92
Spache Readability 9.03
Dale Chall Score 7.29
Custom Cosine Similarity 6.97
Word2Vec Magnitude 6.05
Gunning Fog Index 5.13
Automated Readability Index 4.27
spaCy Magnitude 3.99
Average Word Length 3.90
Lexical Density 3.56
Average Sentence Length 3.55
Complex Word Count 2.83
Flesch Reading Ease 2.18
LIX 0.00

Partial dependence plots can aid in understanding the out-
comes of a random forest as they show how a feature affects
the predicted outcome. Figure 2 shows the partial depen-
dence plots for the top 4 readability metrics. The plots
reveal non-linear relationships which generally show that
higher values of each variable are more likely to predict a
problem to be flagged for potential readability issues. Re-
versing the pattern in the means, higher word counts were
associated with higher probability that the model would
classify a problem as having potential poor readability. Simi-
larly straight forward relationships were visible for clause ra-



tio and custom magnitude. Having more dependent clauses
as compared to independent clauses led the model to give
the MWP a higher probability of having poor readability.
Higher custom magnitude values, indicating more specific
or distinctive semantic content, were also associated with in-
creased probability of readability concerns. However, type-
token ratio showed a more complex pattern, where both very
low and very high lexical diversity appeared to increase text
difficulty, suggesting that some lexical variation may support
reading comprehension of MWPs.

4. DISCUSSION & CONCLUSION

Solving math word problems requires both mathematical
knowledge and reading comprehension ability [44]. For less-
skilled readers, the language of math problems can pose a
significant barrier to accessing the math content. This study
aimed to identify linguistic features that predict readability
of MWPs for these students. Using data from MATHia, we
first identified problems where less-skilled readers struggled
more than expected. We then calculated a range of linguistic
metrics for these problems and used them to train a random
forest which can predict the probability that a less-skilled
reader will struggle with a problem. Analysis of the variable
importance revealed several key insights into understanding
linguistic features important to MWP readability.

First, traditional readability metrics were not important to
the model’s performance. The smog index was the highest
ranking of these but fell below most other features. Sec-
ond, custom LSA magnitude emerged as more important
to the model than magnitude calculated using SpaCy or
Word2Vec and as more important than measures of distance
between texts. This finding highlights the potential for using
document embeddings from a specialized corpus of MWPs.
Finally, the top four variables after ‘Lesson’ represented
distinct categories with word count being the most impor-
tant to the model. Partial dependence plots of these vari-
ables suggested the relationships were not linear and had
sharp boundaries. Any model or formula developed to as-
sess MWP readability will need to be account for this non-
linearity.

These findings illustrate the difficulty in identifying readabil-
ity metrics which are important to improving comprehension
of MWPs. Although the model was able to distinguish be-
tween MWPs where less-skilled readers had more or less dif-
ficulty, typical measures of readability were not important to
these predictions. Instead, a simple measure of word count
was most important to the model. It is possible that MWPs
with higher word counts are intimidating to less-skilled read-
ers, prompting less engagement and greater tendency to rely
on hints or guessing. However, recent findings using these
same word problems found that such behaviors actually de-
cline as word count increases [21]. Given these findings, it
seems more likely that the importance of word count reflects
the greater demand on reading for longer texts where critical
information is embedded in longer narratives.

The findings here highlight the need for a more refined ap-
proach to text simplification in educational materials. Read-
ability assessment of MWPs may require the development of
an MWP corpus of problems to establish a semantic space
against which new problems can be evaluated. Future re-
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search should explore and test interventions that optimize
specific linguistic factors to enhance accessibility and com-
prehension for struggling readers. This research may unlock
additional insights into how to write readable MWPs, ulti-
mately improving equity in math education.
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APPENDIX

A.

APPENDIX A

Table A.1: Descriptive Statistics by Problem Type

Metric Not Flagged Flagged Less Readable
Mean (SD) Range Mean (SD) Range
Readability Indices
FRE 82 (12) 15-115 82 (12) 16-114
GFI 6.5 (1.8) 2.1-15.3 6.5 (1.8) 1.6-14.8
ARI 6.01 (2.4) -1.9-15.7 6.04 (2.4) -1.6-15.9
SMOG 7.4 (3.0) 0-15.6 6.5 (3.6) 0-15.6
NDC 7.8 (1.3) 5.2-14.2 8.1 (1.4) 5.3-15.7
LIX 31.6 (8.6)  5.6-65 31.4 (85)  7.3-65
SR 3.5 (0.7) 1.6-6.7 3.6 (0.7) 1.9-6.6
Basic Text Metrics
WC 82 (44) 8-319 70 (38) 10-318
sC 5.5 (2.7) 1-17 4.8 (2.4) 1-16
AWL 4.0 (0.4) 2.7-6.3 4.0 (0.4) 2.7-5.5
ASL 15.0 (3.5) 5-36 15.1 (3.6) 5-35
Vocabulary Metrics
TTR 0.57 (0.2)  0.2-1 0.59 (0.2)  0.2-1
LD 0.57 (0.06)  0.4-1 0.58 (0.06) 0.4-1
HR 0.62 (0.1) 0.1-1 0.64 (0.1) 0.1-1
SE 151 (0.1) 0819  1.49(0.1)  1.0-1.9
CWC 7.1 (4.0) 0-22 6.4 (3.5) 0-22
Syntactic and Coherence Metrics
CR 0.52 (0.4) 0-3 0.48 (0.4) 0-2.5
MSS 0.71 (0.1) 0.2-1 0.70 (0.1) 0.0-1
SDSS 0.1 (0.1) 0-0.4 0.1 (0.1) 0-0.4
Semantic Similarity
Cosign Similarity
Custom 0.40 (0.1) 0.1-0.8 0.39 (0.1) 0.0-0.8
SpaCy 0.88 (0.07) 0.3-1 0.87 (0.07) 0.3-1
Wav 0.79 (0.07)  0.4-0.9  0.78 (0.07) 0.3-0.9
Magnitude
Custom LSA 0.5 (0.2) 0.1-0.9 0.5 (0.1) 0.1-0.9
SpaCy 29.5 (2.7)  20-40 29.1 (2.8)  19-40
W2av 1.0 (0.1) 0.8-2.0 1.0 (0.1) 0.8-2.2
Neighbor Similarity
Custom 1.0 (0.1) 0.6-1 1.0 (0.1) 0.6-1
SpaCy 1.0 (0.0) 0.9-1 1.0 (0.0) 0.7-1
Wav 1.0 (0.0) 0.7-1 1.0 (0.0) 0.8-1



