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ABSTRACT 
In educational systems, predictive models face significant chal-
lenges during initial deployment and when new students begin to 

use them or when new exercises are added to the system due to a 
lack of data for making initial inferences, often called the cold start 
problem. This paper tests logitdec and logitdecevol, "evolutionary" 
features within the Logistic Knowledge Tracing (LKT) framework. 
These features appear ideal to mitigate cold starts when there is 
very little data to train the model as well as when there is no prior 
data for the students and items. Logitdec, which is applied here to 
individual students, is a log-transformed running ratio that employs 
exponential decay to prioritize recent student performance. At the 

same time, logitdecevol is the same log-transformed ratio of suc-
cesses and failures that uses prior observations for the knowledge 
component (KC) across all students.  Evaluated on three datasets 
using temporal cross-validation, our results show that models com-
posed with logitdec and logitdecevol outperform traditional 
methods (e.g., Additive Factors Model (AFM), Bayesian 
Knowledge Tracing (BKT), and Elo) in early prediction accuracy. 
The simplified 7-parameter LKT model outperformed alternatives 

with very little training data (e.g., hundreds of observations and fit 
better than alternatives even if they were trained on 10x more data. 
The proposed LKT model’s simplicity (4 regression coefficients, 3 
nonlinear parameters to compute input features) ensures interpret-
ability, computational efficiency, and generalizability, making it 
ideal for deployment in systems that use knowledge tracing to guide 
pedagogy.  

Keywords 
Logistic Knowledge Tracing, cold start problem, student modeling, 
knowledge tracing. 

1. INTRODUCTION 
In large-scale educational systems, a fundamental challenge is how 
to effectively model student performance when data are still sparse. 
This sparsity is especially problematic during deployment and for 
new students and items, as predictive models lack historical data 
for accurate assessments, leading to the “cold start” problem. Ad-

dressing this issue requires innovative approaches that can leverage 
limited information while minimizing the inaccuracies inherent to 
such early stages. 

To consider models cold-start properties it is useful to define the 
taxonomy of knowledge tracing model cold starts.  Table 1 shows 
these levels, which include global model parameters, student apti-
tude, and KC-specific difficulties. At the highest level, most, if not 
all, models tend to need coefficients, transition weights, link 
strength, or some other representation that allows the scaling of ef-

fects from the data into quantitative predictions about the future 
given this data. This involves adjusting model parameters such as 
coefficients or weights to align predictions with observed data 
trends. We call this level of cold start the global cold start problem.  

Another level is the student's overall performance, which greatly 
helps a model capture prior knowledge and aptitude. A model can 
capture global averages but still do poorly with individual differ-
ences. Much prior research has investigated how student aptitude 
(e.g. [8]) can be estimated and even asked whether it is ethical to 

estimate some things based on characteristics such as race or gen-
der. Some researchers argue that including demographic variables, 
such as race, in cold-start solutions risks amplifying systemic biases 
and overgeneralizing predictions due to sparse data [2]. They con-
tend that such an approach may reinforce deterministic 
assumptions, like demographic destiny, and undermine trust in the 
system. Indeed, much prior work has involved inferring fixed val-
ues for each student (e.g. the Additive Factors Model (AFM)[3]), 

which only works as enough data is accumulated.  

For example, recent work on csKT deep learning model attempts to 
mitigate the cold-start problem by introducing a kernel bias mech-
anism, which enhances the model's ability to generalize from short 
interaction sequences to longer ones [1]. Traditional knowledge 
tracing models struggle when student data is sparse, often leading 
to unreliable predictions early in the learning process. The kernel 
bias mechanism addresses this by penalizing attention weights 

based on sequence position, ensuring that the model prioritizes re-
cent interactions while still retaining useful historical information. 
This approach not only improves predictive stability but also allows 
csKT to effectively handle growing student interaction sequences 
without suffering from performance degradation. We use a similar 
approach, but in the context of logistic regression. 

Then there is the KC cold start issues, both between and within stu-
dents. First, there is the cold start problem in the model's knowledge 

of the KC's difficulty levels across students. Typically, such values 
are used to seed predictions for new students, but they are only ac-
curate if sufficient data is fit first. Typically, these values have been 
estimated after the fact with full knowledge of the data, which often 
leads to overfitting. While using a model with random effects is one 
solution [17], such models can be intractable for large student pop-
ulations with many items, and tend to be slow regardless. In such 
cases, a better solution might be to use a process more akin to 
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Bayesian updating, where skill difficulty is updated continuously 
based on each piece of new data that is recorded.  

This KC-level issue has been solved in various ways in deep-learn-
ing KT models. The GSKPM [15], EAKT [7], and SINKT [6] 
models all address cold-start problems but focus on different as-

pects of KC modeling. EAKT relies on Large Language Models 
(LLMs) to estimate question-specific attributes like difficulty and 
ability requirements, dynamically adjusting these attributes with a 
Graph Attention Network to align with student cognitive character-
istics. In contrast, GSKPM emphasizes leveraging graph-based 
relationships between KCs and knowledge domains through a two-
stage hyper-aggregation process, incorporating local and global KC 
relationships for richer representations. SINKT also utilizes LLMs 

but focuses on generating semantic embeddings for questions rather 
than estimating explicit attributes, allowing it to better generalize 
to unseen KCs and questions. While EAKT enhances question-
level feature learning and SINKT improves question representation 
through pre-trained embeddings, GSKPM uses structural relation-
ships among KCs to mitigate sparsity and cold-start issues at a 
broader conceptual level. Each method improves predictive accu-
racy but differs in its reliance on either question-level features 

(EAKT, SINKT) or structural interdependencies (GSKPM). These 
solutions all involve new layers of complexity for model creation. 
In contrast, our solutions here are more traditional since they use 
the data itself to estimate KC and student knowledge efficiently. 

The second of these KC cold start levels is the well-described cold 
start in understanding the student's proficiency with any KC over 
repetitions of this KC. Without any data for a student, there is no 
way to predict the performance of the student for a KC meaning-

fully except by using the global and between-student estimates 
described in the previous paragraphs. So, models have developed 
ways to track this change. The AFM model is the most basic exam-
ple of this since it does not adapt to proficiency; rather, it only 
tracks the changes in performance due to learning. Other models 
like PFA and BKT are adaptive and result in predictions depending 
on performance. These models each are solutions to the cold start 
KC problem with students. Indeed, almost all modern knowledge 
tracing models are adaptive and designed to identify current perfor-

mance for KC within students.  

Table 1. Taxonomy of KT Cold Stating 

Level Description 

Global Cold 
Start 

Difficulty in scaling effects into predic-
tions when no data is available. 

Student Perfor-

mance 

Challenges in estimating prior knowledge 

or aptitude without initial data. 

Between-Student 
KC Level 

Difficulty in estimating the difficulty level 
of a KC across multiple students. 

Within-Student 
KC Level 

Difficulty in predicting a student's profi-
ciency with a KC across repetitions. 

2. SOLUTION FOR COLD-STARTS IN 

LKT (LOGISTIC KNOWLEDGE TRAC-

ING) 
We test an LKT feature that addresses these cold start problems in 
two forms: logitdec and logitdecevol. Logitdec at the student level 

has been introduced previously and compared with using fixed in-
tercepts for fitting entire datasets [12]; however, it was not revealed 
in that work that it also greatly improves cold-start problems for 
new students. The logitdec feature operates within the Logistic 
Knowledge Tracing (LKT) framework and is designed to model the 
temporal relevance of past student interactions dynamically and 

adaptively. Specifically, it tracks a student's success and failure 
counts. Instead of treating all events equally, logitdec applies an 
exponential decay function to these counts so that more recent in-
teractions are weighted more heavily than older ones.  
Consequently, if a student struggles early on but improves over 

time, the logitdec feature ensures that their most recent successes 
have the most influence on the model's prediction. 

Logitdec =  log (
1 ⋅ 𝑑𝑤 +∑ 𝑣𝑖

𝑤
𝑖=1 ⋅ 𝑑𝑤−𝑖

1 ⋅ 𝑑𝑤 +∑ (1− 𝑣𝑖)
𝑤
𝑖=1 ⋅ 𝑑𝑤−𝑖

) 

In this equation: 

• Ghost Attempt: Add 1 ghost success in the numerator 
and 1 ghost failure in the denominator, ensuring the ratio 
never becomes undefined, while also resulting in an un-

biased prediction of 0 when there is no data on the 
student. While ghost attempts could be varied as a param-
eter, we have never done this, primarily to maintain 
model simplicity. It also seems likely that adjustments in 
the global intercept, coefficient on the feature, and decay 
parameter are quite sufficient. 

• Decay : Multiply each observation by 𝑑𝑤−𝑖, giving more 

weight to recent events. 

• Weighted Successes (Numerator): 1 ⋅ 𝑑𝑤 +∑ 𝑣𝑖
𝑤
𝑖=1 ⋅

𝑑𝑤−𝑖i, capturing both ghost and actual successes. 

• Weighted Failures (Denominator): 1 ⋅ 𝑑𝑤 +∑ (1 −𝑤
𝑖=1

𝑣𝑖) ⋅ 𝑑
𝑤−𝑖, capturing both ghost and actual failures. 

To address the challenges posed by sparse data (or no data), 
logitdec incorporates "ghost" successes and failures, which add a 
baseline count of 1 to both decayed successes and failures. This 
smoothing mechanism prevents the feature from becoming unde-
fined or overly skewed when very few interactions are available, as 
is common in cold-start scenarios. For instance, if a new student 

has only one or two interactions, the ghost values ensure that pre-
dictions remain stable and robust, mitigating the volatility that 
could arise from relying solely on raw, limited data. Ultimately, the 
number of ghost attempts could be another factor in this mecha-
nism, we did not explore that here. 

This mechanism shares conceptual similarities with the kernel bias 
used in csKT, a model designed specifically to handle the cold-start 
problem in knowledge tracing [1]. Both approaches dynamically 
adjust the relevance of past interactions, prioritizing the most per-

tinent data while discounting older, less relevant information. 
Kernel bias achieves this by introducing a logarithmic decay func-
tion into the attention mechanism of csKT, emphasizing the 
temporal distance between interactions. Similarly, logitdec's expo-
nential decay function models the natural forgetting curve, 
capturing how the impact of prior successes and failures diminishes 
over time. 

Our second investigational feature provides a theoretical solution 

to this cold-start problem by pooling information across the entire 
population of students. Rather than focusing solely on a single 
learner’s sequence of attempts, logitdecevol constructs an evolving, 
decay-weighted estimate of KC performance that potentially draws 
on every prior response from every student. This effectively allows 
new students to “inherit” informational priors from those who came 
before them, enabling the model to produce more stable and in-
formed predictions immediately—even before the new student has 

produced a substantial performance history of their own. 
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Conceptually, logitdecevol can be viewed as a population-level, 
time-sensitive parameterization process. It acts as a running sum-
mary of the ecosystem’s knowledge state. Continuously 
aggregating and updating a log-odds measure of success weighted 
by temporal decay ensures that the most recent and relevant pat-

terns in the entire dataset shape the feature estimates. Older data 
still matter, but their influence gradually fades, ensuring that the 
model’s evolving features remain representative of current condi-
tions. This item-level calibration helps ensure that even a brand-
new student who has made no prior attempts, is immediately placed 
within a well-informed reference frame. The model already has a 
sense of which items are generally more or less difficult, informed 
by the broad, evolving consensus of previous learners’ outcomes. 

From a theoretical standpoint, logitdecevol thus embraces a collec-
tive knowledge modeling perspective. Its emphasis on decayed, 
population-wide data allows it to handle cold start situations grace-
fully. Instead of starting from scratch each time a new student 
arrives, the model leverages the continuously updated population 
knowledge state to provide immediate, contextually informed pre-
dictions.  

3. METHODS 

3.1 Datasets 
We chose 3 datasets that were moderately large (large enough to 
show stable fit) and that varied in types of practice. Only the first 
attempts at each step were retained to ensure a clean learning tra-
jectory. Where applicable, records missing KC assignments were 

removed, and spacing predictors were computed to capture re-
cency. Full project code is available at: https://github.com/Optimal-
Learning-Lab/EDM-2025.  

3.1.1 Cloze Practice Data 
The statistics cloze dataset included 58,316 observations from 478 
participants who learned statistical concepts by reading sentences 
and filling in missing words. Participants were adults recruited 
from Amazon Mechanical Turk. There were 72 KCs in the dataset, 
derived from 18 sentences, each with one of four possible words 

missing (cloze items). The number of times specific cloze items 
were presented and the temporal spacing between presentations 
(narrow, medium, or wide) was manipulated. The post-practice test 
(filling in missing words) could be after two minutes, one day, or 
three days (manipulated between students).  Data is available at 
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5513.  

3.1.2 Blocked vs Interleaved Instruction Data 
The dataset from Experiment 1 of Patel et al. (2016) includes 
22,195 transactions from 70 sixth-grade students in a Pittsburgh-

area school. Students interacted with an online intelligent tutoring 
system for fraction arithmetic, specifically fraction addition and 
fraction multiplication. We used student identifiers (Anon.Stu-
dent.Id) and KC identifiers (KC..Field.), and step-level correctness 
data as key variables. There were 16 KC coded by the original in-
vestigators. The dataset captures stepwise student responses, 
including correctness feedback, hint requests, and problem-solving 
strategies. The problems involved fraction addition with and with-

out common denominators and fraction multiplication, allowing 
analysis of error patterns and learning trajectories. Data is available 
at https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1706. 

3.1.3 Mathia Data 
The MATHia dataset included 119,379 transactions from 500 stu-
dents from the unit Modeling Two-Step Expressions for the 2019-
2020 school year. We used the student (Anon.Student.Id), MATHia 

assigned skills (KC..MATHia.). There were nine KCs coded in the 
dataset. For simplicity, we chose not to use the unique steps as an 
item in our models. This dataset included skills such as “write ex-
pression negative slope” and “enter given, reading numerals”. Data 
at https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=4845.  

3.2 Models 

3.2.1 LKT variants 
There is no canonical logistic knowledge tracing (LKT) model, 

since it is a framework, not a specific model. For the LKT models 
we tested, each model name represents a combination of features 
used in logistic regression to predict student performance. These 
features encode various aspects of student learning history, KCs, 
and temporal dependencies. Here are the features we used in the 
following model comparisons: 

• int𝑆 (Student Intercept). This feature assigns an individ-
ual intercept to each student using one-hot encoding. This 
means that each student has a unique baseline effect, cap-

turing differences in their overall ability or learning style. 

• int𝐾𝐶 (KC Intercept). This feature assigns a unique inter-
cept to each KC. It accounts for the inherent difficulty of 
different skills or concepts, ensuring that harder KCs 
have appropriately lower baseline probabilities. 

• lineafm$ (Additive Factors Feature for KCs). This fea-
ture models student learning by tracking the number of 
prior practice encounters with each KC. It assumes a lo-
gistic relationship between the count of prior attempts on 

a KC and the probability of success, allowing us to quan-
tify learning gains from repeated practice. 

• logitdec (Logit-Based Success/Failure Decay for Stu-
dents). Described previously. We set d to .98, which 
tends to be a good default, since it results in the trailing 
window having enough stability to consistently track per-
formance while still adjusting relative rapidly. We could 
have conceivably optimized this parameter but with the 
90 fits across multiple models we were concerned the 

nonlinear optimizations for this parameter would be slow 
and provide little additional gain. 

• Logitdecevol(Logit-Based Success/Failure Decay for 
KCs). Described previously. We set d to .98. 

• recency (Time Decay of Prior Practice Effects). This fea-
ture models how the passage of time affects retention, 
using a power-law decay function of seconds in the past. 
The idea is that more recent interactions should have a 
stronger impact on performance predictions, reflecting 
the well-established forgetting curve. We set d to .25. 

• logsuc (Success-Only Practice Feature). The natural log 
of 1 + the prior success. This feature is similar to lineafm 
but only considers past successes when counting prior 
practice attempts. The natural log causes decreasing mar-
ginal returns. 

3.2.1.1 Interpreting Model Combinations 
Each logistic regression model combines different features to pre-
dict student outcomes. For example, our 1st model, the base AFM 
model structure: 

𝑖𝑛𝑡𝑆 + 𝑖𝑛𝑡𝐾𝐶 + 𝑙𝑖𝑛𝑒𝑎𝑓𝑚$𝐾𝐶 

Uses intercepts for students and KCs, with a linear effect of prior 

attempts on the logit score used to compute the logistic regression 
probability. In the version, all the parameters are optimized as fixed 
effects, which can make a model less generalizable due to 

405



overfitting problems inherent in this model [17]. While using ran-
dom effects could be one solution, random effects tend to be 
unreliable as data gets larger, precluding them practically [5]. The 
$ indicates that each KC has its own coefficient to describe practice 
attempts. 

Our 2nd model is a test of whether logitdec can replace the fixed 
student intercept: 

𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑆 + 𝑖𝑛𝑡𝐾𝐶 + 𝑙𝑖𝑛𝑒𝑎𝑓𝑚$𝐾𝐶 

Our 3rd  model is a test of whether logitdecevol can replace the fixed 
KC intercept: 

𝑖𝑛𝑡𝑆 + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑒𝑣𝑜𝑙𝐾𝐶 + 𝑙𝑖𝑛𝑒𝑎𝑓𝑚$𝐾𝐶  

Our 4th model replaces both intercepts with our new features, in-
cluding decayed success/failure for both students and KCs across 
students, creating a more adaptive learning model. 

𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑆 + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑒𝑣𝑜𝑙𝐾𝐶 + 𝑙𝑖𝑛𝑒𝑎𝑓𝑚$𝐾𝐶 

Our 5th model takes the 4th model and replaces the lineafm (tracking 
all opportunities) with linesuc (tracking successes for a KC) from 

the performance factors analysis logistic regression model [11]. 
Also, rather than assuming each KC has a different logsuc slope, 
we assumed a single coefficient characterizing all KC learning 
curves. Logsuc is implicitly adaptive since it only increases predic-
tions following success, causing it to gain more quickly for easy 
KCs and known KCs 

𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑆 + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑒𝑣𝑜𝑙𝐾𝐶 + 𝑙𝑜𝑔𝑠𝑢𝑐𝐾𝐶 

Our 6th model adds time-based forgetting, capturing how recency 
of the KC affects student performance. 

𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑆 + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐𝑒𝑣𝑜𝑙𝐾𝐶 + 𝑙𝑜𝑔𝑠𝑢𝑐𝐾𝐶 + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦𝐾𝐶 

3.2.2 BKT 
Bayesian Knowledge Tracing (BKT) is a widely used algorithm in 
intelligent tutoring systems to model a student's mastery of specific 
skills over time. It employs a Hidden Markov Model (HMM) 
framework [4], where the hidden states represent whether a student 
has mastered a particular skill, and the observable outputs corre-
spond to the correctness of the student's responses. The model 
operates under the assumption that each skill is either mastered or 
not, and that student responses are binary—correct or incorrect. 

Four key parameters define the BKT model: 

• Initial Knowledge (𝑝(𝐿0)): The probability that a student 
knows the skill prior to any practice. 

• Learning Rate (𝑝(𝑇)): The probability that a student will 
learn the skill after an opportunity to apply it. 

• Slip (𝑝(𝑆)): The probability that a student makes a mis-
take when applying a known skill. 

• Guess (𝑝(𝐺)): The probability that a student correctly 
applies a skill despite not having mastered it. 

These parameters are used to update the probability that a student 
has mastered a skill after each practice opportunity. To implement 
BKT efficiently on large datasets, we utilized the `hmm-scalable` 

package, a command-line utility designed for fitting Hidden Mar-
kov Models at scale. This tool is particularly suited for educational 
data mining applications. We used the following settings: 

• -s 1.3.1: Skill structure (classical BKT) with Conjugate 
Gradient Descent and Hestenes-Stiefel formula. 

• -m 1: Provide metrics AIC, BIC, RMSE 

• -p 1: Report model predictions on the train. 

• -e 0.0000001: Defines the convergence threshold for the 
Expectation-Maximization algorithm. 

• -i 1000: Sets the maximum number of iterations for pa-
rameter estimation. 

3.2.3 Standard ELO 
The Elo rating system, originally devised to estimate players’ abil-

ities in games, has also been used to estimate student performance 

[13, 16]. Elo updates skill estimates based on the difference be-

tween its predictions and actual outcomes. For instance, to update 

player i estimate, the difference between the model prediction 

P(R=1) and the actual result R is multiplied by hyperparameter K. 

The value of K controls the rate of the estimate change. For exam-

ple, with K = .2, if a student answered correctly (R = 1) and the 

model prediction P(R = 1) was .6, the update to 𝜃𝑖 would be +.08. 

𝜃𝑖   =  𝜃𝑖  +  𝐾(𝑅  −  𝑃(𝑅  =  1)) 

Elo has been shown to perform comparably to alternatives previ-
ously [14]. The small number of parameters offers a potential 
advantage when it comes to cold start situations, it only has one 

hyperparameter to estimate. Elo can estimate student skill as well 
as skill and item difficulties, and these estimates update as data ac-
cumulates. However, in the present work Elo only estimated 
student-level and KC-level parameters. The simplicity and ele-
gance of Elo offers a strong baseline when it comes to evaluating 
knowledge tracing models. A potential disadvantage of Elo is that 
it does not account for other aspects of performance such as tem-
poral recency, spacing, or the amount of practice. In the present 

work, the Elo model estimated student and item parameters. 

3.3 Temporal Cross Validation 
For the analysis depicted in Figure 1, we employed a rolling (i.e., 
forward chaining) cross-validation method to properly account for 
the temporal ordering of the data. Specifically, we begin by order-
ing our dataset by time and subsequently split it into 100 folds, fold 
1 first, fold 2 next, etc., and then sequentially expand the training 
set with each iteration of the cross-validation—using folds 1,…,i to 
train and then validated on the subsequent 70 folds (i+1),…,(i+70). 
As seen in the figures, the fit stabilizes well before 30% of the data 
is observed, this allowed us to validate with 70% of the data for 

each of the 30 iterations (for comparability). For the Elo model, the 
training folds were for estimating the K hyperparameter. 

4. RESULTS 
In Figure 1, we see that the logitdec and logitdecevol perform ex-
cellently across all 3 datasets. Models with evolutionary features 
improved faster and with meaningfully less data than alternatives. 
For example, with just 2% of the dataset, an evolutionary feature 
model outperformed BKT or Elo regardless of how much data they 
were trained on. The first LKT model, AFM, was the poorest fit 
across the datasets, even when significant data is accumulated. This 

indicates that the evolutionary features performed better in each 
case than the fixed intercepts despite drastically fewer parameters 
(just 2 for each term rather than the n of the KCs). However, by 
contrasting the separate addition of logitdec and logitdecevol to 
AFM, we can see that the logitdec at the student level provides a 
much larger gain. Indeed, when logitdec is present with 
logitdecevol, there seems to be some indication that there is no ad-
ditional advantage of logitdecevol. Finally, we see that the addition 

of logsuc results in the model producing the best cold-starting per-
formance and dominating the other model across datasets.

406



 

Figure 1. AUC for all models and datasets. Legends are sorted according to the average of the 30 test fits in each line. $ indicates 

coefficient for each level of the feature instead of 1 coefficient for all levels (this is assumed for intercepts). 
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Patterns in Figure 1 for BKT and Elo were interesting. Both proved 
to fit better than AFM and have some relative advantages for the 
cold start problem. Elo, in particular, shows flat performance, 
showing that a minimum size of 1% of data was already adequate 
for our datasets. Neither model, however, worked as well as the 

models with the logsuc feature.  

To compare the parameter estimates between logitdecevol and Elo, 
the scaled final values generated in the dataset were compared be-
tween the LKT model with logitdecevol for KCs and logitdec for 
students and the Elo model parameter estimates for KCs and Stu-
dent. As can be seen in Figure 4, the values were quite similar. 
Student-level and skill-level estimates from the two models were 
highly correlated (see Table 2).  

Table 2. Correlations between Elo parameters and logitdec 

(Student) and logitdecevol (KC) parameters. 

 Cloze MATHia Interleaving 

Student Parameter .96 .83 .73 

KC Parameter .99 .99 .85 

5. DISCUSSION 
In all datasets, LKT models with the proposed features outper-
formed alternatives and were at or near peak accuracy with less than 
5% of the data. Other models frequently required considerably 
more data to reach their peak accuracy. The success of the LKT 
model in addressing cold-start challenges stems from its deliberate 
simplicity, which carries implications for both theoretical research 
and practical implementation in adaptive learning systems. With 
only four coefficients and three nonlinear parameters—such as the 

decay factor d and the ghost attempt weighting—the model 
achieves a rare balance between the predictive accuracy of larger 
LKT models [10] and the computational frugality of Elo. These 
new features included within the LKT framework share many of 
the advantages of the Elo approach to ability and difficulty estima-
tion but allow for the simple integration of additional features such 
as recency and counts of successes and failures. 

Logitdecevol performs somewhat weaker on MATHia, especially 

compared to a simpler model that includes only student logitdec 
parameters and KC intercepts. This may be due to the small number 
of KCs, which allows stable parameter estimation from smaller data 
segments. Notably, models using student intercepts perform poorly, 
indicating that MATHia students exhibit fluctuating baseline profi-
ciency. These performance shifts are better captured by models that 
allow dynamic, rather than fixed, estimates of student ability. 

This computational efficiency is paired with transparency. Each pa-

rameter in LKT maps directly to interpretable constructs: logitdec 
estimates a student's prior knowledge and aptitude, logitdecevol 
measures the difficulty of the items, and the recency factor quanti-
fies the diminishing influence of the most recent past interaction to 
capture changes due to time between practices, while the logsuc 
feature captures the student's total history of success for a KC. Ed-
ucators or system administrators can audit predictions without 
specialized expertise—for example, identifying that a student’s 

70% success probability reflects a lack of recent practice and a 
KC’s moderately high difficulty for their recent practice experi-
ences. This contrasts sharply with "black-box" approaches like 
deep knowledge tracing, where decisions are opaque, and auditing 
requires technical proficiency. The model’s simplicity also reduces 
ethical risks; systemic differences in KC difficulty estimates can be 
traced to instructional gaps rather than opaque algorithmic pro-
cesses, aligning with calls for accountable AI in education [9]. 

Logitdec features are also comparable to Elo parameters (e.g., Fig-

ure 4). The adaptive nature of the logitdec features behaves quite 

similarly to Elo. Thus, an LKT model with logitdec features may 

offer the adaptivity and usefulness of Elo features (e.g., reporting 

skill-level proficiency), with the potential benefit of additional fea-

tures like recency for improving model prediction accuracy. 

Theoretically, LKT challenges the assumption that cold-start solu-
tions necessitate architectural complexity. Its performance suggests 
that temporal decay mechanisms and population-level priors can 

compensate for sparse data more effectively than layered neural 
networks in early interaction regimes [10].  However, the model’s 
simplicity imposes tradeoffs: fixed decay rates overlook individual 
or domain-specific differences in forgetting, and it does not explic-
itly model prerequisite relationships between KCs, unlike graph-
based approaches such as GSKPM [15]. 

5.1 Limitations & Future Directions 
Our results are limited because we did not include deep knowledge 
tracing approaches in our comparison. This is a promising avenue 
for future research. For example, it is useful to contrast csKT and 
LKT, csKT is a deep learning model that addresses cold-start issues 

primarily at the student and KC levels—it trains on many short in-
teraction sequences using kernel bias and cone attention to capture 
nuanced hierarchical and positional relationships. However, to 
learn these complex representations, csKT requires a globally 
trained model on a large dataset (thousands of short interaction se-
quences aggregated from many students). Short sequences between 
50 and 100 interactions each were used. In contrast, the LKT model 
solves the global cold-start issue by leveraging evolutionary fea-

tures like logitdec and logitdecevol to allow for a model with only 
a handful of parameters (7). The LKT features dynamically inte-
grate individual student and population-level information, allowing 
the model to perform well globally even with only 1–2% of the data 
(around 1,000 interactions total across all students).  

5.2 Conclusions 
A resource-constrained edtech startup building a middle school 
math platform could deploy the LKT model with 
logitdec/logitdecevol to achieve immediate personalization without 
costly infrastructure. The model’s efficiency, training on just 

1,000–2,000 interactions, streamlines onboarding for new stu-
dents/teachers and enables real-time adjustments through weekly 
updates. By avoiding complex deep learning infrastructure, the 
team prioritizes pedagogical design over computational overhead. 
As the user base grows, the system’s transparency allows educators 
to audit predictions (e.g., tracing a 65% success probability to low 
recent practice frequency), fostering trust with school partners. This 
lean approach aligns with rapid iteration goals, proving that ethical, 
adaptive AI need not require massive data or engineering resources. 

LKT demonstrates that cold-start challenges can be addressed 
through parsimonious design rather than computational brute force. 
Its efficiency, transparency, and ease of deployment make it partic-
ularly suited for resource-constrained settings. By prioritizing 
interpretability and accessibility, the model advances the goal of 
ethical, scalable, adaptive learning systems that empower—rather 
than overshadow—educators and learners. 
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