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ABSTRACT
Recent research on more comprehensive models of student
learning in adaptive math learning software used an indi-
cator of student reading ability to predict students’ tenden-
cies to engage in behaviors associated with so-called“gaming
the system.” Using data from Carnegie Learning’s MATHia
adaptive learning software, we replicate the finding that
students likely to experience reading difficulties are more
likely to engage in behaviors associated with gaming the
system. Using both observational and experimental data,
we consider relationships between student reading ability,
readability of specific math lessons, and behavior associated
with gaming. We identify several readability characteristics
of specific content that predict detected gaming behavior,
as well as evidence that a prior experiment that targeted
enhanced content readability decreased behavior associated
with gaming, but only for students that are predicted to be
less likely to experience reading difficulties. We suggest av-
enues for future research to better understand and model
behavior of math learners, especially those who may be ex-
periencing reading difficulties while they learn math.

Keywords
reading ability, readability, gaming the system, detector mod-
els, K-12 math

1. INTRODUCTION
Over two decades of research on intelligent tutoring systems
(ITSs) and adaptive learning software has explored data-
driven modeling of student behavior with so-called “detec-
tor”models of patterns of engagement that may indicate, for
example, that a student is potentially “gaming the system”
(e.g., [5, 7, 8, 9, 13]).

Gaming the system is typically described as behavior associ-
ated with a student’s use of learning software and supports
provided by software in a way that might indicate an ef-
fort to make progress without substantive engagement with

learning material (e.g., rapidly guessing or using hints exten-
sively). A substantial body of research explores many facets
of this construct, especially in software for math learning.
Patterns of engagement associated with gaming have been
found in some cases to be, at least, “non-harmful” (e.g.,
[7]) and even potentially to take on productive or helpful
forms, as when students may seek out hints that provide the
answer to a problem-step to provide a worked example on
which they can reflect [34]. Nevertheless, detected gaming
the system has generally been found to be negatively associ-
ated with various short- and longer-term learning outcomes
(e.g., [5, 13, 29, 15]). Researchers have considered software-
specific, content-specific, and related contextual factors and
features (e.g., [9, 21]) that may relate to patterns of gaming
within specific math content. Other research has considered
student-level factors that may predict decisions to engage in
such behavior (e.g., [4, 30]).

Recent work calls for more comprehensive models of student
math learning that include “non-math” factors like reading
comprehension [30, 3]. We focus on the relationship among
inferred reading ability, detected gaming the system behav-
ior, and learning outcomes, relying on both student-level
factors and characteristics of particular math lessons. Repli-
cating a finding that, overall, students likely to experience
reading difficulties are more likely to engage in behaviors as-
sociated with “gaming the system” [30], we focus on features
that track the readability of math content to consider the
extent to which content-level factors related to reading may
help to explain this observed correlation.

If behavior associated with gaming is more likely to occur
across all content for learners who may experience reading
difficulties, then students with reading difficulties may en-
gage in behaviors like rapid help seeking, for example, as a
reasonable strategy to try to make progress. However, stu-
dents may engage in this behavior to a greater extent in con-
tent that could present reading-related obstacles compared
to less reading-intensive content. If so, content-oriented im-
provements to readability, for example, might be an ap-
propriate approach to decrease less productive engagement
(i.e., gaming behavior) and improve students’ learning ex-
periences.

We use data-driven prediction models of students’ reading
ability, a detector model for gaming the system, and sev-
eral potential measures of math lesson readability over data
from several thousand students using adaptive math soft-
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ware. Next, we re-analyze data from a recent experimental
study that found decreased time to completion and greater
mastery rates for content that had been targeted for read-
ability improvements. We suggest avenues for future re-
search to better understand and model behavior of learners,
especially those who may be experiencing reading difficulties
while they learn math.

2. BACKGROUND
2.1 Prior Research
Reading comprehension is closely related to math perfor-
mance [36, 18]. For example, performance on math word
problems has been shown to be strongly correlated with per-
formance in reading comprehension [35]. Our work builds
on prior research that considers students’ reading ability (or
comprehension) during math learning and data-driven de-
tection of behavior often associated with gaming the system
while students use adaptive software.

Richey et al. [30] considered the role of reading compre-
hension within an ITS for math, proposing performance on
an introductory lesson (specifically, error and hint request
counts, or “assistance”) as a proxy for reading ability. This
lesson is designed to introduce students to various features
of the software, including a glossary, user-interface elements
(e.g., an equation solver), and other supports for learning
(e.g., context-sensitive hints). Using this proxy indicator,
they found higher instances of behaviors associated with
“gaming the system” among readers who, according to their
proxy indicator, may be experiencing reading difficulties.
More recent work validated this choice of lesson and devel-
oped a neural network model that uses student performance
within the lesson to predict end-of-year, standardized test
scores for English Language Arts (ELA) [3] that can be used
to infer student reading ability in real-world contexts. Such
contexts, in which student-level reading assessment scores
(or similar indicators of reading ability) aren’t available to
researchers or learning platform developers, are typical with
learning software deployed at scale. We describe this reading
ability prediction model in the next section.

Students’ choices to engage in behavior associated with gam-
ing the system could be explained by student-level factors,
factors about specific pieces (or subsets of) of content, or
both [4, 9]. Baker et al. [9] explore the extent to which fea-
tures of content in adaptive math software predict students’
frequency of gaming the system. They describe a set of 79
features extracted from the problem content of a set of 22
MATHia (then called Cognitive Tutor) lessons, grouping the
features into six factors with principal component analysis.
One factor of the six was statistically significant as a predic-
tor of gaming the system frequency, accounting for 29% of
the variance in observed gaming the system behavior. They
note, “several of the features in this factor appear to cor-
respond to a lack of understandability in the presentation
of the content or task..., as well as abstractness... and am-
biguity... ” [9]. We suggest that this observation can be
further explored by considering readability metrics for math
content.

Gaming the system detectors have also been used to better
understand mechanisms by which interventions may produce
effects on learning outcomes. For example, recent analysis

of experimental data found that (decreases in) gaming the
system fully mediated positive effects on learning from learn-
ers’ use of an educational math game called Decimal Point
[31]. We begin to pursue a similar strategy in what follows,
considering whether positive effects due to an intervention
to improve readability in a math lesson could (partially) be
explained by changes in detected gaming the system behav-
ior.

2.2 Learning Context
We consider data from middle school students working in
MATHia, an ITS for math learning that is used by hun-
dreds of thousands of learners in the United States every
year as a part of their math curriculum [32]. Each grade-
level’s content in MATHia consists of approximately 80 to
120 lessons. Many such lessons, and those on which we fo-
cus in the present study, provide students with opportuni-
ties to learn and demonstrate mastery on a set of granular
knowledge components (KCs, or skills) [24] over a set of at
least three (but often many more) problems. Each problem
has multiple steps, each of which is mapped to one or more
KCs. Progress to KC mastery is tracked using Bayesian
knowledge tracing [14], with adaptive selection of problems
based on the set of KCs that a student has yet to master
at any particular time. After a student reaches mastery of
all KCs associated with a lesson, they proceed to the next
lesson in the prescribed sequence of content (generally for
their grade-level). We provide additional details about our
data in Section 4.

3. METHODS & MEASURES
3.1 Predicting Student Reading Ability
Following the proposal that features extracted from log data
representing student performance in an introductory lesson
can serve as a proxy for reading ability [30], a neural network
model was developed to predict students’ reading ability [3].
Specifically, the model was trained on student performance
data from the introductory activity to predict the probabil-
ity that they will pass their end-of-year ELA exam scores.
The model achieves consistently high accuracy with an AUC
as large as 0.8.

The model was validated using a multi-step process, in-
cluding (a) ensuring the model was not merely predicting
math performance (given that ELA and math test scores
are highly correlated) by measuring its accuracy on predict-
ing math scores; (b) it was found to generalize to another
dataset from a different state and using a different state test;
and (c) ensuring that its performance does not vary across
broad demographics such as ethnicity and gender [2].

Previous applications of this model call students in the bot-
tom quartile of its predicted probabilities of passing an ELA
test“emerging readers”(ER) or“learners likely to experience
reading difficulties” while students in the top three quartiles
are “non-emerging readers” (non-ER) [1]. We use this model
(and student classification based on the model) with data
from student work in the introductory lesson in MATHia
in both observational and experimental data analyses that
follow.

3.2 Gaming the System Detectors
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We implement a detector of gaming the system recently de-
veloped for MATHia [26]. This model was found to perform
well compared to historical models [26] and was also recently
evaluated for algorithmic fairness [10]. Training data for
models like this are often collected via quantitative field ob-
servations that link software log files with observations of
trained observers or coded by trained observer-coders using
automated replays of log files from the software [6]. The
coding process used for the particular model we adopt in-
volves determining whether particular “clips” of learner in-
teractions (either 20 second intervals or up to eight students
actions, whichever comes first, extracted using a fixed-stride,
non-overlapping approach) with MATHia are instances of
behavior judged to be associated with gaming the system.
Features that capture various facets of user behavior are
then extracted from these log files and used as input to a
random forest model that targets prediction of the classifi-
cation of interaction clips as instances of gaming or not.

3.3 Measures of Math Content Readability
We define math lessons associated with substantial reading
(e.g., so-called “word problems”) as having sufficient text
to contribute to well-defined quantitative measures of read-
ability from existing literature. Lessons without substan-
tial reading content may focus, for example, on symbolic
problem-solving like different forms of equation solving. Us-
ing this lesson-level definition, we will compare lessons with-
out substantial reading content to those with substantial
reading content to get a baseline understanding of behavior
across these two types of lessons.

For the 134 lessons with substantial reading content in our
dataset (described in the following section), we consider a
set of quantitative readability metrics over problem text in
each lesson (i.e., calculated over all of the problems within
a lesson and averaged to get a lesson-level metric) to char-
acterize its “readability.” We initially calculated 32 metrics
related to readability, including metrics that fall within the
following categories:

• basic text structure metrics (e.g., word count, average
sentence length)

• vocabulary metrics (e.g., type-token ratio, Shannon
entropy [33])

• traditional readability formulas (e.g., Flesch Reading
Ease, Dale Chall Score)

• syntactic and coherence measures (e.g., clause ratio)

• semantic metrics (e.g., latent semantic analysis (LSA)
magnitude) [17, 23, 25]

Using these variables, several models (e.g., random forest,
elastic net) were trained and assessed for their ability to
identify math word problems where less-skilled readers’ per-
formance was lower than expected given baseline rates for
similar problems while controlling for content area [27]. Vari-
ables in this study were included based on their relative im-
portance within each category across multiple models and
include:

• Word Count: Total number of tokens identified by
NLTK’s word_tokenize() function [11]

• Average Sentence Length (ASL): Mean number of words
per sentence

• Type-token Ratio: Ratio of unique lemmas to total
words calculated using spaCy’s [20] en_core_web_lg

pipeline for lemmatization and token classification.

• Shannon Entropy: H = −∑n
i=1 pi log2(pi), where pi is

the probability of word i appearing in the text, calcu-
lated as the frequency of the word (according to Fre-

qDist in NLTK) divided by the total number of words
in the text.

• Flesch Reading Ease: 206.835− 1.015×ASL− 84.6×
ASW, where ASW is average syllables per word [16,
22].

• New Dale-Chall Score: 0.1579× (difficult words
words

×100) +
0.0496×ASL where difficult words are words which do
not occur in a corpus of 3,000 frequent words [12].

• Clause Ratio: Ratio of dependent to total clauses.

• LSA Magnitude: Euclidean norm of the 100 dimen-
sional custom LSA embedding (TF–IDF+Truncated
SVD) on our 31,008-problem corpus. Higher values
indicate the text aligns more with topics and semantic
patterns in the corpus.1

4. DATA & ANALYSIS
4.1 Observational Data Analysis
Student-level statistical models (e.g., a linear regression model
detailed in Section 5.1) will enable us to consider reading
ability and behaviors related to gaming the system as they
relate to each other and learning outcomes, while lesson-level
models will help us understand contextual factors related to
readability of content and how they may be related to stu-
dent behavior.

Beginning with the set of middle school students using MATHia
during the 2023-24 school year in a school district in Mas-
sachusetts, we consider the set of 3,361 students for whom
student-level end-of-year standardized math scores were avail-
able on the Massachusetts Comprehensive Assessment Sys-
tem (MCAS) exam and who completed the introductory les-
son in MATHia. To this set of students, we apply the gam-
ing detector model briefly described above to data from 443
lessons that track student mastery of KCs. To attempt to
replicate previously established correlations between a proxy
for reading ability and gaming behavior [30], we consider the
extent to which reading ability (inferred by our prediction
model) is correlated with students’ overall relative frequency
of detected gaming. This is defined at the student-level as
the proportion of their interaction“clips”on which the detec-
tor predicts that a student is engaged in gaming-related be-
havior. We then consider the extent to which these student-
level factors predict end-of-year math MCAS scores.

1This custom, domain-specific metric consistently outper-
formed general-purpose embeddings in feature-importance
rankings (e.g., spaCy’s en_core_web_lg or Google News
Word2Vec)[27].
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At the lesson-level, we consider whether the relative fre-
quency of detected gaming is different, overall, in lessons
that have substantial reading (“reading lessons”) compared
to those that do not (“non-reading lessons”). Next, we con-
sider the 134 reading lessons completed by students in our
dataset. We build prediction models of gaming frequency at
the lesson-level that consider the readability factors for each
lesson we described in the previous section. We estimate a
separate model for students likely to be experiencing read-
ing difficulties (ER) to compare to a model for students less
likely to be experiencing reading difficulty (non-ER). Find-
ing modest predictive links between readability and gaming
the system tendencies, we move on to re-analyze recently
collected experimental data.

4.2 Experimental Data Analysis
A recent randomized study tested whether lesson content
in MATHia that had been re-written according to a style
guide for added clarity and enhanced readability improved
performance within two similar math lessons [1]. We fo-
cus on the Grade 7 lesson (“Analyzing Models of Two-Step
Linear Relationships”) for which results were especially pro-
nounced for ER (i.e., those in the bottom of quartile of pre-
dictions made by the reading prediction model). Specifically,
students predicted to be ER who were enrolled in the les-
son with the rewritten problems were able to master the
content at a 13% higher rate and did so in 30% less time
compared to students who were enrolled in the lesson with
the original problems [1]. There were also improvements for
students who were not predicted to be ER, although they
were much less pronounced. Improvements for a similar 8th
grade lesson (focusing on rational numbers instead of inte-
gers) were also less pronounced. Detailed in Table 1, 8,036
students completed the original (control) and experimental
(“re-write”) content variants in this lesson across MATHia’s
user base during the experiment in the 2022-23 school year.

For our current study, we performed a secondary analysis of
data from this experiment to (a) replicate the finding of a
relationship between “gaming” behavior and reading ability
and (b) to test the novel hypothesis that improved readabil-
ity of the texts would decrease gaming the system behav-
ior. That is, we considered whether (presumably decreased)
rates of behavior associated with gaming the system could
potentially explain improvements, especially for ER, found
in the experiment. We take the first step in establishing
this association to determine if gaming behavior did in fact
decline as a result of the intervention.

We first test the correlation between predicted reading abil-
ity and relative frequency of detected gaming via Pearson’s
correlation to see if similar patterns to those in the observa-
tional data are present. We then compare differences in de-
tected gaming frequency across experimental condition and
predicted reading ability using the Mann-Whitney U test.
We report results in the following section.

5. RESULTS
5.1 Observational Data Analysis
Over the set of 3,361 students for whom we have reading
ability predictions and estimates of overall relative frequency
of gaming behavior, we find a negative correlation, illus-
trated in Figure 1, between predicted reading ability and

Table 1: Sample sizes (n) of students completing Grade 7
lesson “Analyzing Models of Two-Step Linear Relationships,”
by experimental condition (“Re-Write” corresponding to in-
tervention to enhance content readability) and reading abil-
ity prediction category for experimental data from 2022-23
school year experiment reported in [1].

Condition Reading Prediction n
Control Emerging 988
Control Non-Emerging 2979
Re-Write Emerging 1018
Re-Write Non-Emerging 3051

Figure 1: Scatter plot, including illustrative regression line,
displaying reading predictions vs. overall relative frequency
of detected behavior associated with gaming the system (n=
3,361; r = -.352, 95% CI [-.375, -.328], p < .001). Increased
values for reading predictions on the x-axis correspond to
greater probabilities of passing an end-of-year ELA exam (or
greater reading ability).

relative frequency of detected gaming (r = -.352, 95% CI
[-.375, -.328], p < .001). Students predicted to have better
reading abilities (i.e., those with greater inferred probabili-
ties of success on an ELA exam) tend to engage in less behav-
ior associated with gaming the system. These results repli-
cate a similar finding from previous research, which found
a positive correlation between the assistance required in an
introductory lesson (i.e., number of errors made and hints
requested, which is greater for students presumed to be of
lower reading ability) and detected gaming behavior [30].

Not only are reading ability and detected gaming the system
behavior correlated with each other, but both are also signif-
icantly correlated with a math learning outcome external to
the MATHia platform, namely the MCAS math score. Ta-
ble 2 summarizes the results of an ordinary least squares lin-
ear regression model predicting MCAS math outcomes with
predicted reading ability and relative frequency of gaming
behavior at the student-level. Consistent with prior findings
[29, 3], we find that these two variables are both significant
predictors of standardized math test outcomes and together
account for 38.4% of the variance in this outcome.
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Table 2: Summary of estimated linear regression model (with
standardized dependent and independent variables, coeffi-
cient estimates (β) and p-values (p)), predicting students’
MCAS math scores with their relative frequency of detected
gaming behavior and predicted reading ability (n = 3,361);
R2 = .384

Variable β p
Gaming Frequency -0.37 <.001
Reading Prediction 0.39 <.001

Figure 2: Box plots for the distribution of relative fre-
quency of detected gaming behavior over reading lessons
(or “workspaces”) and non-reading lessons, calculated as the
mean of the student-level relative frequency of detected gam-
ing for all students completing each lesson.

Next, we consider lesson-level analyses, starting with com-
paring math lessons containing substantial amounts of read-
ing (reading lessons) to those lessons that do not (non-
reading lessons). The mean relative frequency of detected
gaming was greater in reading lessons (19%) compared to
non-reading lessons (15%). Mann-Whitney U test indicates
a significant difference in gaming frequency between the
groups (W = 25732, p < .001). Figure 2 illustrates box
plots for the distribution of mean relative frequency of de-
tected gaming for students completing each lesson for the
134 reading lessons and 309 non-reading lessons in the data
set from the Massachusetts school district in 2023-24. This
suggests that students are more likely to engage in behav-
ior associated with gaming the system in math lessons with
substantial reading. Coupled with our finding that students
who may be experiencing reading difficulties (i.e., those with
lower predicted reading ability) are overall more likely to
engage in gaming behavior, this raises the question whether
particular aspects of the math lessons with substantial read-
ing are associated with students’ tendency to engage in gaming-
related behavior. Moreover, are there differences in the as-
sociation of readability features with gaming for the two
populations of ER and non-ER?

We consider lesson-level models over 134 lessons with sub-
stantial text (or reading lessons), for which we calculate the

Table 3: Summary of estimated linear regression models
(with standardized dependent and independent variables, co-
efficient estimates (β) and p-values (p)), predicting lesson-
level mean relative frequency of detected gaming behavior
for emerging readers (ER) and non-emerging readers (non-
ER) with readability measures (n = 134 lessons); R2 = .14
for ER model; R2 = .20 for non-ER model; variables in bold
are significant at α = .05 in at least one model.

ER non-ER
Variable β p β p
Clause Ratio 0.05 .64 0.08 .44
Custom LSA Magnitude 0.11 .36 0.08 .50
Dale-Chall Score -0.20 .38 0.0 .99
Flesch Reading Ease -0.30 .03 -0.25 .07
Type-token Ratio -0.20 .29 -0.24 .18
Sentence Length -0.14 .40 -0.10 .55
Shannon Entropy 0.50 .001 0.49 .001
Word Count -0.54 .003 -0.51 .003

set of readability metrics described in Section 3. We specify
and estimate ordinary least squares linear regression mod-
els separately for frequency of gaming behavior among ER
and non-ER, summarizing our estimated models in Table 3.
Three readability metrics (Word Count, Shannon Entropy,
and Flesch Reading Ease) emerge as significant predictors
of gaming among ER, while only two of these metrics are
significant predictors of gaming among non-ER. In general,
the patterns of association across the two models are simi-
lar, but we do find the model for non-ER explains greater
variance (20%) in gaming frequency compared to the model
for ER (14%).

5.2 Experimental Data Analysis
Moving on to consider data from the previously reported
experiment in the Grade 7 math lesson entitled “Analyzing
Models of Two-Step Linear Relationships,” we find a nega-
tive correlation between predicted reading ability and rela-
tive frequency of detected gaming (r = -.27, 95% CI [-.29,
-.25], p < .001), replicating the results found in the obser-
vational data for this particular lesson. Next, we tested
whether there is a difference in detected gaming frequency
between conditions across ER and non-ER (Figure 3). We
find a small but significant difference in detected gaming fre-
quency between conditions among non-ER (treatment con-
dition: M = .076 (7.6%); control condition: M = .084
(8.4%); Cohen’s d = 0.08, 95% CI [0.02, 0.13]; Mann-Whitney
U: W = 11619302, p < .001). Figure 3 illustrates these dif-
ferences in gaming frequency by condition for ER and non-
ER.

While the original experiment found that ER performed bet-
ter in the re-written lessons, working in this re-written con-
tent did not affect the rate of gaming the system behavior
among these students, so decreases in behavior associated
with gaming the system do not appear to explain the much
improved performance of ER in this prior experiment. Inter-
estingly, there was a decrease in gaming the system behav-
ior among non-ER in the re-written lessons. Future work
should investigate the nature of this relationship between
math problem readability and gaming behavior among stu-
dents who are not likely to be experiencing reading difficulty.
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Figure 3: Gaming frequency by condition across ER and non-
ER in lesson“Analyzing Models of Two-Step Linear Relation-
ships” from an experiment targeting enhanced readability (in
“Re-Write” condition) during the 2022-23 school year.

6. DISCUSSION & CONCLUSION
This study contributes to our understanding of relationships
among gaming the system behavior, reading ability, and
math performance. We find a negative correlation between
reading ability and gaming the system behavior; students
with lower predicted reading ability are more likely to engage
in behaviors associated with gaming the system. These find-
ings are robust across two datasets, one observational and
one experimental, from thousands of students, two school
years, and hundreds of math lessons. We explored associ-
ations between readability characteristics of lesson content
and detected gaming the system behavior frequency in that
content. We find that a set of three readability features are
significant predictors of gaming frequency for ER, and that
two of these features are significant predictors of gaming
among non-ER. Perhaps surprisingly, we find that readabil-
ity features account for greater variance in gaming frequency
for non-ER than for ER, suggesting that content readability
could be more important for the decision to engage in gam-
ing related behavior for students who are less likely to ex-
perience reading difficulty. This finding is supported by our
subsequent re-analysis of data from a recent experiment that
targeted readability enhancements to math lesson content.
We found that non-ER engage in fewer gaming behaviors in
the re-written (presumably more “readable”) lessons com-
pared to the original while we find no difference in relative
frequency of detected gaming behavior across experimental
conditions for ER.

The readability metrics which predicted behaviors associ-
ated with gaming the system may reveal important con-
siderations for understanding the readability of math word
problems. First, higher Flesch Reading Ease predicted sig-
nificant declines in gaming behaviors. This finding is en-
couraging given that reading ease is a widely known and
readily available formula. Second, higher word count pre-
dicted a decrease in gaming behaviors.2 Attempts to im-
prove text readability sometimes involve shortening the text
(e.g., [19]), but the findings here suggest that this should

2Word count’s negative relationship with gaming behavior
exists even when excluding co-variates from the model.

be approached with caution. Shorter texts may pose a chal-
lenge to readers if they contain unfamiliar phrases or vocab-
ulary, whereas longer texts may provide contextual supports
to aid comprehension. Finally, higher Shannon entropy (i.e.,
less predictable texts) predicted increased gaming behaviors.
To our knowledge, Shannon entropy has not been previously
used as a measure of readability. The metric was selected
following a search for text processing metrics that could ex-
plain text readability [27] where it emerged as an important
identifier of word problems in which ER struggled more than
expected. That it also explains variance in gaming behav-
iors highlights the need to look outside the standard stack
of readability metrics to better understand how we can eval-
uate text readability of math problems.

Readability metrics are significant predictors of gaming for
ER and non-ER. However, these metrics account for less
variance in gaming behavior for ER, and an intervention
targeting improved readability appears to have led to de-
creased gaming among non-ER but had no impact on gam-
ing for ER. An “asset oriented” [28] framing of this finding
could suggest that ER may be engaging in strategic forms
of exploration of MATHia’s support. Future data-driven re-
search might consider whether there are particular contexts
(e.g., in particular lessons, parts of particular lessons, or
even at particular KCs within lessons) where such behav-
ior may be especially helpful (or at least “non-harmful” [7]),
despite the overall negative correlation of these kinds of be-
havior with outcomes like math test scores that are found
in the present study as well as in past research (e.g., [29,
15]). New approaches to modeling gaming the system (e.g.,
[21]) provide opportunities for exploring modeling various
contextual factors related to lesson content that may prove
fruitful.

Future detector modeling work can be informed by new ap-
proaches to qualitative and quantitative field observations
and/or more nuanced approaches to automated log replays
[6] to generate training data for such models. Efforts might
focus specifically on learners likely to be experiencing read-
ing difficulties to better understand how it is they are engag-
ing with learning environments like ITSs and using the sup-
port provided by these systems in such ways that manifest
as increased relative frequency of detected gaming behav-
ior (using current detector models). Such observations may
inform our notions of the construct of gaming the system
itself and provide fresh insights into nuances of student be-
havior in adaptive learning systems. Such work may inform
both the overarching constructs for which detector models
are developed as well as the feature engineering from rich
process data from software logging that serve as the input
for detector models, regardless of the target construct.
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