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ABSTRACT 1. INTRODUCTION
The assessment of student responses to learning-strategy Effective learning strategies (e.g., self-explanations, think-
prompts, such as self-explanation, summarization, and para- alouds, summaries, and paraphrases) play a critical role in
phrasing, is essential for evaluating cognitive engagement shaping a student’s ability to comprehend and retain infor-
and comprehension. However, manual scoring is resource- mation. These strategies encourage students to actively en-
intensive, limiting its scalability in educational settings. This gage with the learning material by reflecting, articulating,
study investigates the use of Large Language Models for and reorganizing knowledge, fostering deeper understand-
automating the evaluation of student responses based on ing and cognitive development. Students refine their skills
expert-defined rubrics. We fine-tune open-source LLMs on iteratively by leveraging active learning techniques. As a re-
annotated datasets to predict expert ratings across multiple sult, evaluating the quality of students’ use of these strate-
scoring rubrics, ensuring consistency and efficiency in as- gies is essential in educational research and pedagogy. How-
sessment. Our findings indicate that multi-task fine-tuning, ever, manually assessing student responses to various learn-
which involves training a single model across multiple scor- ing strategies is time-consuming and prone to subjective bias
ing tasks, consistently outperforms single-task training by in human judgment, making it difficult to scale such evalu-
enhancing generalization and mitigating overfitting. This ations in classroom practice.
advantage is particularly noticeable in recent architectures,
where multi-task training enables robust performance across In recent years, Large Language Models (LLMs) have opened
diverse evaluation criteria. Notably, our Llama 3.2 3B model new opportunities to automate tasks that require a contex-
achieved high performance, outperforming a 20x larger zero- tualized semantic analysis of student productions. Leverag-
shot model while maintaining feasibility for deployment on ing LLMs offers a solution to automatically score responses
consumer-grade hardware, emphasizing the potential for scal- to learning strategies while maintaining consistency and ef-
able Al-driven assessment solutions. This research contributes ficiency. This is particularly beneficial in educational set-
to open education by fine-tuning open-source models and tings where feedback on learning strategies, such as self-
publicly releasing trained models, training scripts, and eval- explanation and summarization, can enhance student per-
uation frameworks. The proposed approach supports au- formance and foster metacognitive skills. Automating the
tomated, reproducible, and scalable assessment of learn- scoring process enables tutors to provide timely feedback at
ing strategies, facilitating timely feedback for students and scale, support formative assessment practices, and free up
reducing the burden on educators. https://github.com/ resources for more personalized instruction. Moreover, stu-
upb-nlp/EDM-LLM-Scoring dents can engage in multiple learning strategies, refine their
approach, and iteratively improve by receiving immediate
Keywords feedback on their ability to use these learning strategies.
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We fine-tune LLMs on datasets containing student responses
along with their ratings given by experts. Besides predicting
these ratings, we aim to develop models that can replicate
human judgments and generalize across a variety of learning
strategies. We release open-source models that can reliably
score student responses across multiple rubrics, providing an
automated, scalable solution for evaluating learning strate-
gies in educational settings.

Our results show that even reduced-size LLMs, which re-
quire significantly less computational power than their larger
counterparts, perform remarkably well for scoring. This
finding is particularly important because these models can
be run on consumer-grade hardware, enabling widespread
use in diverse educational settings without costly infrastruc-
ture. Our approach addresses several key challenges in the
field as we explore the capability of LLMs to capture the nu-
anced differences in student responses. We contribute to the
ongoing effort in educational research to enhance the feed-
back loop in learning environments, making it possible for
students to receive targeted insights on their use of learning
strategies.

In summary, this paper’s contributions can be outlined as
follows:

e We fine-tune Large Language Models to automate the
scoring of student responses to various learning-strategy
instructions. Our models achieve high performance on
a wide range of rubrics, arguing for the potential to
handle diverse educational tasks;

We show that multi-task fine-tuning outperforms single-
task fine-tuning across the majority of scoring rubrics;

We contribute to open education by using and fine-
tuning open-source models and providing open access
to the models, training scripts, and evaluation frame-
works, thus facilitating reproducibility and further re-
search.

2. RELATED WORK

Early efforts in automating the evaluation of student re-
sponses relied on handcrafted linguistic features to predict
the designed rubrics. Starting from the early studies of
Page [17] with limited capabilities to capture the full com-
plexity of human language, researchers considered hand-
crafted features to capture linguistic and content-based el-
ements of student writing. These systems typically relied
on surface-level features, including word counts, sentence
length, and keyword matching, to assess the quality of stu-
dent responses. Techniques such as part-of-speech tagging,
syntactic parsing, and discourse analysis were employed to
provide a richer understanding of student language. Ruseti
et al. [19] introduced a hybrid model combining recur-
rent neural networks (RNNs) and textual complexity in-
dices to score summaries automatically. The proposed sys-
tem achieved adequate accuracy in a classification task that
assessed how well the main ideas of the original text were
captured in the summary. However, these systems could not
deeply understand the meaning of student responses, mak-
ing them somewhat limited in generalizing across diverse
tasks and contexts.
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Unlike earlier models that relied on handcrafted features or
shallow language representations, Transformers enabled a
much deeper understanding of text by capturing contextual
information across entire sentences and passages. Models
fine-tuned on specific educational datasets generalized more
effectively across tasks, outperforming traditional feature-
based methods. Botarleanu et al. [1, 2] investigated how
well summaries captured the main idea of a reference text.
The trained models incorporated domain-independent tex-
tual complexity indices, along with Transformers for seman-
tic contextualization. This approach achieved low errors,
outperforming bag-of-word representations or models con-
sidering only linguistic features. Moreover, their results sug-
gested that combining linguistic and semantic indices leads
to accurate and robust summary evaluations. Nicula et
al. [16] explored paraphrase quality assessment. Focusing
on four dimensions (i.e., lexical, syntactical, semantic, and
overall quality) the authors approach the task by combin-
ing handcrafted features, siamese neural networks, and pre-
trained BERT models with transfer learning from a larger
paraphrase corpus. The results suggest that the models with
transfer learning from general paraphrase datasets achieve
enhanced performance.

The latest advancement in automated scoring of student
responses comes from the use of Large Language Models,
which have shown an unprecedented capability to compre-
hend and follow instructions across a wide range of tasks.
For example, Nicula et al. [15] explored using LLMs, specif-
ically FLAN-T5, to assess students’ self-explanations auto-
matically. The study evaluated LLMs in two scenarios: O-
shot and fine-tuned. In the 0-shot scenario, GPT3.5-turbo
excelled in overall quality and improved with more exam-
ples in the prompt. In the fine-tuning scenario, FLAN-T5
models were fine-tuned using LoRA, resulting in significant
performance boosts. Performance scaled with model size
and the number of prompt examples. Song et al. [20] ad-
dressed the limitations of previous methods that required ex-
tensive fine-tuning on large datasets for essay-scoring tasks.
They explored few-shot prompting and prompt tuning on
a small dataset of student essays. The findings reveal that
open-source LLMs, particularly those with 10B parameters,
achieve performance comparable to some fine-tuned deep-
learning baselines and can be further enhanced with opti-
mized prompts.

A novel approach that involves fine-tuning small encoder
models for multi-rubric essay scoring is studied by Wang et
al. [21]. They propose a Mixture-of-Experts model to im-
prove multi-trait scoring effectiveness. The approach repre-
sents essays using a pre-trained encoder-based model, where
a gating mechanism directs token representations to spe-
cialized trait-specific experts. Each expert, implemented
as a fully connected layer, learns distinct trait representa-
tions, with final scores predicted using a sigmoid activation
function. To improve representation diversity and capture
inter-trait relationships, the method introduces three regu-
larization strategies: scoring diversity regularization, which
ensures experts focus on unique traits; trait representation
correlation regularization, leveraging contrastive learning to
refine trait correlations; and trait correlation loss, aligning
predicted and actual scores.



A model introduced for zero-shot evaluation is Prometheus
2 [8]. The authors fine-tuned an evaluator designed specifi-
cally to score model-generated text rather than student re-
sponses. Prometheus 2 unifies two model-based evaluation
paradigms (i.e., direct assessment and pairwise ranking) by
merging the weights of two LLMs separately trained on these
formats. The key insight is that this weight-merging ap-
proach outperforms both jointly trained and single-format
evaluator LLMs. The model is trained using a feedback
dataset for direct assessment and a preference dataset, with
evaluation criteria for helpfulness, harmlessness, and more.
Using Mistral-7B [6] and Mixtral-8x7B [7] as base models,
Prometheus 2 achieves the highest correlation with human
evaluators and proprietary LLM-based judges across multi-
ple benchmarks.

3. METHOD
3.1 Datasets and Scoring Tasks

We considered four scoring tasks corresponding to differ-
ent learning strategies in our experiments: self-explanation,
think-aloud, summarization, and paraphrasing. For each
task, we rely on expert-annotated datasets, which provide
high-quality labels to assess student performance based on
predefined rubrics. These tasks were chosen for their rele-
vance in evaluating key learning strategies and their impact
on comprehension. This section outlines the datasets used in
our study, the annotations, and the overall scoring method-
ology. For more detailed information on the specific scoring
rubrics and task instructions, please refer to the code repos-
itory.

Self-explanation is a cognitive process that involves actively
explaining the meaning of the text to oneself while reading.
Research has shown that effective self-explanation can sig-
nificantly improve reading comprehension. McNamara [11,
12, 13] showed that providing students with reading strat-
egy instruction and self-explanation practice can enhance
their understanding of complex texts, especially for those
with lower domain knowledge. Paraphrasing and bridging
are key strategies used in self-explanations to improve com-
prehension.

Think-aloud is a strategy where readers verbalize their thoughts

and understanding while reading a text. By voicing their
thoughts, readers can assess whether they grasp the main
ideas. Think-aloud can help readers connect new informa-
tion to their existing knowledge while encouraging them to
participate actively in the reading process.

For self-explanation and think-aloud tasks, we use the dataset
constructed by McNamara et al. [13], where experts rated
student responses when prompted to self-explain certain sen-
tences from a text. The responses were graded on sev-
eral rubrics for both tasks: paraphrase presence, lexical
change, syntactic change, misconception presence, monitor-
ing, bridge presence, bridge contribution, elaboration pres-
ence, life event recollection, and overall assessment.

Summarization is a cognitive process that condenses text
into a shorter, more concise form while preserving its essen-
tial meaning. It requires readers to identify the main ideas,
supporting details, and overall text structure. By summa-
rizing, readers can improve their understanding of the text,
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as well as retain and recall important information. Hidi et
al. [5] showed that summarization also helps learners iden-
tify gaps in their comprehension, promoting critical thinking
and reinforcing information retention.

For summarization, we used the same dataset as Botarleanu
et al. [1] in which summaries were annotated on multiple di-
mensions to capture different components reflective of their
quality: main idea presence, detailing level, cohesion, objec-
tive language, wording, language beyond source text, and
summary length.

Paraphrasing involves rewording or restating a given text
while preserving its original meaning. It is a key skill in
both language learning and cognitive development, as it en-
ables individuals to process and internalize information by
expressing it in their own words. McNamara et al. [14] ar-
gue that this active engagement with the material not only
helps clarify understanding but also deepens comprehension
by forcing the reader to focus on the core concepts and re-
organize them in a new form.

We considered the dataset constructed by McCarty et al.
[10] containing paraphrases written by students for target
sentences. Expert annotators scored these paraphrases on
10 dimensions: garbage content presence, frozen expressions,
irrelevancy, elaboration, semantic completeness, entailment,
syntactic similarity, lexical similarity, paraphrase quality,
and writing quality. The grading was initially performed
on a 1-6 scale; however, the authors propose multiple op-
tions for splitting the grades into buckets: keeping the 1-6
scale, splitting the scale in three, and splitting the scale in
two. We split the grades into three buckets, arguing that
this approach preserves the necessary scoring information
while reducing subjective bias.

While taking into account the size and split of the considered
datasets, the self-explanation dataset was divided into 6k
examples for training, 3k for testing, and 3k for validation.
The think-aloud dataset was split into 7k for training, 2k for
testing, and 2k for validation. For the summaries dataset,
the split was 7k for training, 0.4k for testing, and 0.4k for
validation. Lastly, the paraphrases dataset was divided into
1k for training, 0.3k for testing, and 0.6k for validation. It
is important to note that no support-text contamination oc-
curred between train/test/validation data for all learning
strategies with supporting text.

3.2 LLM Fine-tuning

We explored fine-tuning open-source LLMs to enhance their
performance on various scoring tasks corresponding to differ-
ent learning strategies. Our goal was to improve the models’
adaptability to the specific requirements of these educational
evaluations. Through these experiments, we aimed to iden-
tify the optimal combination of fine-tuning strategies and
model sizes for scoring tasks with limited annotated data.

We experimented with two training approaches for the se-
lected LLMs:

Multi-task Training: In these experiments, we simultane-
ously fine-tune the models across all scoring tasks. We
aim to test the hypothesis that training on a diverse set



Prompt content
Generated content

Rate the quality of the following performed task, based on the scoring rubric.
### Task description:

Self-explanation Think-aloud Summarization Paraphrasing
Explain the meaning of the Report your thoughts  Summarize the Paraphrase the
text, elaborating beyond  that immediately come following text. following
your initial understanding to mind regarding how Context: <text> sentence.
of the text. you understand the Target sentence:
Context: <text> meaning of the text. <target_sentence>
Target sentence: Context: <text>
<target_sentence> Target sentence:

<target_sentence>
### Execution: <student_response>

### Scoring rubric:

- <rubric_name_1>:

- - <score_1>: <score_description>
- - <score_2>: <score_description>

- - <score_m>: <score_description>
- <rubric_name_2>:

- <rubric_name_n>:

### Response:
- <rubric_name_1>: <predicted_score>
- <rubric_name_2>: <predicted_score>

- <rubric_name_n>: <predicted_score>

Figure 1: Prompt structure.

of tasks enables the models to transfer knowledge between
tasks, thereby enhancing their overall scoring capabilities.
This approach also seeks to improve task performance with
limited training data by leveraging insights from more data-
rich tasks. For this, we append all training examples and
randomize their occurrence. In this way, the models are
trained on a mixture of scoring prompts without the risk of
catastrophic forgetting [9]. This setup requires only a single
model, so it is more efficient in terms of memory.

Single-task Training: In these experiments, we individually
fine-tune models for each scoring task. We aim to test the
hypothesis that specialized fine-tuning optimizes the model
to perform at the highest capacity in the specific task. For
this purpose, we fine-tune 4 independent models, all orig-
inating from the same reference model, each dedicated to
one of the learning strategies: self-explanation, think-aloud,
summarization, and paraphrasing. This setup expands the
memory required to 4x the previous approach when deployed
in the same application.

Besides the two previous approaches, proper prompt format-
ting is crucial for both optimizing the model’s performance
and ensuring fairness in comparisons. To maintain consis-
tency, we apply the same prompt structure across all scor-
ing tasks, with the only variations being the specific task
descriptions and materials provided.

Our prompt format is illustrated in Figure 1. During train-
ing, the model receives the input highlighted in yellow, while
gradients are computed based on the response section, shown
in blue. Back-propagation is then applied to these responses
to fine-tune the model’s ability to generate accurate outputs.
During inference, the model is given the input depicted in
yellow and is expected to generate the appropriate response
autonomously. In order to take advantage of the LLMs’ un-
derstanding of language and its better assessment, we trans-
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form the datasets’ scores from numeric format to text format
(e.g., 1 - Poor, 4 - Excellent). In this manner, the models
can better associate the level of student performance with
an actual score translation.

A detailed correspondence table and more prompt examples
for each task can be found in the code repository. Moreover,
to further enhance the description and model’s understand-
ing of the grading system, for each scoring rubric and each
particular score value, we also append in the prompt a de-
scription of the student response (e.g., Elaboration - Good
- There is a response regarding the theme of the target sen-
tence rather than a restatement of the sentence.). These
descriptions are derived from the instructions given to the
annotators of each dataset.

3.3 Experimental Setup

We conducted experiments using two families of LLMs to
ensure the stability of the proposed training methods. For
the encoder-decoder architecture, we employed the Flan-T5
family [3], an instruction-tuned variant of the T5 model [18].
For the decoder-only architecture, we selected the instruction-
tuned Llama 3.2 model [4]. We selected these two types of
model architecture (i.e., encoder-decoder and decoder-only)
due to their strong performance in instruction-following and
generalization. Additionally, the two model families (i.e.,
Flan T5 and Llama) serve as representative examples of
their respective architectures and their effectiveness across
various tasks.

To maintain size consistency across both model families,
we experimented with the following variants: Flan-T5 large
( 1B parameters), Flan-T5 x1 ( 3B parameters), Llama 3.2
1B, and Llama 3.2 3B. These models are designed to be ver-
satile and capable of addressing a wide range of natural lan-
guage processing tasks, including deployment on resource-
constrained devices.

We fully fine-tuned the models by updating their weights in
full precision on an A100 80GB GPU. The training setup
used for all our experiments is the following: constant learn-
ing rate of le-5 for Flan-T5 and 5e-6 for Llama 3.2, AdamW
8bit optimizer, and a batch size of 64 obtained by gradient
accumulation.

4. RESULTS

We computed the results from Table 1 in terms of weighted
F1 on the test partition of the datasets for each task and
scoring dimension. We evaluated both sizes of the models
(i.e., 1B and 3B) and both training setups (single-task - STL
and multi-task - MTL). Moreover, we introduce a strong
baseline with a larger model, namely zero-shot inferences
using a Llama 3.3-70B-Instruct model, quantized in 4-bit.
The weighted F1 is computed for an exact match between
the generated and annotated ones. We also computed, for
each task, an average across all rubrics to aggregate the
scores and highlight the best-performing model.

For clarity and ease of interpretation, the highest scores
within each scoring rubric are highlighted in bold, consid-
ering all model architectures, sizes, and training configura-
tions. Additionally, to facilitate the comparison between the
two training setups, we apply a color-coding scheme for each



Table 1: Performance results (F1 scores for STL and MTL setups on all 4 considered models, alongside the zero-shot setup).

Flan T5 - 1B | Flan T5 - 3B | Llama 3.2 - 1B | Llama 3.2 3B | Llama 3.3 70B
STL MTL | STL MTL | STL MTL STL MTL 0-shot
Self-explanation
Paraphrase presence 0.71 0.71 0.71 0.74 0.71 0.77 0.78 0.79 0.10
Lexical change 0.35 0.35 0.35 0.37 | 0.54 0.54 0.53 0.54 0.54
Syntactic change 0.18  0.18 0.18 0.2 0.49 0.45 0.5 0.45 0.53
Misconception 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.76
Monitoring 0.95 0.95 0.95 0.95 | 0.95 0.97 0.97 097 0.98
Bridge presence 0.17  0.17 0.17  0.32 0.36 0.51 0.5 0.52 0.25
Bridge contribution 024 0.14 | 0.15 0.3 0.35 0.5 0.52 0.53 0.33
Elaboration presence 0.65  0.65 0.65 0.65 | 0.65 0.67 0.65 0.7 0.62
Life event 0.65  0.65 0.65 0.66 | 0.65 0.67 0.65 0.7 0.09
Overall 0.15  0.31 0.31  0.49 0.5 0.66 0.62 0.67 0.09
Averaged Rubrics 0.50 0.51 0.51  0.57 | 0.62 0.67 0.67 0.69 0.43
Think-aloud
Paraphrase presence 0.09 0.09 0.09 0.47 0.11 0.47 0.15 0.48 0.19
Lexical change 0.09  0.09 0.09 0.33 | 0.11 0.35 0.13 0.34 0.35
Syntactic change 0.09 0.09 0.09 0.2 0.1 0.23 0.12 0.22 0.46
Misconception 0.96  0.96 0.96  0.96 0.96 0.96 0.96 0.96 0.54
Monitoring 0.85 0.85 0.85 0.88 | 0.85 0.91 0.92 0.91 0.92
Bridge presence 0.23 023 | 023 035 | 0.23 0.44 0.34  0.44 0.20
Bridge contribution 0.27  0.27 0.27 0.37 0.31 0.46 0.34 0.48 0.26
Elaboration presence 0.4 0.4 0.4 0.42 | 0.51 0.51 0.6 0.57 0.46
Life event 0.4 0.4 0.4 0.45 | 0.64 0.55 0.74 0.63 0.27
Overall 0.34 034 | 034 0.56 | 0.56 0.65 0.57 0.65 0.10
Averaged Rubrics 0.37 037 | 0.37 0.50 | 0.44 0.55 0.49 0.57 0.37
Summary
Main Idea 0.52  0.52 0.69 0.78 | 0.76 0.83 0.75 0.8 0.30
Details 0.4 0.4 0.51  0.71 0.71 0.8 0.77  0.79 0.32
Cohesion 0.58  0.58 0.64 0.78 | 0.73 0.79 0.76 0.8 0.19
Objective language 0.65  0.65 0.68  0.69 0.71 0.73 0.75 0.8 0.63
Wording 0.35 0.35 0.51  0.61 0.62 0.7 0.76 0.83 0.41
Language beyond source text | 0.31 0.31 0.71 0.79 0.68 0.76 0.82 0.83 0.47
Summary Length 0.38  0.38 0.51 0.63 0.53 0.72 0.67 0.71 0.28
Awveraged Rubrics 0.45 0.45 0.60 0.71 0.67 0.76 0.75 0.79 0.37
Paraphrasing
Garbage Content 0.95 0.95 0.95 095 | 0.95 0.99 0.98 0.99 0.72
Frozen Expressions 1 1 1 1 1 1 1 1 0.76
Irrelevant 0.92 0.92 0.92 092 | 0.92 0.95 0.92 0.94 0.42
Elaboration 0.96  0.96 0.96 0.96 | 0.96 0.96 0.96 0.97 0.95
Semantic Completeness 0.41 0.41 0.42 0.67 | 0.14 0.72 0.63 0.72 0.24
Entailment 0.5 0.5 0.5 0.75 | 0.13 0.74 0.64 0.76 0.23
Syntactic Similarity 0.42  0.03 0.43 0.41 0.42 0.56 0.44 0.67 0.26
Lexical Similarity 0.21  0.21 0.21  0.61 0.05 0.62 0.37 0.68 0.35
Paraphrase Quality 0.19  0.26 0.19  0.55 0.17 0.55 0.43 0.51 0.18
Writing Quality 0.46  0.46 0.46  0.57 | 0.46 0.6 0.49 0.66 0.03
Averaged Rubrics 0.60 0.57 0.60 0.74 0.52 0.77 0.69 0.79 0.41

individual model size and type: green indicates cases where
the multi-task learning (MTL) score exceeds the single-task
learning (STL) score, red denotes instances where the STL
score is higher, and uncolored cells represent cases where
both setups yield identical scores.

5. DISCUSSION

Table 1 showcases that the multi-task learning setup consis-
tently outperforms the single-task approach, achieving su-
perior or comparable results across the majority of scoring
rubrics. This finding suggests that training on a diverse set
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of tasks enhances the model’s capability to generalize to un-
seen data, improves its understanding of the overall scoring
framework, and mitigates the risk of overfitting. The ob-
served trend is consistent across various model families and
sizes, supporting the generalizability of this conclusion. The
effect is more pronounced in larger models and newer archi-
tectures, whereas for Flan-T5 1B, the model exhibits under-
fitting due to its size and pre-instruction tuning, leading to
negligible performance differences in the multi-task setting.
These results highlight the benefits of multi-task training, as
it not only enables better generalization in data-scarce sce-



narios but also improves performance across all tasks. This
approach allows a single model to be efficiently deployed
for scoring student responses across multiple tasks, thereby
reducing memory consumption and computational costs.

An important observation is the superior performance of the
Llama 3.2 3B model across all averaged rubric scores per
task, arguing for its effectiveness for this application while
remaining feasible for deployment on consumer-grade GPUs
with low-latency inference. This advantage is attributed to
its model size, pre-training corpus, and instruction-tuning
data, which serve as a strong foundation for fine-tuning on
specific scoring tasks. Moreover, our results indicate that
our comparatively smaller models (1B and 3B), when fine-
tuned in a multi-task setting, consistently outperform the
larger zero-shot model (70B). This underscores that perfor-
mance is not solely determined by model size but is sig-
nificantly influenced by effective task-specific adaptation.
Achieving high accuracy with a relatively compact model
underscores the potential for scalable, automated scoring
systems in diverse settings, enabling Al-driven assessment
solutions without requiring high-end computational infras-
tructure.

The studies presented in the Related Work section report
results that are not directly comparable to our approach.
Nicula et al. [15, 16] reported results for the tasks of self-
explanation and paraphrasing. However, due to class im-
balances, the authors aggregated certain classes within the
scoring rubrics, thereby simplifying the task. In contrast,
our approach does not employ such modifications. For the
self-explanation task, they achieved F1 scores between 0.72
and 0.89 across different evaluation criteria, including para-
phrase presence, bridging presence, elaboration presence,
and an overall score. In the paraphrasing task, they obtained
F1 scores ranging from 0.68 to 0.86 for lexical, semantic, and
syntactic similarity, as well as for overall paraphrase qual-
ity. Additionally, Botarleanu et al. [2] tackled the summary
evaluation task as a regression problem rather than a clas-
sification task, reporting an overall R? of 0.64.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we explored the use of Large Language Mod-
els to automate the scoring of student responses to learning-
strategy prompts, focusing on tasks such as self-explanation,
think-alouds, summarization, and paraphrasing. Our ap-
proach aimed to address the challenges of scaling manual
evaluation by leveraging fine-tuned LLMs trained on datasets
annotated by expert educators. Through extensive experi-
ments with both multi-task and single-task training setups
and using models of different sizes and architectures, we in-
vestigated the extent to which LLMs replicate human scor-
ing across multiple rubrics. One of the key findings of this
work is the clear advantage of multi-task training. Mod-
els fine-tuned across a mixture of scoring tasks consistently
outperformed those trained on single tasks. This result high-
lights the potential of transfer learning - the models gener-
alize more effectively to unseen texts by training on diverse
tasks, even in scenarios where task-specific data is scarce.

Moreover, our results indicate that smaller models (1B and
3B), when fine-tuned in a multi-task setting, consistently
outperform a significantly larger zero-shot model (70B). This
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finding suggests that multi-task finetuning can be an efficient
strategy for improving model performance without the com-
putational overhead associated with scaling to larger archi-
tectures. The results indicate that task-specific adaptation
fosters more nuanced understanding and contextual align-
ment compared to zero-shot approaches, where the model
must rely solely on its pretraining distribution. This aligns
with prior findings in transfer learning, emphasizing that
targeted finetuning can bridge the gap between general-purpose
knowledge and domain-specific expertise.

Furthermore, our work contributes to open education by
using and fine-tuning open-source LLMs, promoting trans-
parency and reproducibility. We open-sourced the models,
training scripts, and evaluation frameworks, ensuring the
research community can build on our work and adapt it
to different educational contexts. These findings support
that Al-driven assessment tools can efficiently support edu-
cators and learners in providing timely, personalized scoring
on learning strategies, fostering better educational outcomes
at scale.

Future work targets leveraging the advanced capabilities of
LLMs to generate synthetic data that mimics the struc-
ture and content of diverse student responses. Combin-
ing this synthetic data with existing datasets through semi-
supervised learning techniques could significantly enhance
the model’s capability to perform scoring tasks by providing
a richer and more diverse training set. In semi-supervised
learning, the synthetic data generated by larger models could
serve as the unlabeled portion, which, when paired with
smaller amounts of high-quality, human-annotated data, would
help the model learn from both the expert annotations and
the broader patterns in the synthetic examples. This hybrid
approach has the potential to improve model generalization
and prevent overfitting on small datasets. Moreover, chat
models can be prompted to produce responses with varying
levels of quality, emulating different student performances,
thus creating a more robust training set for evaluating di-
verse learning strategies.

Additionally, future experiments will explore how the mod-
els perform on new, unseen tasks to evaluate their general-
izability beyond the specific scoring tasks they were trained
on. One direction is to test the models on essay scoring,
which involves more complex and structured writing. By
introducing new tasks, we can assess whether the models
adapt to different forms of student work, providing further
insights into their generalization capabilities.
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