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ABSTRACT
Effect estimates from randomized trials, though famously
free of confounding bias, may nevertheless be too noisy to
be of much use. Recent work has shown that supplementing
experimental analyses with observational data can improve
statistical precision without contributing confounding bias.
The idea is, basically, to use observational data to train an
algorithm to use baseline covariates to predict experimen-
tal outcomes, and then to use predicted outcomes as an
additional covariate in effect estimation. However, due to
student privacy regulations, observational data is often un-
available. Moreover, outcomes for many educational field
trials use bespoke learning measures that are not available
in analogous observational datasets. This paper illustrates
a way to circumvent these issues in the context of the Texas
subset of the Cognitive Tutor Algebra 1 effectiveness trial,
which features school-level randomization and a specialized
posttest. We train a model using publicly available school-
level covariates to predict state-test school passing rates,
and use the resulting school-level predictions to reduce the
standard errors in a student-level hierarchical effect model.

Keywords
Causal inference, Supervised learning, Educational effective-
ness

1. INTRODUCTION
One promising avenue for enhancing the precision of RCTs
lies in leveraging the vast quantities of administrative data
housed within state longitudinal data systems (SLDS). These
datasets, which track student performance and demograph-
ics over time, offer a rich source of information that could
reduce estimation error and improve the reliability of exper-
imental findings. Specifically, [13, 4, 14] have promoted the
use of auxiliary data (what they call the “remnant” of an

RCT)—data from subjects who did not participate in the
RCT, but for whom covariate and outcome data are avail-
able. The idea is to use auxiliary data to train a supervised
learner predicting outcomes as a function of baseline covari-
ates, and use the trained model to generate predicted out-
comes for RCT subjects. These predicted outcomes may be
used as additional covariates to sharpen the causal inference.

Unfortunately, significant barriers remain. Privacy regula-
tions often restrict access to student-level data within SLDS,
limiting researchers’ ability to fully harness these resources.
Moreover, existing methods that utilize auxiliary data typ-
ically require the same variables to be present in both the
experimental and administrative datasets. This requirement
poses a challenge in educational research, where experiments
frequently employ bespoke outcome measures that are not
captured in administrative records.

This paper presents an initial attempt at a methodological
workaround for this issue in the context of cluster-randomized
field trials, where treatment is assigned at the school level
but bespoke outcomes are measured at the student level.
The approach leverages publicly available, school-level ag-
gregated administrative data that includes a proxy outcome—
an outcome measured consistently across the entire state
and, ideally, correlated with the experimental outcome.

When treatment is randomized at the school level, improv-
ing precision largely depends on accurately predicting school-
average outcomes. As such, incorporating school-level co-
variates derived from proxy outcomes can be particularly
valuable. To illustrate this strategy, we applied it to two
randomized field trials: the year-2, Texas subset of the Cog-
nitive Tutor Algebra I (CTA1) effectiveness trial [9] and the
ASSISTments efficacy trial in Maine [12]. In both cases, we
used school-level passing rates on state math tests as proxy
outcomes, exploiting their availability and expected correla-
tion with the experimental measures.

Both trials employed paired school-level randomization. Our
analysis revealed that when ignoring the pairing structure,
incorporating predictions from the auxiliary data noticeably
improved precision. However, after properly accounting for
the paired randomization in the analysis, the improvements
were modest and inconsistent. This outcome reflects the
strength of the experimental design itself—paired random-

578

Adam Sales, Charlotte Mann, Johann Gagnon-Bartsch, and Neil Hef-
fernan. Effect estimates using publicly available school-level data
in a cluster-randomized educational experiment. In Caitlin Mills,
Giora Alexandron, Davide Taibi, Giosuè Lo Bosco, and Luc Paquette
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ization effectively captured much of the variance in the aux-
iliary predictions, leaving less room for further gains through
proxy-based covariates.

These findings highlight both the potential and limitations
of using publicly available administrative data to enhance
RCT precision. While auxiliary data can offer substantial
benefits in certain contexts, its added value may diminish in
well-designed experiments that already control key sources
of variability through design features like paired randomiza-
tion.

2. TWO SCHOOL-RANDOMIZED RCTS,
AND AUXILIARY DATA

2.1 The CTA1 Effectiveness Trial
In the CTA1 effectiveness trial [9], researchers randomized
73 high schools and 74 middle schools between two con-
ditions: algebra I students in schools randomized to the
control arm learned algebra with traditional textbooks and
pencil-and-paper assignments, and students in schools ran-
domized to treatment were given access to an online Alge-
bra I intelligent tutoring system, paired with a complemen-
tary classroom curriculum. Prior to randomization, schools
were blocked into pairs and triples based on a set of base-
line school-level characteristics, and were then randomized
within those blocks. Algebra I students in participating
schools took a pretest and a posttest from the the CTB/
McGraw-Hill Acuity series. This test was not administered
to students who were not enrolled in Algebra I, nor to stu-
dents in schools that did not participate in the RCT.

The study included schools in seven states and spanned two
years, but for this analysis we used a subsample—students
in Texas middle and high schools in the second year of im-
plementation. We limited the study to Texas due to the
ready availability of rich school level administrative data.
We limited our analysis to the second year of implementa-
tion because in the first year there was a significant and
substantial imbalance of pretest scores between students in
treatment and control schools. To partially offset the reduc-
tion in sample size due to these limitations, we pooled data
across middle and high schools, yielding an analysis sample
of 2,842 students in 20 pairs of schools (40 schools total);
each pair included one school randomized to treatment and
another randonmized to control.

Our analysis of the CTA1 Texas data builds heavily on
prior work reported in [8], who gathered thousands of rich
basline school-level features on available for schools across
the state. These included data on enrollment, demographics,
and prior achievent over several years. [8] used that dataset
to train a random forest [2] algorithm to predict school pass-
ing rates on 8th or 9th grade mathematics section of the
Texas Assessment of Knowledge and Skills (TAKS) in 2008.
In the present study, we will use the same school-level TAKS
predictions from [8] to adjust estimates using student-level
posttest outcomes.

2.2 The ASSISTments Efficacy Trial
In the ASSISTments efficacy trial, reported in [12], reseach-
ers constructed 22 pairs of middle schools in Maine and ran-
domized one school from each pair to the treatment condi-

tion, where teachers were given access, training, and sup-
port for the ASSISTments online homework program, or to
a business-as-usual condition. The initial plan of the study
was to use the Maine state test as the primary outcome, but
during the study period the state first shifted to an alter-
native testing system, the Smarter Balanced test, and then
shifted to yet another standardized testing framework. For
this reason the researchers instead administerd the Terra-
Nova assessment to students in participating schools.

Unfortunately, we do not have access to almost any of the
student-level baseline covariates from the study (the one ex-
ception being an indicator for special education status) but
we do have design variables, i.e. pair and school identifiers
and an indicator for treatment status, and TerraNova test
scores. In addition, we gathered 745 school-level measures
of for several years before the onset of the study, along with
school-average Smarter Balanced passing rates. We used
this data to train a SuperLearner [15], an ensamble learner,
combining random forest and regularized linear regression
models to predict Smarter Balanced passing rates. We used
the ensuing predictions, calculated for the RCT participants,
as a covariate in our causal estimation.

3. METHODS FOR CLUSTER-
RANDOMIZED STUDIES

There is a surprisingly wide variety of methods, and little
consensus among statisticians, on how best to estimate aver-
age treatment effects from a cluster randomized study such
the CTA1 or ASSISTments studies [7].

For this study, we considered three approachs. First, we es-
timated hierarchical linear models (HLMs [11]; sometimes
called mixed-effects or a multilevel models [5]). These are
probably the most popular method for cluster RCTs in ed-
ucation research, and were the models of choice for both [9]
and [12]. The HLMs had the following form:

Yi = β0 + β1Zs[i] + αp + γXi + δp̂reds[i] + ηs[i] + ϵi (1)

where i = 1, . . . , N indexes students, and each student i is
nested within a school s[i], s = 1, . . . , S. Yi is the posttest,
measured at the student level: the CTB/McGraw-Hill test
for the CTA1 study and the TerraNova exam for the AS-
SISTments study. αp, p = 2, . . . , P are fixed effects for the
randomization pairs (since there is a global intercept β0 in
the model, we force α1 = 0 for identifiability). Xi is a stu-
dent level baseline covariate—special education status in the

ASSISTments study and pretest in the CTA1 study—p̂reds
is the school-level prediction from the model trained on aux-
iliary data, ηs ∼ N(0, ση) is a random intercept for school,
and ϵi ∼ N(0, σϵ) is a random student-level regression er-
ror. Finally, Zs[i] is the randomized treatment assignment
for student i’s school: Zs = 1 if school s is randomized to
the treatment arm and 0 otherwise. We take its coefficient
β1 as the treatment effect. We fit model (1) in R using the
lme4 package [10, 1].

The second approach we considered used the new R pack-
age propertee to estimate treatment effects [3]. Rather
than modeling outcomes, as in HLMs, the propertee builds
directly off of the experimental design, using clusters and
blocks to compute observation-level weights that are explic-
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itly targeted at average effects for well-defined samples of
subjects. In our analyses, we used average treatment effect
weighting, that targets the average effect among all students
in the study. propertee allows researchers to specify a sepa-
rate outcome regression to increase the precision of their es-
timates. The predictions or fitted values from this model en-
ter into the propertee estimator as offsets, subtracted from
Y prior to model fitting. In some of our analyses, we com-

puted offsets via linear regressions of the outcome on p̂red,
a student-level covariate, or both, along with an indicator
for treatment status (which improves model fit, but is au-
tomatically excluded from the offset). Finally, the software
package uses sandwich-style semi-parametric standard error
estimators [6] that account for the study design—including
clustered treatment assignment and randomization blocks or
pairs—and propegates the uncertainty from the covariance
adjustment outcome regression.

A third appoach, dRCT, is described in [8]. It uses school-
averaged data, weights schools based on their sample sizes,
and uses a leave-one-out approach to covariate adjustment
that allows for any model predicting outcomes as a function
of covariates, including modern machine learning. In our ex-
amples, due to the small number of schools involved, we used
ordinary least squares for covariate adjustment. Currently,
the dRCT package does not include methods for cluster ran-
domized trials without pair matching, so in this paper we
always account for pair matching in dRCT analyses.

4. RESULTS
4.1 CTA1 Study
Despite being predictions of a different outcome altogether,
the predicted TAKS passing rates were still predictive, with
a roughly 0.5 correlation with school-average outcomes.

Table 1 shows estimated treatment effects and standard er-
rors for eight HLMs: the results on the left do not include

p̂red as a predictor, while those on the right do. The top
two rows reflect models that ignore the blocking or pairing
structure of the data, while the bottom two rows include
pair fixed effects. Finally, rows two and four include pretest
prediction in the model, while rows one and three do not.

When the model ignores the paired structure of the ran-
domization, the estimated standard errors after adjusting

for p̂red are slightly smaller than the standard errors before
adjusting; unsurprisingly, student-level pretest scores have a

larger effect on standard errors than p̂red. Compared with
the unconditional model, with a standard error of 0.211,

adding just p̂red decreases standard errors to 0.182, while
adding pretest decreases standard errors to 0.168. Never-
theless, even when pretest is already part of the model, in-

cluding p̂red decreased standard errors very slightly.

When pair fixed effects—αp in (1)—are included in the model

to account for the randomization pairs, including p̂red in-
creases standard errors.

Table 3 shows analogous results using the propertee estima-
tor. In this case, when randomization pairs are ignored and
there are no other baseline covariates in the model, includ-

ing p̂red decreases standard errors by approximately 1/3, a

Table 1: HLM estimated average effects and standard errors

with and without p̂red, adjusting for pretest, or accounting
for randomization blocks (i.e. pairs)

Without Aux. Pred. With Aux. Pred.

cov est se est se

Ignoring Blocks
No Pretest 0.010 0.211 0.111 0.182
Pretest Adj. 0.087 0.168 0.142 0.160

Including Blocks
No Pretest 0.013 0.146 0.008 0.161
Pretest Adj. 0.090 0.123 0.063 0.134

Table 2: dRCT estimated average effects and standard errors

with and without p̂red, and/or adjusting for pretest. All es-
timates account for randomization blocks.

Without Aux. Pred. With Aux. Pred.

cov est se est se

No Pretest 0.019 0.189 0.066 0.144
Pretest Adj. 0.057 0.174 0.098 0.145

greater decrease even than inclusion of pretest scores. When
randomization pairs are ignored but pretest is included in

the model, also including p̂red decreases standard errors less
dramatically. The lower two rows show estimates when ran-
domization pairs are included. Interestingly, whenever an
offset (i.e. covariate adjustment) is present in the model,
the estimates and standard errors are identical to those when
randomization pairs were ignored. The only difference be-
tween the top and bottom half of the table is the case in
which randomization pairs, but not covariates, are included
in the analysis—this model estimates the lowest standard
error (and the lowst treatment effect) of any of the other
estimators.

5. ASSISTMENTS STUDY
Results in the ASSISTments study mirror those in the CTA1
study. When ignoring blocking, including school-level auxil-
liary predictions can significantly improve HLM estimation
precision, even when also including a student-level covari-
ate, in this case special education status. However, when

Table 3: propertee estimated average effects and standard

errors with and without p̂red, adjusting for pretest, or ac-
counting for randomization blocks (i.e. pairs)

Without Aux. Pred. With Aux. Pred.
est se est se

Ignoring Blocks
No Pretest 0.013 0.301 0.088 0.199
Pretest Adj. 0.051 0.227 0.085 0.193

Including Blocks
No Pretest 0.013 0.067 0.088 0.199
Pretest Adj. 0.051 0.227 0.085 0.193
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Table 4: HLM Results for ASSISTments in Maine

Without Aux. Pred. With Aux. Pred.

cov est se est se

Ignoring Blocks
FALSE 10.553 5.960 10.085 4.989
TRUE 11.095 5.686 10.712 4.894

Including Blocks
FALSE 10.129 4.905 10.118 4.877
TRUE 10.811 4.780 10.803 4.845

Table 5: dRCT results for ASSISTments in Maine

Without Aux. Pred. With Aux. Pred.

cov est se est se

FALSE 11.050 4.032 8.192 4.722
TRUE 12.618 3.867 9.592 4.818

including blocks in the the analysis, auxilliary predictions
make little difference in the analysis.

In dRCT analysis accounting for pair matching, auxilliary
predictions hurt estimation precision.

6. CONCLUSION
We had initially been optimistic that auxilliary predictions
using school-level data and an alternative outcome measure
would circumvent some of the major limitations of earlier
approaches to using auxilliary data in RCT analysis. It
turns out that the benefit of our approach depens on the
quality of the experimental design. In a high-quality design
including well-chosen matches, such as the two studies we
considered, our school-level adjustments had nothing to add.
However, if researchers did not initially match the schools
before randomization, adjustment using auxilliary data can
help recover most of benefits of matching.
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B. PaaÃŸen and C. D. Epp, editors, Proceedings of the
17th International Conference on Educational Data
Mining, pages 518–525, Atlanta, Georgia, USA, July
2024. International Educational Data Mining Society.

[9] J. F. Pane, B. A. Griffin, D. F. McCaffrey, and
R. Karam. Effectiveness of Cognitive Tutor Algebra I
at Scale. Educational Evaluation and Policy Analysis,
36(2):127–144, 2014. Publisher: [American
Educational Research Association, Sage Publications,
Inc.].

[10] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2024.

[11] S. W. Raudenbush and A. S. Bryk. Hierarchical linear
models: Applications and data analysis methods,
volume 1. sage, 2002.

[12] J. Roschelle, M. Feng, R. F. Murphy, and C. A.
Mason. Online mathematics homework increases
student achievement. AERA Open,
2(4):2332858416673968, 2016.

[13] A. C. Sales, B. B. Hansen, and B. Rowan. Rebar:
Reinforcing a Matching Estimator With Predictions
From High-Dimensional Covariates. Journal of
Educational and Behavioral Statistics, 43(1):3–31, Feb.
2018. Publisher: American Educational Research
Association.

[14] A. C. Sales, E. B. Prihar, J. A. Gagnon-Bartsch, and
N. T. Heffernan. Using auxiliary data to boost
precision in the analysis of a/b tests on an online
educational platform: New data and new results.
Journal of Educational Data Mining, 15(2):53–85,
2023.

[15] M. J. Van der Laan, E. C. Polley, and A. E. Hubbard.
Super learner. Statistical applications in genetics and
molecular biology, 6(1), 2007.

581


