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ABSTRACT

Automatic question generation (AQG) for mathematics ed-
ucation remains an elusive goal for Intelligent Tutoring Sys-
tems and educators. While pre-trained transformer-based
language models have significantly advanced natural lan-
guage generation, they often struggle to precisely control
problem complexity and cognitive demands. In this paper,
we introduce a collaborative multi-agent framework as a
novel method of incorporating inference-time computation
into AQG. This approach leverages multiple agents that it-
eratively refine generated question-answer pairs to better
balance complexity and cognitive demand. We evaluate the
generated questions on five meta-evaluation criteria: rele-
vance, importance, clarity, difficulty matching, answerabil-
ity, to assess the system’s ability to control the required
complexity and quality of the questions. Preliminary eval-
uations show that this collaborative multi-agent framework
elevates the quality of generated educational content by fos-
tering a more nuanced balance between cognitive challenge
and clarity. These promising outcomes suggest that inte-
grating collaborative multi-agent workflows can yield more
controlled, pedagogically valuable content that can help ad-
vance automated educational content generation and adap-
tive learning environments.
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1.

Dynamically generating mathematics practice exercises and
homework problems is a longstanding challenge for Intel-
ligent Tutoring Systems (ITS) and educators [5]. Typi-
cally, educators and ITS either rely on existing problems or
create new variations through minor modifications. Auto-
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Figure 1: Typical workflow of an ITS system.

matic Question Generation (AQG) aims to address this chal-
lenge but faced limited early success [5, 22]. Over time, di-
verse AQG methods have emerged, including the fine-tuning
of pretrained language models for topic-controlled question
generation [10] [17], often leveraging contrastive examples
(examples of similar questions that differ in topic) to help
the model distinguish and generate questions suited to spe-
cific concepts. More recently, prompt engineering guided
by Bloom’s Taxonomy [1], few-shot prompting with chain-
of-thought reasoning [15, 1], and contextualized math word
problem generation with equation constraints [7, 19] have
further advanced the field. Modern ITS require robust AQG
capabilities to dynamically provide personalized practice prob-
lems, effectively intervening in students’ learning trajecto-
ries [14].

An ITS system can be conceptualized as managing a stu-
dent’s knowledge state. Figure 1 illustrates a typical ITS
architecture where a knowledge-tracing module continuously
monitors student comprehension across various Knowledge
Components (KCs). At each interaction, the ITS selects
a KC based on the student’s knowledge state and using a
Curriculum Designer module, commonly implemented via
reinforcement learning (RL) models or search algorithms
like expectiminimax [14], to present an appropriate prob-
lem as an intervention. This adaptive process supports per-
sonalized curricula aimed at continuously enhancing student
mastery of KCs. Consequently, I'TS must be capable of dy-
namically generating practice problems for any KC, lever-
aging heuristics from example problems and incorporating
difficulty assignment mechanisms. The AQG task can vary
significantly based on system requirements. For instance,
[1] utilizes Large Language Models (LLM) prompted explic-
itly by textbook chapters and related question sets, while
other systems may rely solely on textbook chapters without


https://doi.org/10.5281/zenodo.15870246

additional prompts. Another common variation is concept-
based generation, where AQG systems create questions de-
rived directly from explicitly defined concepts or knowledge
graphs. This paper approaches AQG from an ITS perspec-
tive, defining inputs as: 1) the KC name per Common Core
State Standards definitions, 2) a set of example questions for
that KC, and 3) the required difficulty level (easy, medium,
or hard). The system outputs a generated question and its
answer.

AQG aligns with broader natural language generation (NLG)
challenges, particularly the lack of definitive ground truths
and the subjective nature of human evaluations. Because
of this, evaluating NLG has been a key area of recent re-
search, giving rise to frameworks like G-Eval [12], which
leverages GPT-4 as a reference-free evaluator for tasks such
as summarization, demonstrating improved alignment with
human judgments. However, biases may persist in these
LLM-based evaluation methods, as highlighted by [8, 18].
Task-specific initiatives like QGEval [4] reveal continued dif-
ficulties in ensuring strong alignment between automated
metrics and human ratings in question generation, under-
scoring the broader challenges posed by subjectivity and the
absence of definitive ground truth. Another major ongoing
challenge in AQG is ensuring high-quality questions that are
coherent, relevant, and accurately aligned with the intended
difficulty level.

To address these issues, we explore recent advancements in
LLMs, particularly in Inference Time Computation (ITC)
techniques [16]. ITC generally refers to methods that extend
or refine a model’s outputs during deployment without addi-
tional training, by orchestrating extra computational steps,
retrieving context, or allowing models to interact with each
other. Within this paradigm, we focus on multi-agent col-
laborative systems, also known as agentic workflows [20],
which improve LLM performance by facilitating interactions
between multiple agents. This allows them to debate, com-
plement each other’s strengths, and incorporate diverse per-
spectives. Of all the agent collaboration techniques, debate
emerges as a particularly effective approach, inspired by the
concept of the Society of Mind [13] to harness collective
knowledge. Studies show that multi-agent debate can en-
hance factuality and reasoning [3], foster divergent thinking
[11], and even achieve state-of-the-art performance in math-
ematical reasoning [20]. Other lines of work focus on mecha-
nisms such as hierarchical or roleplaying-based collaboration
[22, 2] and competitive settings [21], while recent frame-
works like AutoGen [20], Camel [9], and MetaGPT [6] facil-
itate a variety of multi-agent collaboration structures. By
enabling agents to engage in structured interactions, these
workflows enhance factual accuracy, reasoning capabilities,
and the overall quality of generated questions.

In this paper, we investigate the potential of integrating ITC
techniques through collaborative multi-agent frameworks into
AQG. We evaluate the outputs based on clarity, relevance,
importance, answerability, and difficulty matching. Our
contributions are three-fold. First, we propose two novel col-
laborative frameworks specifically designed for AQG tasks.
Second, we develop a self-curation method for AQG guided
by cognitive demand criteria from Bloom’s taxonomy. Third,
we introduce an automated evaluation framework to assess
automatically generated math questions, considering clarity,
relevance, importance, answerability, and difficulty control.
Our research explores two key questions:
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(1) Does difficulty matching depend on the proposed diffi-
culty?

(2) Do agentic workflows improve question generation com-
pared to baseline models?

2. METHOD AND EXPERIMENT SETUP

We propose two multi-agent systems that generate a ques-
tion and answer based on a given difficulty level, set of ex-
amples, and the KC name for use in the ITS. In this sec-
tion, we will explain the data, agents, multi-agent workflows,
prompting strategies, curation method, and evaluation met-
rics of the system.

2.1 Data

Our experiments utilize the Problem Bodies * dataset. The
dataset is an extension of the ASSISTments dataset, a widely
used benchmark from ITS. Problem Bodies contains middle-
school math questions accompanied by empirical student
performance metrics. Each question in this dataset includes
a “percent correct” attribute, representing the percentage of
students who answered correctly. This allows us to cate-
gorize the questions into easy, medium, and hard difficulty
levels, providing an empirically grounded measure of diffi-
culty aligned with real-world student performance.

2.2 Agents

In our experiments, we use the following agents/roles:
Teacher: Generates math questions and answers for a spe-
cific KC at a set difficulty level. It returns concise responses
while adjusting based on conversation context.

Generic Critic: Provides objective, high-level feedback on
clarity, relevance, and difficulty alignment without introduc-
ing new content. It references the overall discussion for con-
sistent evaluation.

Consensus CEO: Serves as the final decision-maker by re-
viewing conversation history and selecting the best question-
answer pair from multiple agents. If a consensus exists, it
reports that; otherwise, it chooses the option aligning best
with the KC, difficulty requirements, and sample solutions.
Versatile Agent: Dynamically participates in collaborative
discussions, making one of three decisions based on chat
history: (1) generate a new Q&A pair, (2) revise an existing
pair, or (3) endorse a peer’s pair while providing construc-
tive feedback. This agent uses prior messages and examples
to ensure its contributions align with the KC, intended dif-
ficulty, and the collective goal of reaching consensus.

2.3 Workflows and Experimental Setup

We systematically evaluated four distinct approaches, in-
cluding two Baseline scenarios and two agentic workflows
(see Figure 2) designed to generate educational math question-
answer pairs, each with varying complexity and collabora-
tive structures:

Baseline Teacher Zero-Shot: This workflow uses a single
teacher agent using a zero-shot prompt approach to generate
self-contained math questions and answers without relying
on prior examples or conversation history.

Baseline Teacher Few-Shot: In this variant, the teacher agent
is guided by a few example question-answer pairs, aligning

"ttps://sites.google.com/site/assistmentsdata/
home/assistments-problems
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Figure 2: Agentic workflows. Left: Teacher Critic Cycle.
Right: Collective Consensus.

it more closely with other few-shot-based workflows.
Teacher-Critic Cycle (TCC): TCC involves two agents: a
teacher generates an initial math question and answer, fol-
lowed by iterative critique from a generic critic agent. The
critic assesses clarity, relevance, difficulty, and pedagogical
appropriateness, with the teacher refining the content across
multiple feedback rounds. Experimentally, we varied the
number of interaction rounds between two to five, and evalu-
ated the effectiveness of two prompt engineering techniques:
Auto Chain-of-Thought (AutoCoT) and explicit Solution
Generation, by enabling and disabling them. In Solution
Generation, the teacher (or versatile agent) tries to output
only the final answer to a math problem, while in AutoCoT,
the teacher (or versatile agent) uses a step-by-step reasoning
process before arriving at the final answer.

Collective Consensus (CC): CC is a multi-agent workflow in-
volving a collaborative conversation to reach consensus on
math question-answer pairs. Initially, one versatile agent
generates a question-answer pair, after which two to four
versatile agents sequentially contribute by either creating a
new question, revising an existing question with feedback,
or explicitly agreeing with feedback. Decoding parameters,
including sampling seed and temperature, are randomized
per agent to encourage diverse perspectives. Following it-
erative discussion (ranging from two to five rounds), a con-
sensus CEO agent reviews the conversation. If consensus is
achieved, the CEO selects the agreed-upon final pair; other-
wise, it chooses the best candidate based on collective judg-
ment and educational alignment. As with TCC, we explored
the impact of AutoCoT and explicit Solution Generation,
evaluating their roles both enabled and disabled. Across all
workflows, we tested three prompting strategies which we
detail in Section 2.4: Empirical Difficulty Prompting, Em-
pirical Prompting, and Simple Prompting. These strategies
help assess whether providing explicit difficulty-level context
enhances question quality relative to random or difficulty-
specific examples.

2.4 Difficulty Prompting Strategies

Empirical: All but the baseline use a few-shot approach.
Math questions are labeled “easy,” “medium,” or “hard” us-
ing real student performance data (higher “percent correct”
indicates easier). These labeled examples guide the model
in generating questions matching the requested difficulty.
Prompting Empirical: This variant also relies on empirical
difficulty data but only presents examples matching the re-
quested difficulty. For instance, if the model is asked to
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produce an “easy” question, only empirically identified easy
examples are shown.

Prompting Simple (Random Examples): Here, the model re-
ceives randomly selected examples from all difficulty tiers. It
must rely solely on the requested difficulty (“easy,” “medium,”
or “hard”) without explicit guidance from example labels,
placing more responsibility on general instructions.

2.5 Self-Curation

We design a Bloom Agent that assigns each output question
a Bloom evaluation score (1-5) based on its cognitive de-
mands, ensuring alignment with the three Bloom tiers—lower
(Remembering, Understanding), middle (Applying, Analyz-
ing), and upper (Evaluating, Creating). Because generat-
ing many candidate questions is computationally cheap, we
aggressively discard those that fail the expected cognitive
challenge, retaining only those demonstrating strong Bloom
alignment. We also compare this curation method against
Random Curation (RC) of our methods for comparison. Un-
like conventional curation, which may rely on syntactic fea-
tures, our approach prioritizes pedagogical rigor over mere
textual similarity, ensuring that even a surplus of suboptimal
questions yields a subset with meaningful cognitive depth.

2.6 Evaluation Metrics

To evaluate the generated questions, we used prompt engi-
neering to quantify the quality of each instance based on the
following criteria:

Relevance: Measures how well the generated questions align
with example questions and the targeted KC. Scored on a
scale of 1 (not relevant) to 5 (highly relevant).

Importance: Assesses whether the question emphasizes key
conceptual components of the targeted KC. Rated from 1
(least important) to 5 (essential).

Clarity: Evaluates structural coherence and linguistic preci-
sion of a question to ensure it is easily understood by middle-
school students. Scored from 1 (unclear) to 5 (exceptionally
clear).

Difficulty Matching: Determines how well a question’s com-
plexity aligns with the specified difficulty level (easy, medium,
hard). Cognitive difficulty ranges from basic factual recall
(easy) to moderate conceptual reasoning (medium) and ad-
vanced analytical skills (hard). Scored from 1 (no alignment)
to 5 (perfect alignment).

Answerability: Evaluates whether a middle-school student
can reasonably understand and respond to the question based
on the provided information. Rated from 1 (unanswerable)
to 5 (clearly answerable).

The prompts for the agents and the evaluation module can
be found in our repository ?

3. RESULTS AND DISCUSSION

Table 1 shows the evaluation results of our methods, TCC
and CC, compared to both the baseline and non-curated
agentic methods. While TCC and CC outperform both
the baselines and their non-curated counterparts across all
evaluation metrics, the improvements are incremental rather
than drastic. The greatest gains are observed in Difficulty
Matching and Relevance, which suggests that incorporating
iterative critique and collective refinement enhances align-
ment with the intended cognitive challenge and pedagogi-

’https://github.com/aminsmd/QA_GEN
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Table 1: Evaluation results of different question generation workflows.

Method Clarity Relevance Importance Difficulty Matching Answerability Avg. Score
Baseline_ZS 3.66 4.61 4.67 4.41 4.65 4.40
Baseline FS  3.70 4.93 4.73 4.02 4.71 4.42
CC_RC 3.50 4.95 4.71 3.94 4.61 4.34
TCC-RC 3.72 4.90 4.73 4.11 4.79 4.45
CC 3.60 4.99 4.76 4.96 4.94 4.65
TCC 3.75 4.92 4.70 4.88 4.94 4.64

cal quality. These findings directly address Research Ques-
tion 2 (RQ2). Additionally, the fact that non-curated agen-
tic methods underperform the baseline suggests that agent-
based generation alone is insufficient without structured se-
lection or refinement. Agent responses exhibit greater vari-
ability, sometimes failing to meet standards of clarity, diffi-
culty alignment, or answerability. This highlights the impor-
tance of iterative curation mechanisms to ensure consistency
and reliability in multi-agent AQG.

Figure 3 presents the Difficulty Matching and Average Score
across different difficulty levels (easy, medium, hard) for
each method. The trends observed align with the overall
evaluation results. Our curated methods (TCC and CC)
outperform the baselines and non-curated methods, though
the improvements remain incremental. A general pattern
emerges where both Difficulty Matching and Average Score
decrease as question difficulty increases. This finding ad-
dresses Research Question 1 (RQ1). The observed trend
suggests that difficulty matching is indeed more challenging
for harder questions, indicating that LLM-based generation
struggles to maintain appropriate cognitive complexity as
difficulty increases. Notably, the baseline models and non-
curated agentic methods perform significantly worse on hard
questions. This reinforces the need for structured prompt-
ing and iterative refinement to produce well-calibrated high-
difficulty questions.

Unexpectedly, the Baseline Zero-Shot method achieves higher
Difficulty Matching scores than both the Baseline Few-Shot
model and several agentic methods (including curated and
non-curated variants), which suggests that few-shot exam-
ples may introduce biases or inconsistencies in aligning ques-
tions with intended difficulty. These findings underscore the
intricate interplay between prompting strategies and diffi-
culty alignment, prompting further study of how example-
based prompts shape model outputs. A key question in-
volves how much inference computation is optimal. Since
these are iterative I'TC methods, merely increasing the num-
ber of rounds or agents does not guarantee performance

616

gains and can even yield diminishing returns (Figure 4). Our
limited settings suggest that a more comprehensive param-
eter search is needed to pinpoint where additional computa-
tion yields real benefits.

Furthermore, our study finds that the effectiveness of prompt-
ing strategies for enabling the in-context learning ability of
LLMs is minimal. As shown in Table 2, different few-shot
prompting techniques had little to no impact on perfor-
mance. This suggests that current few-shot learning strate-
gies may be suboptimal for the AQG task. Future research
could explore alternative prompt engineering and adaptive
few-shot learning techniques to better leverage in-context
learning for question generation.

Finally, a critical area for future work is the quality of eval-
uation itself. All our findings rely on automated evalua-
tions conducted by GPT-4 and based on state-of-the-art
NLG evaluation frameworks [12, 4], which raises concerns
about potential biases and limitations in LLM-based self-
evaluation. In particular, we observed a ceiling effect (Fig-
ure 5) in the resulting evaluation scores similar to what the
G-Eval authors reported. This effect can mask finer-grained
differences in system performance and limit the discrimi-
native power of LLM-based evaluations. If the evaluation
system exhibits misalignment with human judgment, all de-
rived insights could be affected. To address this, we plan to
collect human evaluation data and fine-tune our automated
evaluation module to align more closely with human eval-
uators and increase the trustworthiness of the assessment
process.

Overall, while our study demonstrates that the success of
difficulty matching is dependent on the proposed difficulty
level (RQ1) and that agentic workflows can improve question
generation compared to the baseline (RQ2), these improve-
ments come with important caveats. Optimization of in-
ference computation, refinement of few-shot learning strate-
gies, and enhancing evaluation reliability are key directions
for future research to advance Al-driven educational content
generation.
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Figure 5: Histogram of evaluation metrics.

Table 2: Difficulty prompting strategies results.

Method Difficulty Prompting Strategies Difficulty Matching Avg. Score

CcC empirical 4.71 4.60
CC prompting empirical 4.68 4.64
CC prompting simple 4.70 4.61
TCC empirical 4.66 4.66
TCC prompting empirical 4.61 4.64
TCC prompting simple 4.67 4.65
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