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ABSTRACT

Feedback effectively supports STEM learning. Past work
usually compared learning gains when estimating the effec-
tiveness of different feedback types. Learning rates, in con-
trast, quantify learning from individual instructional feed-
back events, which may confirm or challenge existing sci-
entific knowledge about feedback. We study how feedback
types and prior knowledge, as a common moderator of feed-
back effectiveness, influence learning rate. Log data from
N=61 incoming first-year university students working with
StoichTutor, a tutoring system for chemistry, are analyzed.
A total of 1,169 feedback messages are manually catego-
rized using a coding scheme informed by literature. We use
instructional factors analysis (IFA) to assess the relation be-
tween feedback types and learning rate across students with
low and high prior knowledge. Correctness feedback sig-
nificantly improved the learning rate for all students. In
contrast, indirect and next-step feedback had negative im-
pact on learning rates. We discuss how next-step feedback,
which provides learners with an explanation of the problem
or next step without a prior mistake been made, is likely too
unspecific (low prior knowledge) or redundant (high prior
knowledge) for learners to be effective. To the best of our
knowledge, our study is the first to model feedback-specific
learning rates using IFA.
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1. INTRODUCTION

Intelligent tutoring systems adapt content to learners by en-
abling step-by-step problem solving with feedback and hints
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18th International Conference on Educational Data Mining, Palermo,
Italy, July, 2025, pp. 571-577. International Educational Data Min-
ing Society (2025).
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[1, 48]. We studied StoichTutor [37], which supports learn-
ers in solving stoichiometry problems and provides different
types of feedback. Stoichiometry deals with the quantita-
tive relationships between reactants and products in chem-
ical reactions [39]. Stoichiometry challenges learners, espe-
cially by linking mathematical and conceptual knowledge
[7, 36]. We define feedback as highlighting differences be-
tween problem-solving step attempts and correct solutions
and, optionally, providing error-specific instruction [20, 23].
Prior research has predicted that different feedback types
have different impact on student learning during problem
solving [20, 44, 18, 35]. In StoichTutor, these steps are asso-
ciated with unique feedback events, which allows us to study
how feedback events contribute to student learning rate.

Learning rate modeling quantifies the effectiveness of learn-
ing opportunities (e.g., completing a single problem-solving
step and receiving accuracy feedback). Problem-solving steps
are defined as the necessary actions required to solve the
problem [48]. Learning rates represent how much a stu-
dent’s performance improves with each additional oppor-
tunity to apply a specific skill [27]. In contrast, learning
gain reflects the total performance improvement over an in-
structional period, capturing the difference between a stu-
dent’s initial and final level of content mastery. It is chal-
lenging to attribute learning differences to distinct feedback
events when an instructional system features multiple types
of feedback. To address this challenge, we used instructional
factors analysis (IFA), an extension of learning rate model-
ing, which estimates separate learning rates attributable to
distinct types of instruction, for instance, feedback [12], a
method commonly used in educational data mining (EDM)
[5, 16]. IFA allows for an estimation of the impact of indi-
vidual feedback events on learning [12]. Little past research
has studied feedback at the process level by comparing feed-
back types. Exceptions only predicted overall performance
[22] or have classified students’ perception of feedback [24]
as opposed to studying how effective different feedback types
are for learning rate. For example, prior work has examined
self-explanation compared to giving explanations [12]. A
similar method, called learning decomposition, is also con-
cerned with estimating what instructional events contribute
to efficient learning, but has only been applied to general
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tutor help during learning, as opposed to different types of
feedback [3]. To the best of our knowledge, the impact of
specific feedback on students’ learning rate has not yet been
investigated. Hence, we ask:

RQ1: How do different feedback types in a tutoring system
affect learning rate when solving stoichiometry problems?

We also studied how feedback effectiveness depends on stu-
dents’ prior knowledge. Previous work has shown that learn-
ers with low prior knowledge benefit significantly from ex-
planatory feedback [18, 46], while learners with a high level
of prior knowledge are more likely to benefit from receiving
less feedback [18]. In both cases, the term benefit refers pri-
marily to pre-post learning gains. For instance, Fyfe et al.
[18] found that learners with low prior knowledge improved
their procedural knowledge more when provided with feed-
back during exploratory problem solving, while learners with
higher prior knowledge performed better when feedback was
withheld. Similarly, Sychev et al. [46] reported that stu-
dents with lower initial comprehension levels showed greater
learning gains after interacting with explanatory feedback in
an intelligent tutoring system. Separately estimating IFA by
prior knowledge learner groups, we ask:

RQ2: How do different types of feedback affect the rate of
learning according to prior knowledge?

2. BACKGROUND

2.1 Feedback in Tutoring Systems

Feedback supports learners in reflecting on their performance,
correcting mistakes, and improving strategies [44]. In tutor-
ing systems, immediate feedback is provided in real time,
supporting learning [13]. Current literature distinguish be-
tween two main types of feedback: corrective feedback and
knowledge-of-results feedback. Whereas corrective feedback
highlights errors and provides specific opportunities for cor-
rection such as explanations for error remediation, knowledge-
of-results feedback simply indicates whether a response is
right or wrong[20, 44, 43]. Corrective feedback can take
many forms, such as a) explicit correction (an error is indi-
cated and directly corrected) [34], b) indirect feedback (an
error is hinted at, but the solution is not directly provided)
[8], and ¢) elicitation and metalinguistic feedback (targeted
questions and hints are used to draw attention to a mistake
without providing the direct answer) [34]. These types of
feedback are all common in tutoring systems and may have
different impacts on learning. For example, corrective feed-
back in tutoring systems can contribute to the development
of problem-solving strategies [44, 48]. However, to the best
of our knowledge, no prior work has modeled learning rates
of these distinct feedback types in tutoring systems.

2.2 Feedback Depending on Prior Knowledge

The effectiveness of feedback depends on learners’ prior knowl-

edge [18, 35]. In a study on exploratory learning, learners
with low prior knowledge benefited significantly more from
feedback on the correct solution strategy, as it helped them
gain procedural understanding and avoid misunderstandings
[18]. In contrast, learners with higher prior knowledge some-
times benefited more from not receiving feedback on the
correct solution strategy and exploring the learning envi-
ronment without feedback, as the necessary schemata for
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solving the task are already available in working memory
[18, 45]. Hence, research suggests that feedback should be
adapted for learners, high prior knowledge learners tend to
use several cognitive and metacognitive strategies [47].

These lines of research predicted differential effectiveness of
feedback for learning. Learners with low prior knowledge in
particular may benefit from tutoring systems that provide
explanatory feedback and promote the avoidance of mis-
understandings [21, 46]. In addition, knowledge-of-results
feedback, as feedback on success and failure, may have a
positive effect on learning[38]. A previous study on process-
ing vector math in a computer system demonstrated that
merely providing the correct answer (informing the learner
of the correct solution) did not lead to learning gains for
learners with low prior knowledge [21]. This aspect aligns
with meta-analytic findings in the literature suggesting that
feedback becomes increasingly effective with the inclusion
of more detailed information, such as error descriptions or
even instructions for subsequent steps. Furthermore, the ef-
fectiveness of corrective feedback is known to be influenced
by variables such as competence in a specific content domain
[50]. It is an open question to what extent different types
of feedback in a tutoring system have a positive or negative
effect on learning rate with different prior knowledge.

3. METHODS

3.1 Dataset Description

This study analyzed StoichTutors [37] log data to examine
the impact of different types of feedback on student learning
rates. The data set was collected in March and September
2023 from 61 incoming undergraduate students enrolled in
a preparatory chemistry course for science students, solving
up to seven stoichiometry problems. The preparatory chem-
istry course was designed for STEM students and introduced
concepts of general chemistry that are required for studies
in the natural sciences. This included teaching students how
to solve stoichiometry problems. The course was structured
according to the blended learning model, allowing learners
to engage with exercises at their own pace in a digital learn-
ing environment as well as participate in face-to-face chem-
istry exercises both in the lecture hall and from their homes.
During this two-week course, which included 6 days in pres-
ence, participants spent one hour working with StoichTutor,
which was not incorporated as a standard learning tool in
the preparatory course. Informed consent was obtained from
all participants. Interactions in StoichTutor were logged to
DataShop [29]. The dataset included problem-solving trans-
actions where students attempted steps, received feedback,
and were evaluated on correctness. After each problem-
solving step, learners immediately received feedback, the
impact of which was modeled in terms of the probability
of entering a correct solution in subsequent problem-solving
steps. This allowed for quantifying the distinct impact of
these instructional events on learning [11], as opposed to
the impact on other instructional differences (e.g., self-paced
study, lectures) happening during the study’s practice pe-
riod, or student-level differences in preparatory activity in-
between the practice period and any assessments. As is
common practice in EDM, we only retained first-attempt
responses per step, thereby isolating students’ initial un-
derstanding prior to any further scaffolding or trial-and-
error adjustments [10, 12], which yielded a total of 3,670



unique problem-solving step completions. We used Stoich-
Tutor’s standard knowledge component model for learning
rate modeling [37]. This model included 44 skills.

Each problem-solving attempt was linked to a feedback type,
so that the impact of feedback on learning rate could be
modeled. To analyze the influence of prior knowledge, par-
ticipants were divided into high and low prior knowledge
groups based on their overall performance on a pre-test, us-
ing a median split. Each group’s average pre-test score was
about 1.25 SD apart from one another, indicating satisfac-
tory variation in prior knowledge.

3.2 Feedback in StoichTutor

3.2.1 Feedback Categorization in StoichTutor

StoichTutor guides learners step by step through problems
using pre-structured fields and boxes [37]. In addition to
entering numeric values, units and substances must also
be selected from a drop-down menu. The system provides
feedback by recognizing incorrect entries and highlighting
them (e.g., a box is highlighted in red). Learners can re-
quest hints, which provide specific instructions on the next
problem-solving step. This type of feedback is taken into
account for the evaluation, as hints are generally considered
as incorrect attempts in learning rate modeling [10, 5]. For
many (but not all) steps, StoichTutor provides specific guid-
ance for incorrect inputs (e.g., also swapping numerator and
denominator).! Figure 1 visualizes StoichTutor’s interface.

We categorized feedback in StoichTutor based on categories
established by Lyster and Ranta [34] and Budiana and Mah-
mud [8]. As these categories originated from foreign lan-
guage teaching, some adjustments were necessary to ensure a
classification of the types of feedback in StoichTutor. Exam-
ples of our categories are presented in Table 1, which summa-
rizes the types of feedback in StoichTutor. Explicit feedback
and indirect feedback as well as knowledge-of-results feed-
back (referred to as correctness feedback) could be adopted
as is. However, we combined positive and negative correct-
ness feedback due to the low number of negative correct-
ness feedback in StoichTutor. We included positive feedback
in our model, as research on memory performance suggests
that feedback affirming a correct result enhances confidence
in the problem-solving process [49, 9]. We note that common
cognitive models of student knowledge our field also treat
incorrect and correct attempts at problem-solving steps as
learning events with distinct learning rates [41].

Finally, metalinguistic feedback and elicitation [34] were listed
independently. In this article, however, the definitions are
summarized under the category ‘metalinguistic feedback’,
as it is not possible to differentiate between them based on
StoichTutor’s feedback messages. Both message types indi-
cate an error through questions and hints, but do not offer a
direct solution. In addition, a further feedback form, ‘next-
step feedback’, was retained as a separate category, since
hints indirectly guide learners toward direct solutions with
increasing specificity [48].

! The StoichTutor website is available via the following link:
https://stoichtutor.cs.cmu.eduhttps://stoichtutor.cs.cmu.edu
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Table 1: Feedback examples in StoichTutor.

Category
Explicit Correction

Example

Since we are converting from moles,
we select mol in the marked box.

Keep in mind that you are converting
from grams to mols.

Use 6 in this problem, but maybe
not in this term.

Determine the amount of substance
in moles based on one liter L.

Well done! Keep it up!

Indirect Feedback

metalinguistic
Feedback

Next-Step Feedback

Correctness Feedback

3.2.2  Coding of Feedback Messages

Two independent coders categorized the feedback messages
in StoichTutor. After the first round, the coders discussed
and resolved discrepancies. It became apparent that it was
difficult to differentiate between ‘elicitation’ and ‘metalin-
guistic feedback’ in StoichTutor feedback (see Section 3.2.1).
Hence, in a second round, the coded feedback that had been
assigned to the categories metalinguistic feedback and elic-
itation was explicitly coded again into the new categories
next-step feedback and metalinguistic feedback. After two
coding rounds, a category was agreed upon for each feedback
message. A total of 1,169 feedback messages were double-
coded, representing all unique feedback messages in Stoich-
Tutor. The final coding scheme is provided in a digital ap-
pendix.?

3.3 Instructional Factors Analysis Modeling
To estimate student learning rates, we employed IFA, an
extension of the Additive Factors Model (AFM), a growth
model implemented through mixed-effects logistic regression
[30, 33, 12]. The dependent variable in our model was the
correctness of the first attempt at a given step, coded as
a binary outcome (1 = correct, 0 = incorrect). The AFM
model assumes that learning occurs progressively as students
accumulate practice opportunities. In the base AFM model,
correctness probability is modeled as a function of learning
opportunities (opp.):

logit(P(correct)) = Tstud. + Bskill + Bopp. (1)

where Tgtua. represents individual student proficiency, Bskin
denotes the initial difficulty of the skill being practiced, and
Bopp. captures the learning rate per opportunity.

IFA extends this model by decomposing opportunities based
on instructional factors, in this case, feedback type:

logit(P(correct)) = Totud. +Bskiti+ P, Breedback OPP-fecdback- (2)

where each Bfeedvack term represents the learning rate of a
given feedback type. Opportunities were counted separately
by feedback type, following past research using IFA [12, 16].

The models were estimated using mixed-effects logistic re-
gression with the glmer function in R [2]. A baseline AFM
model with a single opportunity count was compared against
the IFA model with separate opportunity counts for each
feedback type using the Bayesian Information Criterion (BIC)
to compare model fit and parsimony [32]. Interpretation of

https://github.com/conradborchers/chem-feedback-
ifahttps://github.com/conradborchers/chem-feedback-ifa
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Figure 1: Interface of StoichTutor with an example of explicit correction feedback.

the estimated learning rates by feedback type is based on
the odds ratio (OR) for each feedback type. An OR greater
than one indicates that each additional learning opportunity
associated with that feedback type increases the probability
of a correct response, suggesting effective learning [5]. Con-
versely, an OR below one implies that repeated exposure to
that feedback type is associated with reduced performance
gains, which may indicate counterproductive feedback. In
addition, separate models were estimated on data subsets for
high and low prior knowledge students to explore whether
the effectiveness of feedback varied by prior knowledge.

4. RESULTS

The double coding of feedback over two rounds resulted in a
high reliability with binary kappas at category level between
0.94 (explicit correction) and 1.00 (correctness feedback).
Further, model fit and parsimony of the IFA model were sub-
stantially better than the baseline AFM model which does
not distinguish learning rate by feedback type, as suggested
by a lower BIC (8232.9 for AFM and 7292.2 for IFA).

4.1 Feedback-Specific Learning Rate (RQ1)
Overall, StoichTutor had a good and significant (p < 0.001)
learning rate in this population as log of likelihood of solv-
ing problems with less number of problem-solving steps [25]
required with an OR of 1.07 at a 95% CT of 1.05-1.09, indi-
cating model validity. In log-odds representation, this learn-
ing rate corresponded to an effect size of 8 = 0.07, which is
slightly lower than the log-odds of 0.1 typical for tutoring
systems [27]. As shown next, this difference could be due
to some forms of feedback in StoichTutor being ineffective
for learning. Specifically, considering the effects of different
types of feedback on the learning rate (RQ1), the results of
the IFA model are presented in Table 2.

Correctness feedback (OR = 1.12, p < .001) significantly im-
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Table 2: Mixed-effects logistic regression table for feedback
type and learning rate (IFA).

Predictors Odds Ratios 95% CI p

Intercept 1.21 0.88 — 1.65 .237
Explicit Correction 1.01 0.72 -1.41 .961
Correctness Feedback 1.12 1.08 - 1.17 <.001
Indirect Feedback 0.73 0.54 — 1.00 .048
Next-Step Feedback 0.88 0.81 — 0.95 .001
Metalinguistic Feedback 0.96 0.89 - 1.03 .261

proved student learning rates, indicating that simple binary
accuracy feedback (correct vs. incorrect) effectively sup-
ports skill acquisition. Conversely, indirect feedback (OR =
0.73, p = .048) and next-step feedback prompts (OR = 0.88,
p = .001) were significantly associated with lower learning
rates, suggesting that these types of feedback slowed down
learning. Explicit correction (OR = 1.01, p = .961) and
metalinguistic Feedback (OR = 0.96, p = .261) did not lead
to any significant change in performance over time.

4.2 Comparison by Prior Knowledge (RQ2)

To examine if feedback effectiveness varied by prior knowl-
edge, we analyzed high and low prior knowledge students
separately (RQ2). Correctness feedback exhibited a pos-
itive learning rate in both prior knowledge groups (high:
OR = 1.12, p = .003; low: OR = 1.14, p < .001). Indi-
rect feedback negatively impacted learning in both groups,
but was not significant for either group, potentially due to
lower statistical power per group. Next-step feedback had
a small but significant negative effect in both groups (high:
OR = 0.89, p = .020; low: OR = 0.87, p = .025). Explicit
correction and metalinguistic feedback were non-significant.

Overall, these results suggest that, contrary to expectations,
learning rates by feedback type did not significantly differ



by prior knowledge group. This regularity in learning rates
aligns with prior large-scale evidence of learning rates in tu-
toring systems [27]. Specifically, correctness feedback was
most consistently effective across different levels of prior
knowledge, while indirect and next-step feedback may re-
quire further refinement to increase their instructional effec-
tiveness.

S. DISCUSSION

In this study, feedback messages from a tutoring system were
classified in line with past feedback taxonomies[8, 34] to in-
vestigate the extent to which student learning rates differ by
feedback type (RQ1). We also analyzed learning rates asso-
ciated with each feedback type across students with low and
high prior knowledge (RQ2), as past research has predicted
high prior knowledge students may benefit from more elab-
orated feedback [18, 45, 47]. To the best of our knowledge,
this study is the first to apply IFA [12] to different feedback

types.

Results suggest that the positive learning rate students ex-
perienced in StoichTutor was primarily due to simple cor-
rectness feedback, indicating if a given attempt was correct
or not. This was the case for learners with high and low
prior knowledge equally. In our study, correctness feedback
was most commonly following correct problem-solving step
responses, as StoichTutor only includes three cases where
negative correctness feedback is used. In contrast to this
(mostly positive) correctness feedback, other feedback types
in our sample, more commonly following incorrect responses,
were not associated with significant learning, or even slowed
students down. These results align with findings from Mitro-
vic et al. [38], which showed that giving positive correctness
feedback in addition to negative correctness feedback espe-
cially improves learning. We interpret the lack of evidence
for the effectiveness of other feedback types as negative feed-
back impacting autonomy and the sense of competence of
students [50], which in turn affects intrinsic motivation as
delineated by Deci and Ryan [15]. It is possible that these
motivational effects made students less likely to productively
engage with the more complex forms of feedback in Sto-
ichTutor, for example, by self-explaining after an explicit
correction [17, 50]. Future research could study this in-
terpretation further through think-aloud protocols [6]. As
an alternative explanation, it is possible that the feedback
types in our sample are confounded with substantial differ-
ences in student performance at specific skills, which could
be adjusted for by adding success history parameters into
the IFA model [42]. It is possible, though beyond the scope
of this study, that such confounds lead to our model under-
estimating the learning rate of feedback types co-occurring
with errors (e.g., explicit corrections).

The fact that learning rates were similar for learners of high
and low prior knowledge misaligns with past research on
feedback that found that feedback on the correct answer
was less effective for lower performing students when solving
vector math problems [21]. Similar diversity of feedback
effectiveness by context has been noted in past research [35],
and it is possible that our context of stoichiometry learners
in higher education are no exception.

Our results also align with past evidence that learning rates
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are generally similar across learners, irrespective of prior
knowledge [27]. We suspect that correctness feedback gives
learners more room to engage in active learning and gener-
ate answers with the help of hints, which has been shown to
support learning [31]. It is possible that the more elaborated
types of feedback studied here, which sometimes slowed down
learners, represent overscaffolding, whereby learning is harmed
if too much information about a step is provided [26]. In-
deed, past research on StoichTutor suggests that its high
degree of scaffolding may take away opportunities from stu-
dents to effectively self-regulate their learning and gener-
ate problem-solving solution plans [51], which may dimin-
ish their learning. In contrast, hints allow learners to pace
their own learning, and increasingly reveal relevant informa-
tion at the learner’s request. In line with this explanation,
past literature suggested that high prior knowledge may ini-
tially need to explore a learning environment independently
of feedback, and that elaborated feedback is therefore not al-
ways effective [18, 45]. To further test these hypotheses, fu-
ture research could employ think-aloud protocols which have
been successfully used to understand strategic and metacog-
nitive differences in chemistry problem solving [6, 4].

5.1 Limitations and Further Work

First, we acknowledge a neglect of the language style used in
StoichTutor. A polite language style, in contrast to a direct
language style, benefits students with low prior knowledge
especially [37]. Second, we neglected metacognitive factors,
such as gaming the system, which are known to interfere
with the effectiveness of feedback [14, 40]. Future work could
adjust for gaming as an instructional factor and quantify stu-
dent effort by decomposing response times [19]. Moreover,
it is possible, though beyond the scope of the present study,
that learning rates differences associated with distinct feed-
back types depend on specific knowledge components and
their difficulty [28], including in relationship to student prior
knowledge, which may work together to moderate student
motivation to productively engage with more complex forms
of feedback [50].

6. CONCLUSION

Applying instructional factors analysis to estimate learning
associated with fine-grained instructional events, we con-
tribute novel evidence regarding the effectiveness of differ-
ent feedback types in tutoring systems. Our results show
that all feedback types analyzed (i.e., explicit correction,
correctness feedback, indirect, next-step, and metalinguis-
tic feedback) had comparable impacts on the learning rates
of students with low and high prior knowledge. This indif-
ference in knowledge acquisition extends past evidence that
tutoring systems lead to favorable learning conditions and
regular learning rates for all learners. Notably, simple cor-
rectness feedback, indicating whether a step was right or
wrong, was the only type of feedback that led to a signifi-
cantly positive learning rate. Meanwhile next-step and in-
direct feedback lead to a negative learning rate. We suspect
that these more complex forms of feedback take away oppor-
tunities for learners to effectively self-regulate their learning
through hints and active generation of solutions.
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