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ABSTRACT
Work-integrated learning (WIL) is essential in engineering
education, bridging the gap between theory and practice
while enhancing students’ employability. This study presents
an LLM-enhanced, AI-driven hybrid content-based recom-
mender system designed to optimize WIL experiences by
tailoring recommendations based on students’ academic and
personal backgrounds, as well as the WIL tasks. A sam-
ple of 223 undergraduate engineering students participated,
providing insights into their WIL experiences. Preliminary
results show the internal performance of the recommender
system with promising accuracy, and the system is further
evaluated to understand its explainability and relevance.
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1. INTRODUCTION
Work-integrated learning (WIL) is a cornerstone of modern
engineering education, bridging academic knowledge with
real-world applications [2]. Through internships, co-ops, and
experiential learning, WIL enhances employability and fos-
ters essential professional skills [5]. It also strengthens stu-
dents’ commitment to the profession by shaping their iden-
tity, fostering belonging, and improving self-efficacy through
skills development [6]. As engineering education evolves
alongside technological advancements, there is a growing
need for personalized, data-driven support in WIL settings.
However, aligning WIL with academic training and career
goals remains a challenge. Many struggle to contextualize

Figure 1: Interface of the WIL recommender system

internship tasks within broader learning objectives, making
it difficult to connect their experiences to future roles [16].
Also, the dynamic nature of engineering workplaces compli-
cates the ways to address students’ diverse skill development
needs and preparing them for emerging industry demands.

Artificial Intelligence (AI)-based recommender systems have
emerged as a promising solution in education, transforming
how students discover and engage with learning opportu-
nities [15]. These systems leverage machine learning, nat-
ural language processing (NLP), and collaborative filtering
to analyze learner behaviors, preferences, and performance,
generating tailored recommendations that optimize educa-
tional experiences [8], such as dynamically adapting learning
pathways by recommending courses, reading materials, and
assessments to bridge knowledge gaps [3, 12, 11]. By apply-
ing similar AI-driven strategies to WIL, there is potential to
revolutionize career advising and internship matching, en-
suring that students receive personalized guidance tailored
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to their skills, interests, and professional goals. Despite their
potential in enhancing WIL advising, recommender systems
for decision-making remain largely unexplored [10]. Recog-
nizing this gap, this study introduces a scalable AI-based
recommender system, the Pro-CaRE Recommender System
(Figure 1), to support undergraduate engineering students
in making informed career decisions. This study is guided
by the following three research questions:

RQ1. How can the AI-based recommender system be de-
signed to align engineering students’ technical and pro-
fessional competencies with WIL opportunities?

RQ2. How accurately can the AI-based recommender system
retrieve WIL opportunities where students previously
demonstrated high learning growth?

RQ3. How do students perceive the explainability of AI-driven
career recommendations, and how might it affect their
trust and engagement with the advising process?

2. WIL IN ENGINEERING EDUCATION
Work-integrated learning (WIL) bridges academic course-
work with real-world engineering experience through co-ops,
internships, and apprenticeships [13]. WIL structures vary
based on institutional and industry partnerships, with some
programs offering structured objectives while others focus on
organic skill development [4]. WIL involves three key stake-
holders: students, educational institutions, and employers.
Engineering students typically engage in WIL after complet-
ing foundational coursework, applying theoretical knowledge
in industry settings [9]. Workplace supervisors provide task
assignments, professional guidance, and mentoring, influenc-
ing students’ career trajectories [1]. Educational institutions
facilitate WIL through industry collaborations, structured
assessments, and career support services. Despite its ben-
efits, WIL programs face challenges in providing consistent
student support due to variations in structures, workplace
expectations, and mentorship quality. The lack of stan-
dardized tools further complicates efforts to ensure relevant
learning experiences. Addressing these issues requires data-
driven solutions to systematically support students in select-
ing, preparing for, and maximizing opportunities [10].

3. RECOMMENDATION SYSTEMS
In this section, we introduce the fundamental architecture
of our recommender system.

3.1 Content-based Filtering (CBF)
In a content-based recommendation system, items (e.g., WIL
opportunities) are represented by a set of features, and rec-
ommendations are made based on the similarity between
items and the student’s profile, where each item i is rep-
resented as a feature vector xi = (xi1, xi2, ..., xid) ∈ Rd.
The features in our system include multiple layers of input,
such as relevant courses, work settings, company size, and
required technical and professional skills. Similarly, the stu-
dent profile, u, is constructed by aggregating the feature
vectors of previously interacted items. A common method
is the weighted average: u = 1

n

∑N
j=1 wjxj . The weights

are determined based on students’ “ratings” of WIL oppor-
tunities. In this study, we define these ratings across several
dimensions: students’ learning outcomes (i.e., technical and
professional) and improvements in the affective dimension
(i.e., self-efficacy as engineers).

3.2 Collaborative Filtering (CF) Algorithm
To improve recommendation performance, collaborative fil-
tering (CF;[14]) elements are incorporated, which capture
user preferences based on the behavior of similar users. Let
R ∈ Rm×n be the student-item interaction matrix, where
Ru,i is the explicit learning outcomes of the student u on
WIL opportunity (item), i. The new objective is to pre-
dict missing values in R, the two models (CBF and CF)
can be combined via matrix factorization. In this setting,
the student-item rating matrix is decomposed as R ≈ UV T ,
where U ∈ Rm×k and V ∈ RN×k represent student and item
latent factors, respectively. The item features are incorpo-
rated as additional regularization terms, where λ controls
for the influence of content features in item representation.

minu,v

∑

(u,i)∈K

(Ru,i − UuV
T
i )2 + λ||xi − Vi||2 (1)

3.3 Enhancement with LLMs
One of the fundamental challenges in designing an effec-
tive recommender system for WIL opportunities is the dy-
namic nature of available opportunities. Unlike traditional
course recommendation systems, where the pool of items
(courses) remains relatively stable over time, WIL opportu-
nities are constantly evolving—new internships and co-ops
are introduced frequently, while others expire. This rapid
turnover complicates the process of maintaining an up-to-
date and reliable recommendation database. To address this
challenge, we leveraged generative Large Language Mod-
els—specifically Llama 2—to automatically generate item
features for newly introduced WIL opportunities. Instead
of relying solely on pre-existing user interaction data, which
may be sparse or nonexistent for new items, we employed
LLMs to extract and structure core skills and tasks from
WIL descriptions, classifying them into 15 categories (Ta-
ble 2). Given a new WIL description di, the LLM generates
item features as latent profiles, denoted as: xi = LLM(di).
With LLM-enhanced feature generation, we can integrate
new opportunities into recommendations immediately, even
before any user interaction occurs. The system computes
the similarity between a user profile u and newly generated
item vectors xi by evaluating their similarity to other previ-
ously experienced and ”rated” items based on learning out-
comes from existing users. The two feature vectors are then
compared to assess their similarity. To provide recommen-
dations, we compute the similarity between a user’s profile
and a new job posting i using cosine similarity, where the
similarity score is determined by the dot product between
the user’s profile and the new job posting vector.

sim(u, x) =
u · xi

||u|| · ||xi||
(2)

3.4 Participants and Data Collection
From March to November 2024, survey questionnaires were
distributed via the university’s Qualtrics server, yielding a
total of 223 complete responses. To ensure alignment with
students’ coursework and tasks, the study was limited to Me-
chanical and Aerospace Engineering students. The question-
naire comprised 17 items across four constructs. For item-
feature construction, we gathered data on assigned WIL op-
portunities, including job settings and tasks (Table 1). To
model user features, we collected data on their coursework
history, major, background, and engineering self-efficacy lev-
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Figure 2: Interface of our WIL opportunity Recommender System, Pro-CaRE

Table 1: Summary of Participant Characteristics

Category N % Category N %
School Year Gender
1st year 47 21.1% Female 80 35.8%
2nd year 69 30.9% Male 143 64.1%
3rd year 80 35.9% Major
4th year 24 10.8% Mechanical 119 53.3%
5th year 3 1.4% Aerospace 99 44.3%

Missing 5 2.2%
Company Size Setting
Small 31 13.9% Onsite 191 85.6%
Medium 20 9.0% Hybrid 22 9.8%
Large 172 77.1% Remote 10 4.4%

els. Lastly, rating or interaction data was obtained by col-
lecting students’ self-perceived learning outcomes.

3.5 Stage 1: Identifying Task Components
Table 2 presents the descriptive statistics of tasks in WIL
experiences reported by the participants, which serve as the
recommender system’s item features. On average, students
reported engaging in 6.55 tasks during their WIL experi-
ences, with the number of tasks ranging from a minimum
of 1 to a maximum of 15. A similar process was applied to
a dataset of job postings we collected. We extracted a to-
tal of 1,913 specific job tasks from the internship postings,
categorizing them into 15 predefined groups. First, we ex-
tracted the description sections of aerospace internship post-
ings. Then, we used Llama 2 to summarize these descrip-
tions into a list of specific responsibilities and tasks. This
process yielded 1,913 unique task entities, which were sub-
sequently labeled by human annotators. Pre-trained mod-
els BERT, RoBERTa, and DeBERTa were fine-tuned using
the AutoModel class from the Hugging Face Transformers
library to classify the engineering tasks into the 15 prede-
fined categories. The models were trained using a system
equipped with an NVIDIA GeForce RTX 3060 GPU. The
output of this stage was the item feature vectors associated
with the jobs provided by our participants (along with the
learning outcomes) and the newly processed vectors from the

unseen recommendations (LLM-processed job postings).

3.6 Stage 2: System Implementation
Our LLM-enhanced hybrid content-based recommender sys-
tem provides personalized internship recommendations based
on six outcome variables: two learning outcomes (techni-
cal and professional skills) and four engineering self-efficacy
measures (confidence, leadership, identity, and commitment).
To compute recommendations, the system first constructs
distance matrices using Euclidean distance for both users
and internships. These matrices measure similarity, with
diagonal values set to infinity to prevent self-matching. The
closest N users and internships are identified, allowing the
system to suggest opportunities based on student profiles
and past participant preferences. For students with no prior
internship interactions, missing outcome scores are imputed
using the average of corresponding variables. This enriched
dataset is then used to train the recommendation model.
Truncated SVD is applied to a sparse interaction matrix,
where users (rows), internships (columns), and outcome scores
(values) represent engagement data. Additionally, for jobs
that have not been introduced to the user—unseen job post-
ings—the system utilizes LLM-processed descriptions to gen-
erate feature representations. These representations enable
the model to infer and recommend relevant internship op-
portunities even when no direct interaction data exists.

3.7 Stage 3: Evaluating the Efficacy
In order to internally evaluate the system’s efficacy and ad-
dress our RQ2, our original dataset was split 70% for training
and 30% for testing. After training, the reconstructed test
matrix predicts scores for unobserved user-internship pairs.
Model performance is evaluated using mean squared error
(MSE) and R2 scores, where lower MSE and higher R2 indi-
cate better accuracy. The system evaluated different values
for top n (the number of closest users or items considered)
from 1 to 5. The R² scores across all outcomes consistently
show values above 0.72, suggesting that the model explains
a substantial proportion of the variance in internship recom-
mendation scores. The MSE values, which measure predic-
tion error, remain low, reinforcing the model’s accuracy. No-
tably, as top n increases, the R² values tend to rise, peaking
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Table 2: WIL Opportunities and Relevant Tasks - Item Features

Task Description Student Response
LLM-processed
WIL Postings

Freq Work Hours (%) Freq
Participate in on-the-job training and develop new technical skills 181 20.42% 127
Collaborate with an engineering group, department, multi-disciplinary team 166 28.40% 196
Contribute to engineering design and development tasks 150 29.77% 219
Create written documentation of procedures, processes, or results 149 21.14% 171
Analyze the operation or functional performance of a component/system 143 24.11% 74
Communicate via oral presentations to a variety of audiences 143 10.65% 86
Conduct quality control activities or troubleshoot a failure of a component or system 96 17.82% 83
Conduct manufacturing activities or processes 88 22.22% 83
Develop or modify computer codes and/or public software or computational tools 87 27.72% 169
Conduct experimental programs, prototypes, components, hardware, or products 86 19.88% 166
Create or revise technical drawings 84 18.19% 37
Perform thermal science or fluid dynamic analysis 35 17.70% 35
Perform solid mechanics analysis 32 14.38% 31
Perform dynamics or vibrational analysis 21 14.84% 22
Perform control analysis 9 9.67% 47

around top n = 4, indicating that incorporating a larger but
limited number of similar users/items enhances predictive
power. For example, for technical skills, the MSE decreases
from 0.106 (top n=5) to 0.063 (top n=1), while the R² value
increases from 0.793 (top n=5) to 0.734 (top n=1). A sim-
ilar pattern is observed across the other outcome variables,
suggesting that a moderate number of closest users/items
yields optimal recommendations.

3.8 Stage 4: Evaluating the Explainability
As shown in Figure 2, we have incorporated both local and
global approaches to explainability measures [7], address-
ing our RQ3, and focusing on the explainability of our rec-
ommendations. This ongoing phase establishes how com-
mon approaches to implementing explainable AI in educa-
tional settings—implemented with General Explanation (ex-
plaining why a specific item is recommended), Feature Rel-
evance/Importance, and Example-based methods (selecting
particular instances to explain the model)—can help stu-
dents build trust in and perceive relevance in the recom-
mendation outputs. We are currently working on collecting
qualitative data through interviews with students to evalu-
ate the efficacy of these added features in our system.

4. CONCLUSION
In this study, we introduced an LLM-enhanced hybrid content-
based recommender system to provide systematic support
for WIL opportunities for engineering students. We have
demonstrated, in response to RQ1, how a scalable recom-
mender system is designed and implemented to produce rec-
ommendation outputs for engineering students. Our inter-
nal evaluation indicates promising performance in predicting
students’ growth in core learning outcomes based on our rec-
ommendations, addressing RQ2. The ongoing investigation
into its explainability features (RQ3) will shed more light on
the efficacy and relevance of the system in greater depth.
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