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ABSTRACT
A longstanding goal in computational educational research
is to develop explainable knowledge tracing (KT) models.
Deep Knowledge Tracing (DKT), which leverages a Recur-
rent Neural Network (RNN) to predict student knowledge
and performance on exercises, has been proposed as a major
advancement over traditional KT methods. Several studies
suggest that its performance gains stem from its ability to
model bidirectional relationships between different knowl-
edge components (KCs) within a course, enabling the in-
ference of a student’s understanding of one KC from their
performance on others. In this paper, we challenge this pre-
vailing explanation and demonstrate that DKT’s strength
lies in its implicit ability to model prerequisite relationships
as a causal structure, rather than bidirectional relationships.
By pruning exercise relation graphs into Directed Acyclic
Graphs (DAGs) and training DKT on causal subsets of the
Assistments dataset, we show that DKT’s predictive capa-
bilities align strongly with these causal structures. Further-
more, we propose an alternative method for extracting ex-
ercise relation DAGs using DKT’s learned representations
and provide empirical evidence supporting our claim. Our
findings suggest that DKT’s effectiveness is largely driven
by its capacity to approximate causal dependencies between
KCs rather than simple relational mappings.
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1. INTRODUCTION
Computer-assisted educational technology, such as intelli-
gent tutoring systems [9, 11], enables personalizing activities
to suit individuals with varying levels of proficiency. A key
component of these adaptive systems is knowledge tracing
(KT), which aims to estimate students’ mastery of several
exercise concepts, known as knowledge components (KCs),
as they interact with the corresponding exercises [2, 5]. For-

mally, xi = {et, at} represents a student’s answer pair, where
et represents the exercise ID, and at represents whether the
student answered correctly or incorrectly. Given a series of
past interactions, X = {x1, x2, . . . , xt} and the next con-
cept exercise, et+1, the task of the KT model is to estimate
the likelihood of the student answering correctly, at+1 [6].
Traditionally, Bayesian Knowledge Tracing (BKT) [6] was
used to perform KT. Despite its popularity, BKT is often
critiqued for its binary representation of knowledge states
(mastered or not mastered) which oversimplifies the learn-
ing process. Several models were later proposed to address
these limitations. Learning Factors Analysis [4] improved
upon BKT by representing learning as a continuous pro-
cess influenced by multiple exercise interactions and accu-
mulated practice. Performance Factors Analysis [10] further
captured the complexity of learning by tracking the effects
of correct and incorrect prior exercise attempts on perfor-
mance. These developments laid the groundwork for Deep
Knowledge Tracing (DKT) [15], which popularized a key
extension to KT: the ability to implicitly infer relationships
between exercises.

The relationships between exercises can take the form of
prerequisite dependencies, where understanding one exer-
cise improves performance on another, or corequisites, where
exercises depend on each other. Researchers have demon-
strated that exercise relationships can be mapped into an ex-
ercise graph by analyzing student learning data. An exercise
graph represents the dependencies between different concept
exercises based on student learning patterns. Creating ac-
curate exercise graphs allows educators to better sequence
lessons and ensure that students master foundational con-
cepts before progressing to more advanced ones. KT models
are preferred for this task because they learn temporal pat-
terns in student data to capture how mastery of one exer-
cise affects success on another [5, 15, 17]. This enables KT
models to uncover learning dependencies that content-based
or expert-defined methods may overlook. Furthermore, au-
tomating the discovery of exercise relations through the use
of KT models offers a scalable alternative to manually defin-
ing these relationships.

The work of DKT made a significant contribution to ex-
ercise relation discovery [15]. Their method assigns an in-
fluence score Jij to every directed pair of exercises i and
j, which is the conditional probability of correctly answer-
ing exercise j after correctly answering exercise i in the
previous timestep, normalized by the sum of such condi-
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tional probabilities. The influence score from i to j quan-
tifies the prerequisite dependency of the concept i on the
learning concept j. We refer to this method as the DKT
method. DKT’s superior performance can be attributed
to the model’s ability to learn these influence-based depen-
dencies to estimate student knowledge. Many studies have
incorporated exercise relations into subsequent KT mod-
els to improve performance and enhance interpretability in
the prediction process. For example, Hierarchical Graph
Knowledge Tracing (HGKT) [17], Structure-based Knowl-
edge Tracing (SKT) [18], and Deep Knowledge Tracing with
Multiple Relations (DKTMR) [7] are models that track both
prerequisite and corequisite relationships between exercises.
Graph Attention Knowledge Tracing (GAKT) [19] uses a
graph attention network to uncover the underlying struc-
ture between exercises, learning these relationships using
the method introduced in DKT. Graph-based Knowledge
Tracing (GKT) [14] explores multiple statistics-based and
learning-based methods to infer the latent graph structure
and use the learned graph to perform KT. Among the statistics-
based and learning-based methods evaluated, the DKT method
to generate graphs performed the best when evaluating per-
formance on the Assistments 2009 [8] dataset.

The original DKT work introduced influence scores to de-
scribe dependencies between exercises. In our work, we build
on this idea by reinterpreting these dependencies as a causal
structure. We formalize this by pruning exercise relations
graphs into Directed Acyclic Graphs (DAGs) to reflect pre-
requisite relations, and show that DKT’s predictive perfor-
mance improves when trained on data filtered through these
causal structures. We also introduce an alternative method
for extracting exercise relations that yields accurate and
more stable representations of student knowledge and un-
derlying concept dependencies. To facilitate future research
on these ideas, we have published our code 1.

2. METHODOLOGY
We conduct our study using the Assistments datasets, which
are among the largest publicly available KT datasets and are
widely used as benchmarks for KT models [1, 8, 16]. These
datasets capture student interactions over extended periods
of time and across a wide range of exercises in grade school
mathematics. We utilize three datasets: Assistments 2009
2 (skill builder data corrected collapsed), Assistments 2012 3

(2012-2013 data with predictions 4 final), and Assistments
2017 4 (anonymized full release competition dataset). The
2009 dataset contains 346,860 exercise attempts from 4,217
students across 123 exercises. The 2012 dataset includes
6,123,270 attempts from 46,674 students across 265 exer-
cises. The 2017 dataset consists of 942,816 attempts from
1,709 students across 102 exercises. The datasets do not
contain any personal information.

1https://github.com/kevinhongca/
dkt-causal-relations
2https://sites.google.com/site/assistmentsdata/
home/2009-2010-assistment-data/
skill-builder-data-2009-2010
3https://sites.google.com/site/assistmentsdata/
2012-13-school-data-with-affect
4https://sites.google.com/view/
assistmentsdatamining/dataset

We use DKT, implemented via the pyKT library [13], to
learn the latent exercise relations and help generate the
graphs. We begin by training a DKT model on each of
the three Assistments datasets. Then, we switch the models
to evaluation mode and apply the DKT method. To ensure
the resulting graph represents a causal structure, we apply
a minimum threshold to the influence scores. This filter-
ing step removes weaker edges that could introduce cycles,
allowing us to construct a DAG. Since the distribution of in-
fluence scores varies across the three datasets, we select the
minimum dataset-specific thresholds that enforce acyclicity.
We use a threshold of 0.0107 for Assistments 2009, 0.0051
for Assistments 2012, and 0.0139 for Assistments 2017.

Using the exercise relation DAG, we create a causal subset of
the Assistments dataset by filtering interactions to include
only those involving exercises with at least one incoming or
outgoing edge. This ensures that the subset consists exclu-
sively of exercises with learned causal relationships, which
allows us to isolate and evaluate the influence of these causal
structures. We then retrain the DKT model on this subset
and evaluate its predictive accuracy. To isolate the impact
of causal structure, we generate five random subsets of the
dataset with bidirectional relations. Each random subset
contains the same number of exercise concepts as its corre-
sponding DAG-based subset, but the exercises are selected
randomly rather than based on causal structure. The num-
ber of exercise concepts for the subsets was 60 for Assist-
ments 2009, 83 for Assistments 2012, and 17 for Assistments
2017. We then train a separate DKT model on each random
subset and compute the mean and standard deviation of
their AUC scores. Finally, we compute a z-score to compare
the AUC of the DAG-based subset against the distribution
of AUC scores from the random subsets across the three As-
sistments datasets. This allows us to assess the influence of
causal relationships on predictive performance.

Recognizing a potential limitation in DKT’s standard rela-
tion extraction method, where influence scores are computed
based on a single correct response per exercise, we propose
a modified approach that simulates a student repeatedly an-
swering the same type of exercise correctly until the model’s
estimated knowledge of that exercise stabilizes. Rather than
relying on a one-time response, we feed multiple consecutive
correct answers for a given exercise, allowing the model to
iteratively update its estimate of the student’s mastery of
all the exercises.

Let K̂t represent the student’s estimated knowledge level of
an exercise after the student has answered correctly t times.
We continue feeding correct responses until the estimated
mastery stabilizes according to the following criterion:

K̂t = K̂t−1, ∀t ∈ [t0 − T, t0] s.t. t0 ≥ T,

where if the model’s estimate does not change for T con-
secutive iterations, we stop feeding additional responses and
take K̂t as the final knowledge estimate. In our experiments,
we set T = 100, chosen heuristically as a reasonable value to
allow the knowledge estimates to stabilize. Then, inspired
by the method proposed by Piech et al., we use a modified
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Table 1: AUC results for all Assistments subsets, divided
into DAG-based causal subsets (Causal) and random subsets
(Random). Causal subsets are derived using DKT’s method.

Dataset AUC Exercises (#) z-score

2009 Causal 0.905 60 3.50

2009 Random 0.859± 0.013 60 –

2012 Causal 0.727 83 1.50

2012 Random 0.721± 0.004 83 –

2017 Causal 0.718 17 1.02

2017 Random 0.704± 0.011 17 –

approach,

Jij =
z(j|i)∑
k z(k|i)

(1)

where z(j|i) is the correctness probability assigned to exer-
cise j on the next timestep given that the student answered
exercise i correctly t0 times on the previous t0 timesteps.
This iterative process provides a more stable estimate of
concept relationships by reducing the influence of single-
response variations. However, we acknowledge that this ap-
proach has practical limitations, which we discuss in Sec-
tion 4.

We evaluate the effectiveness of our modified relation ex-
traction method by repeating the methodology described
earlier in this section using Equation 1 to generate newly
constructed causal graphs: we extract the new DAG-causal
subset, retrain DKT on this subset, and compare its AUC
scores against those of randomly selected subsets. Note
that when extracting the new DAG-causal subset, we again
applied dataset-specific thresholds to the influence scores:
0.0129 for Assistments 2009, 0.0067 for Assistments 2012,
and 0.0167 for Assistments 2017. By comparing results from
both relation extraction methods, we assess whether prob-
ing more can yield more accurate causal relationships that
help improve KT performance.

3. RESULTS
Across all three Assistments datasets, the causal subsets
derived from the DKT method [15] consistently achieved
higher AUC scores than the mean AUC of randomly se-
lected subsets. See Table 1. This suggests that well-defined
causal knowledge dependencies improve a KT model’s abil-
ity to trace student learning, and that KT models appear
to learn causal relationships more easily than bidirectional
ones. Moreover, these findings introduce a potential eval-
uation metric for knowledge structure graphs: knowledge
structures that more accurately capture prerequisite rela-
tionships may yield higher AUC scores when their corre-
sponding concepts are used for training.

We then applied our new proposed method to find directed
relationships, and as earlier, the new causal subsets con-
sistently outperformed the mean AUC of the randomly se-
lected subsets. See Table 2. To quantitatively compare the
performance of the DKT method and our new method, we

Table 2: AUC results for all Assistments subsets, divided
into DAG-based modified causal subsets (MC) and random
subsets (Random). Modified causal subsets are derived using
Equation (1).

Dataset AUC Exercises (#) z-score

2009 MC 0.875 68 1.67

2009 Random 0.851± 0.014 68 –

2012 MC 0.758 90 5.93

2012 Random 0.721± 0.004 90 –

2017 MC 0.712 59 1.85

2017 Random 0.703± 0.005 59 –

compute the z-scores for all causal subsets, defined as:

z =
AUCcausal − µrandom

σrandom
,

where AUCcausal represents the AUC of the causal subset,
while µrandom and σrandom denote the mean and standard de-
viation of the AUCs obtained from the random subsets, re-
spectively. We observe that the z-scores for our new method
are higher than those of the original DKT method for two
out of the three datasets. Furthermore, the average z-score
is significantly higher for our proposed method. This sug-
gests that our modified approach may yield more accurate
representations of underlying knowledge structures.

To interpret our results further, we use Equation (1) to
generate and analyze the directed exercise relation graphs
learned by our models. Figure 1 presents the graph for As-
sistments 2009, where node numbers correspond to exercise
IDs. To better identify the topics between various exer-
cise groups, we apply the algorithms described in [3, 12] to
modulate the exercises into topics and use color coding to
visually distinguish them. Overall, our approach effectively
reveals a meaningful causal structure. Focusing on graphical
data topics, we observe that Exercise 2 (Pie Charts 1) serves
as a prerequisite for multiple exercises. Since pie charts rely
heavily on percentage calculations, it follows that Exercise 2
also contributes to learning related topics, such as Venn Dia-
grams represented as percentages (Exercise 70) and propor-
tion calculations (Exercise 79). Additionally, the model suc-
cessfully captures the progression of concepts toward more
advanced topics. For example, Exercise 2 (Pie Charts 1) is
a prerequisite for Exercise 37 (Pie Charts 2), reinforcing the
importance of mastering basic pie chart concepts before pro-
gressing. Furthermore, both Exercises 2 and 37 serve as pre-
requisites for Exercise 48 (Pie Charts 3). While the figure we
show provides valuable insights, not all directed edges neces-
sarily indicate true prerequisite relationships, as some con-
nections may result from indirect correlations rather than
direct dependencies. Despite these occasional inaccuracies,
our method still captures an overall meaningful structure.

4. DISCUSSION
In this section, we provide insights into the rationale be-
hind our proposed method for extracting directed relations.
We use a DKT model trained on the full Assistments 2009
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Figure 1: Assistments 2009 DAG graph of exercise relations using Equation (1). Arrow weight indicates prerequisite connection
strength. Topic labels are manually added and color coded.

dataset and set it to evaluation mode to predict the knowl-
edge state of a new simulated student. Our goal is to iden-
tify a student’s top three highest-ranked exercise concepts,
known as KCs, sorted by estimated knowledge mastery, af-
ter correctly completing concept 278 (Decimal Addition &
Subtraction). Using the original method, we determine the
student’s top three highest predicted KCs immediately af-
ter answering concept 278 correctly. In our approach, we
allow the student’s understanding of concept 278 to stabi-
lize through one hundred correct responses before extracting
the top three highest concept estimates. In other words, we
seek three values of j that maximize y(j|i) and three that
maximize z(j|i), given that i = 278 and i ̸= j.

As shown in Table 3, the top three predicted KC master-
ies for concept 278 differ between the DKT method and
our new approach. The highest-ranked concepts from the
DKT method are primarily geometry-related, whereas our
approach identifies exercises that are more directly relevant
to concept 278, all involving integer operations. We observe
that it only takes three consecutive correct responses of ex-
ercise 278 for the top three orderings to stabilize. Because
y(j|i) and z(j|i) correspond to the numerators of the DKT

method and our method respectively, these values directly
affect how exercise relations are constructed. Referring back
to Figure 1, we see that our method indeed helps relate ex-
ercise 278 to the three exercises shown in the Table.

While our modified method may provide a better alterna-
tive to the method proposed by DKT, a key limitation of
our method is that, in practice, students typically do not
answer more than a few questions per exercise. The as-
sumption that a student can be prompted up to 100 times
on a given exercise is unlikely to reflect real-world learning
scenarios. Future work should experiment with the amount
of probing using a more practical number of responses (e.g.
5) or to employ a convergence-based stopping criteria to ter-
minate the iterations when the difference between successive
knowledge estimates falls below a certain threshold.

Another limitation concerns the evaluation setup used to
compare DAG-based causal subsets and random subsets.
The causal subsets and random subsets may differ in ways
beyond their corresponding graph structure. Although we
ensure that both subsets contain the same number of exer-
cises, they may still vary in concept coverage, exercise diffi-
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Table 3: Comparison between the top three KC masteries between DKT’s method and our approach

DKT Method Modified Approach

Exercise ID Exercise Name Mastery Exercise ID Exercise Name Mastery

24 Congruence 0.677 51 Ordering Integers 0.842

307 Volume of Rectangular Prisms 0.673 279 Integer Multiplication & Division 0.839

26 Transversal Angles 0.667 58 Whole Number Addition 0.815

culty, or the types of students engaging with the exercises.
As a result, some portion of the observed performance gains
may be due to differences in exercise or student character-
istics, rather than structure alone. Future work should ex-
plore more controlled subset construction, such as concept-
matched sampling, in which random subsets reflect the dis-
tribution of concept types found in the DAG-based subset.
For example, if the DAG-based subset consists of 40% arith-
metic, 30% geometry, and 30% probability exercises, the cor-
responding random subset could try to maintain a similar
distribution. Strategies like this will help better isolate the
impact of causal structure on model performance.

5. CONCLUSION
We show that DKT achieves better predictive performance
when trained on DAG exercise subsets, suggesting it effec-
tively learns causal concept dependencies. We introduce a
novel method for calculating influence scores that stabilizes
knowledge estimates and helps construct accurate exercise
relation graphs. Finally, we acknowledge the limitations re-
garding the practicality of repeated probing and the need
for more controlled experimental comparisons.
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