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ABSTRACT
The traditional Elo rating system (ERS), widely used as a
student model in adaptive learning systems, assumes uni-
dimensionality (i.e., all items measure a single ability or
skill), limiting its ability to handle multidimensional data
common in educational contexts. In response, several mul-
tidimensional extensions of the Elo rating system have been
proposed, yet their measurement properties remain under-
explored. This paper presents a comparative analysis of two
such multidimensional extensions specifically designed to ad-
dress within-item dimensionality: the multidimensional ex-
tension of the ERS (MERS) by [24] and the Multi-Concept
Multivariate Elo-based Learner model (MELO) introduced
by [1]. While both these systems assume a compensatory
multidimensional item response theory model underlying stu-
dent responses, they propose different ways of updating the
model parameters. We evaluate these algorithms in a sim-
ulation study using key performance metrics, including pre-
diction accuracy, speed of convergence, bias, and variance of
the ratings. Our results demonstrate that both multidimen-
sional extensions outperform the unidimensional Elo rating
system when the underlying data is multidimensional, high-
lighting the importance of considering multidimensional ap-
proaches to better capture the complexities inherent to the
data. Furthermore, our results demonstrate that while the
MELO algorithm is converging faster, it exhibits significant
bias and lower prediction accuracy compared to the MERS.
In addition, the MERS’s robustness to misspecifications of
the Q-matrix and its weights gives it an edge in situations
where generating an accurate Q-matrix is challenging.

Keywords
Multidimensionality, Student modeling, Elo Rating System,
Online Education

1. INTRODUCTION
Personalization of the learning process through the imple-
mentation of adaptive technology has received considerable
attention in the last years as a way to deal with heterogeneity
in the classroom [43, 18, 4]. Accurately tailoring the learn-
ing process requires modeling of learner characteristics such
as their cognitive skills, motivation or affect. In adaptive
online learning environments aimed at providing students
practice and instructional material at their level, student
models play a central role in tracking and estimating learn-
ers’ ability levels [27]. These models serve as the foundation
for personalizing the learning experience, enabling systems
to dynamically adjust content based on the learner’s evolv-
ing ability level [27, 18, 42, 16, 38].

In adaptive learning environments, the next learning task
or item is chosen based on the estimation of the student’s
current ability level, which allows for a more efficient and
tailored learning process [36, 37]. Several theoretical frame-
works support the idea that presenting students with tasks
that are optimally challenging helps maintain engagement
while maximizing learning outcomes [10, 12, 41]. This pro-
cess of adaptivity is key in ensuring that students are nei-
ther overwhelmed by tasks that are too difficult nor bored
by tasks that are too easy, thereby fostering an environment
conductive to learning and improvement.

Over the years, several student models have been proposed,
[27, 9, 25, 13, 8], all with their own advantages and disadvan-
tages. Traditional models such as the Bayesian Knowledge
Tracing (BKT) algorithm [9] have been widely used in edu-
cational technology due to their simplicity and interpretabil-
ity. BKT aims to infer whether a student has mastered a
particular concept based on their observed performance on
related tasks. However, despite their widespread applica-
tion, these student models often make simplifying assump-
tions that may not capture the full complexity of student
learning behavior. In response to the limitations of earlier
student models, more advanced approaches such as Perfor-
mance Factor Analysis (PFA) [25] have been developed to
provide a more nuanced picture of the student performance.
These student models incorporate additional variables, such
as the difficulty of items, and allow for multiple skills to
be involved in an item, leading to more accurate predic-
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tions of student performance. However, this method does
not provide continuously updated measures of student abil-
ities, making it less suitable for providing feedback on the
students’ progress. Additionally, with the rise of big data
in education and the increasing availability of fine-grained
learner interaction data, more sophisticated machine learn-
ing techniques have been applied to student modeling, fur-
ther enhancing the ability to predict and personalize learn-
ing [3, 21, 31]. Machine learning models can process vast
amounts of learner data, identifying patterns and trends that
were previously difficult to detect using traditional methods.
However, these black-box methods are often considered less
desirable due to the lack of parameter interpretability [34].
In educational contexts, where transparency is crucial for
fostering trust and accountability, the inability to clearly
understand how a student model arrives at its decisions can
pose significant challenges.

In recent years, Elo rating system (ERS) based student
models have also gained popularity in educational contexts.
Originally developed for ranking players in competitive games
like chess [14], the ERS has found application in a variety
of fields [44, 19, 15, 22, 35], among others the field of ed-
ucation [16, 26, 20]. ERS algorithms are appealing due to
their transparency, simplicity, efficiency, and dynamic na-
ture, making them particularly well-suited for environments
where real-time updates to ability estimates are required.
The ERS algorithm operates by adjusting a student’s ability
after each interaction, depending on whether the student’s
performance meets or exceeds expectations. This allows for
a continuous adjustment of the ability estimate, providing
adaptive systems with updated information to guide con-
tent selection and providing feedback to student, parents,
and teachers.

ERS-based algorithms have several advantages over the pre-
viously mentioned student models. First, their straightfor-
ward updating mechanism enables rapid adjustments to a
student’s ability after each task, which is crucial in fast-
paced or adaptive environments. Second, the ERS is inher-
ently self-correcting, as it adjusts estimates based on new
student-item interactions. This flexibility allows it to adapt
to learners who may experience significant fluctuations in
performance. Third, the ERS allows for updating the item
parameters, eliminating the need for item bank calibration.
Despite these benefits, ERS-based algorithms also face chal-
lenges, such as not being able to incorporate multiple dimen-
sions of ability, which are areas where other student models,
like PFA models, may perform better.

The basic version of the ERS used in educational settings
consists of two rules similar to those used in the original
chess implementation [14]. Updating ability and difficulty
estimates is done as follows:

θi(t) = θi(t−1) +K (X − E(X)) ; (1)

βj(t) = βj(t−1) +K (E(X)−X) , (2)

where θt and βt are the person’s ability and item difficulty
estimates after the update, θt−1 and βt−1 are the estimates
before the update, K is the weight assigned to the updated
value, X is the observed outcome (1 if the item is answered
correctly or 0 if the item is answered incorrectly), and E(X)

is the expected outcome; subscripts i and j denote the i-
th person and the j-th item, respectively. The expected
outcome E(X) is calculated using the Rasch model [32]:

E(X) = p (Xij = 1|θi, βj) =
exp (θi − βj)

1 + exp (θi − βj)
. (3)

Demonstrating its effectiveness, the ERS has successfully
been implemented in large-scale learning environments [7,
16, 30, 23].

As we mentioned earlier, a notable drawback of the ERS is
its underutilization of multidimensionality inherent to edu-
cational data. Since the ERS relies on the Rasch model for
the calculation of the expected outcome, it can only take one
ability into account, unlike other student models that are in-
herently multidimensional [13, 17]. The possible advantage
of incorporating multidimensionality into student models
lies in the potential for enhanced diagnostic feedback, better
predictive accuracy, and improved adaptive item selection
[28]. Tracking multiple abilities can provide additional layers
of information about a learner’s knowledge state, which may
result in better performance of the algorithm when selecting
items that are more closely aligned with a learner’s specific
needs. However, taking multidimensionality into account
will also result in a more complex student model [29]. Not
only does it make the algorithm itself more complicated, but
it also requires careful specification of the underlying multi-
dimensional structure. Properly identifying and defining the
relevant skill dimensions is a challenging task. Additionally,
robustness becomes a key concern: One needs to ensure that
the algorithm performs well even when the multidimensional
structure is imperfectly specified.

When discussing multidimensionality in data from adaptive
learning environments, it is useful to distinguish between
within-item and between-item dimensionality. Within-item
dimensionality refers to the case where an item requires mul-
tiple abilities to be solved. If all these skills are tracked sep-
arately, the resulting student model might provide a more
accurate estimate of the learner’s probability of answering
the item correctly, compared to tracking only a broad, gen-
eral skill. Furthermore, the finer-grained skill estimation
could help diagnose errors if a student makes a mistake.
This level of detail allows educators to intervene more ef-
fectively, addressing the specific areas where the student is
struggling. Without multidimensional tracking, a unidimen-
sional ERS would simply adjust the learner’s general ability
rating based on whether they answered correctly or incor-
rectly, missing the opportunity to provide insight into the
underlying causes of the error.

This paper focuses on two multidimensional ERS extensions
proposed to address within-item dimensionality, the mul-
tidimensional extension of the ERS (MERS) by [24] and
the Multi-Concept Multivariate Elo-based Learner model
(MELO) introduced by [1]. Both ERS extensions replace
the traditional unidimensional Rasch model with a com-
pensatory multidimensional item response theory (MIRT)
model to calculate the probability of a correct response.
MIRT models are designed to handle multidimensionality
by simultaneously estimating multiple abilities that are re-
quired to solve a given item [33, 6]. MIRT models can gener-
ally be categorized into two types: compensatory and non-
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compensatory models. The difference between these models
lies in how they handle the interaction between multiple
skills. In compensatory MIRT models, the skills required
to solve an item are assumed to compensate for one an-
other, meaning that a lower proficiency in one skill can be
compensated for by strength in another, leading to a higher
probability of success on the item. On the other hand, non-
compensatory MIRT models assume that all required skills
must be present at a sufficient level for successful task com-
pletion. In these models, a deficiency in one skill cannot be
compensated for by proficiency in another, making it neces-
sary for learners to meet certain thresholds across all rele-
vant dimensions to answer the item correctly. Overall, com-
pensatory models are used more often in educational mea-
surement compared to non-compensatory models because
they are more tractable and more similar to confirmatory
factor analysis and generalized linear latent variable models
in general.

Both MERS and MELO assume that the compensatory MIRT
model is the data generating model:

E(X) = p (Xij = 1|θim, βj) =
exp

(∑M
m=1 ajmθim − βj

)

1 + exp
(∑M

m=1 ajmθim − βj
) ,

(4)
where θim is the ability of person i on skill m, ajm is the
weight of skill m for item j, and M is the number of skills
considered. Both multidimensional ERS extensions discussed
here are aimed at dynamically estimating the parameters of
the same measurement model, but the key distinction be-
tween them lies in how the parameter estimates are updated.

The update rule in the MERS [24] follows the same struc-
ture as in the unidimensional ERS for both learner and item
parameters with a small difference for the learner parame-
ters:

θim(t) = θim(t−1) + ajmK (X − E(X)) . (5)

Here, parameters are updated based on the difference be-
tween the observed and expected outcome, where the ex-
pected outcome is computed based on the assumed data-
generating measurement model. However, since the MERS
aims to update multiple ability parameters based on the
outcome of a single item, a new element is introduced into
the equation. As can be seen in Eq.(5) the weight ajm is
included which is meant to identify that only those abili-
ties which are involved in solving the item (ajm ̸= 0) will
be updated. Item parameters are updated as in Eq.(2)
but E(X) is now calculated according to the compensatory
MIRT model in Eq.(4) instead of the Rasch model.

For the MELO [2] the update of the difficulty rating is done
in the same way as for the MERS. For the ability updates,
however, the update formula is different. First, the expected
outcome no longer relies on the weighted sum of all the skills
involved in the item, but only takes into account the skill
that is being updated (i.e., the Rasch model in Eq.(3) is
used to calculate E(X) instead of the compensatory MIRT
model). To make this distinction clear, we refer to the prob-
ability of a correct response based on the unidimensional
Rasch model for skill m as E(X)θm . For every skill θm that
is measured by the item, the learner parameter is updated

as follows:

θim(t) = θim(t−1) + aK (X − E(X)θm) (6)

where a, is a normalization factor used to obtain a zero-sum
for the ability and difficulty parameter updates (similar to
the zero-sum principle of the original ERS). In other words,
the normalization factor ensures that the total sum of all the
update values (both for the item and learner parameters)
amounts to zero. The normalization factor is calculated as
follows:

a = − E(X)θm −X∑M
m=1(X − E(X))

. (7)

In their respective papers, both [24] and [2] assume that the
skills involved in the items are equally important, but the
exact values of ajm for the M skills involved in the item j
of the MIRT model are different. In the MERS a weight
of 1 is used for all skills involved, while in the MELO the
weights of all the skills involved sum to 1. Despite the ap-
parent differences, this variation primarily represents a case
of reparameterization rather than a fundamental difference
in the models themselves. In essence, both models share
the same theoretical underpinnings regarding multidimen-
sionality and the interaction of multiple skills during the
item-solving process. When an item measures two skills (θ1
and θ2) we get:

p((Xij = 1|θim, βj) =
exp(1/2θ1 + 1/2θ2 − βj)

1 + exp(1/2θ1 + 1/2θ2 − βj)

=
exp(θ∗1 + θ∗2 − βj)

1 + exp(θ∗1 + θ∗2 − βj)

(8)

where θ∗1 = 1/2θ1 and θ∗2 = 1/2θ2. By scaling the weights of
the ability parameters, we are essentially changing the scale
of the latent variables, but the functional relationship be-
tween the abilities and the probability of a correct response
remains the same. Thus, while the models used in the two
ERS extensions look different at first glance, they are actu-
ally just different parameterizations of the same underlying
MIRT model.

2. AIM OF THE STUDY
Both [24] and [2] provide some information on the perfor-
mance of their proposed multidimensional ERS extension,
yet little attention is paid to the underlying properties of
these extensions. This lack of focus on measurement proper-
ties is not only a limitation for multidimensional extensions
but also for the traditional unidimensional ERS. Recently [5]
did a simulation study to investigate the properties of the
unidimensional ERS in different scenarios for an (adaptive)
learning system. Their study shows that in certain condi-
tions, the ratings generated by the unidimensional ERS fail
to converge to the true values, leading to biased estimates
of student abilities. A similar study is needed to investigate
the properties of multidimensional extension of the ERS.

While the multidimensional ERS extensions provide a po-
tentially more accurate representation of student abilities
by accounting for multiple skills, their implementation is
complex and computationally demanding. Given these chal-
lenges, it is crucial to evaluate whether the increased com-
plexity of a multidimensional student model is justified by
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significant improvements in performance over the traditional
unidimensional ERS. If the unidimensional ERS can exhibit
comparable or similar properties to the multidimensional ex-
tensions when applied to multidimensional data, it could
suggest that the added complexity may not always be nec-
essary for accurate student performance estimation. There-
fore, we aim to compare the two proposed algorithms in how
well they allow for measuring the multiple ability parameters
of the MIRT model.

We investigate the properties of the two very similar multi-
dimensional ERS extensions. The performance of the unidi-
mensional ERS when applied to multidimensional data will
be included in our results, but is not the primary focus of
this study. Specifically, the unidimensional ERS serves as a
baseline to investigate the performance of the two multidi-
mensional extensions to the ERS. To address our research
question, we conduct a simulation study that investigates
the properties of both multidimensional ERS extensions in
terms of bias, variance, prediction accuracy, and speed of
convergence under a variety of scenarios. To test the ro-
bustness of the algorithms, we will not only look at when the
measurement model (which items load on which skills and
what the values of these loadings are) used is correct, but
also when there are misspecifications. By analyzing the out-
comes, we will evaluate the implications for adaptive learn-
ing environments. This research aims to provide valuable
insights into the utility of multidimensional extensions to
the ERS and contribute to the ongoing discussion on the
most effective ways to model student abilities in educational
contexts.

3. METHOD
The algorithms under investigation extend the traditional
ERS by incorporating MIRT models to account for situa-
tions where multiple latent skills are required for solving
individual items. A key objective of this study is to look
at asymptotic behavior: when the abilities are stable and
the learners continuously respond to items. In other words,
we are particularly interested in whether for each student a
stable state is reached around which the rating is fluctuat-
ing. We are further interested in whether this stable state
is different from the true value, and how much variation is
there in the ratings. Finally, given that in real-life appli-
cations limited amount of data is available, it is important
to know how many updates are needed to reach the stable
state. To explore these properties, we will adopt a simula-
tion setup similar to that used in [5], which will allow us
to monitor how the distributions of ratings (across replica-
tions of the same learning system) evolve over time. This
setup will provide insights into the asymptotic behavior of
the algorithms.1.

3.1 Scenarios
First, we conducted simulations for both the MERS and the
MELO algorithm with correctly specified weights (i.e., the
item weights used in the respective ERS algorithms are the
same as used for data generation). While this represents a
strict assumption, it allows us to assess the performance of

1All data and analyses scripts are available
on OSF:https://osf.io/rqjb9/?view_only=
bec5c19004c94aeb921f57dfb359dcdc

both algorithms under optimal conditions. Additionally, we
explored how the MERS and MELO algorithms perform in
two scenarios where the weights are misspecified. In contrast
to the unidimensional ERS, multidimensional ERS exten-
sions require specifying the relationships between multiple
skills and items. This process is inherently more challeng-
ing because it involves defining how each item taps into the
various skills, which often requires the expertise of domain
specialists[11, 28]. It can be argued that this not only is a
subjective process but also time-consuming. The potential
for misspecified weights becomes a significant concern, es-
pecially in real-world large-scale applications where domain
experts may not always have the resources or time to ensure
that all these specifications are accurate. We considered
two different ways in which the weights can be misspecified:
1) the structure of the loadings (i.e., which items measure
which skills, often referred to as the Q-matrix) is correctly
specified, but the exact values of the weights are not; 2) the
Q-matrix itself is misspecified. We included both scenar-
ios in our study. This is meant to mimic real-life scenarios
where it is hard to correctly specify the weights or the skills
involved in an item, and a simplification of the Q-matrix is
used in the algorithm. These scenarios allowed us to explore
how the algorithms performed when the weights were mis-
specified, which closely mirrors the types of challenges faced
in practical scenarios where domain experts may not have
perfect knowledge or resources.

As we were not sure about the usefulness of the normaliza-
tion factor in the MELO algorithm, we ran the MELO both
with and without the normalization factor. Since it did not
have much influence on the results, we only report the results
from the MELO without normalization factor here. Finally,
a unidimensional ERS was applied to the same multidimen-
sional simulated data to examine how effectively the tradi-
tional ERS performs when the data is multidimensional. For
all algorithms and all scenarios, the simulations were run for
different correlations between the skills.

3.2 Ability values
For all scenarios, the true abilities are simulated following
the same procedure. For this simulation study, we limited
the number of skills dimensions to three (θ1, θ2 and θ3) to
keep the simulation tractable. The true ability values are
simulated for 1000 persons from a multivariate normal dis-
tribution with a zero mean vector and standard deviations
equal to 1. To investigate the effect of the correlations on
performance of the algorithms, we considered the following
conditions: high correlation (ρ = .8), moderate correlation
(ρ = .6 and ρ = .4), low correlation (ρ = .2) and no corre-
lation (ρ = 0). In each condition, the correlations are the
same for each pair of skills. Note that to make the sim-
ulation more tractable, ability levels are kept stable over
time. While this is a limitation of the study, it is necessary
to compare the asymptotic properties of the different algo-
rithms and investigate whether the ratings converge to an
invariant distribution.

3.3 Item bank
In the scenario without misspecifications, we generated an
item bank in which each item in the simulation requires a
combination of two skills, resulting in three possible skill
combinations and thus three different item types (Type 1 -
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skills 1 and 2, Type 2 - skills 1 and 3, Type 3 - skills 2 and
3). All non-zero item weights were set to 0.5.

For the misspecification scenarios, within the algorithms we
used the weights as described above, but the true weights
used to generate data were different. In the scenario with
a correct Q-matrix but incorrect weights, the true values of
the weights in one of the involved dimensions were sampled
uniformly between 0.2 and 0.8 and the sum of the weights
for each item was fixed to 1.

In the scenario with a misspecified Q-matrix we assumed
70% of the items to be correctly specified since we expect
that in real-life applications subject-matter experts would
be able to specify the majority of the items correctly. For
the remaining 30% we implemented 5 different sets of true
weights (each with equal occurrence). For items with as-
sumed weights of 1/2 for dimensions 1 and 2, these sets
were as follows:

ai1 ai2 ai3
C1 1 0 0
C2 0 1 0
C3 1/2 0 1/2
C4 0 1/2 1/2
C5 1/3 1/3 1/3

with analogous specifications for the items that are assumed
to load on other pairs of dimensions. Misspecifications C1
and C2 mean that a dimension that is not needed for the
item is included in the assumed Q-matrix. Misspecifications
C3 and C4 mean that one of the dimensions is correctly
identified, but the other one is not. Finally, misspecification
C5 means that one dimension required for the item is missing
in the assumed Q-matrix. We did not include specifications
in which none of the dimensions are correctly identified, as
it is not likely to occur in practice.

We simulated 200 distinct items for each assumed item type,
resulting in 600 items overall. Item difficulties were gener-
ated from the standard normal distribution N(0, 1) in all
scenarios.

3.4 Simulation set up
Given the true values of the student and item parameters,
we simulated data of a learning environment consisting of
1000 games where for each game students are given an item
of each of the tree item types. The starting values for both
item and person parameters were initialized at zero. Item
selection was done randomly to keep the design simple and
focus on the algorithm comparison. Although adaptive item
selection would provide greater ecological validity by tai-
loring items to individual abilities, we chose random item
selection to isolate the performance of the rating algorithms
without the influence of external factors like item difficulty
targeting. After each item interaction, both the student’s
and the item’s ratings were updated according to the respec-
tive rating algorithm (MERS, MELO, or the unidimensional
ERS).

For each item a person is presented with, the correspond-
ing ERS algorithm is applied to update the ratings. The
response outcome (X) was generated under the compen-
satory MIRT model (4) using the true values of the abilities

and difficulties and the true item weights. The actual re-
sponse was determined by comparing the probability of suc-
cess computed from the MIRT model with a value sampled
from a uniform distribution on [0, 1]. The expected outcome
(E(X)) needed for the ERS algorithms is also calculated us-
ing the compensatory MIRT model in Eq.(4), but now using
the current values of the ratings rather than the true values.
Remember that this is only the case for the MERS and the
difficulty parameters in the MELO. The updating rules in
the MELO for the ability parameters rely on E(X)θm . For
the unidimensional ERS, the data generation is the same as
for the multidimensional extensions, but for the algorithm
all items were assumed to load on the same single skill and
only one person rating is calculated and hence the expected
outcome is calculated under the Rasch model.

The simulations were run for a range of K-values between .1
and .5. This is justified by the fact that K values higher than
.5 will rarely be implemented in practice to ensure stability
in rating updates while accommodating the inherent noise
in learner responses. The same K-values were used across
all dimensions, algorithms and simulation scenarios. After
each game, the rating of one skill was recorded to be able
to compute the outcome measures. To obtain robust esti-
mates of the algorithms’ performance, for every combination
of the scenario, correlation, and K-value we ran 500 repli-
cations of systems with each of the three algorithms. Each
replication used the same set of true ability values for the
participants, which helped to control for random variation
in ability estimates and ensured consistency across replica-
tions. This repetition allowed us to estimate the distribution
of the ratings across replications, which can be used to deter-
mine the invariant distribution of the ratings and investigate
the properties of the multidimensional ERS extensions.

3.5 Outcome measures
Throughout the rest of the paper, we refer to a set of dif-
ferent outcome measures. We briefly explain here how these
were calculated.

3.5.1 Invariant distribution and hitting time
As outlined in the previous section, we have 500 replica-
tions of the ratings of each person at each point in time.
This setup allows us to observe the distribution of ratings
(across replications) for each person at different timepoints
(i.e., games). From these distributions, we compute both
the mean and variance of the ratings (across replications) for
each person at each timepoint, which serve as key metrics
for evaluating the algorithm’s performance. If these metrics
stabilize as the number of games increases, it would indicate
that the ratings have reached an invariant distribution, a
stable level around which the updates fluctuate. The mean
and variance of the invariant distribution were estimated as
the mean and variance of the mean ratings of the last 400
games. To determine at what point in time the means of
the ratings stabilize, we determine the time point at which
the person-specific mean rating first falls within a narrow
range (+/- 0.05) from the mean of their invariant distribu-
tion for 10 consecutive time points, which we will refer to as
the hitting time.

3.5.2 Bias and average absolute bias
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Bias of the ratings was calculated as the difference between
the mean of the invariant distribution and the true values.
An algorithm provides unbiased estimates of the parame-
ters, if the mean of the invariant distribution is equal to the
true value. We also computed the average absolute bias to
summarize the results across persons. Average absolute bias
refers to the average of the absolute differences between the
true values and the means of the invariant distributions of
the ratings over persons. We looked at average absolute bias
because if the bias would have a symmetric structure, just
taking the average across persons would not be informative.

3.5.3 Mean squared error of prediction
Mean squared error was used as a metric for prediction accu-
racy and calculated over the predicted outcome (E(X)) and
the actual outcome (X) for each item of type 1 for all time
points (i.e., 1000 games). At each time point, the squared
difference was averaged across all persons and all replica-
tions.

3.5.4 Correlation between the true values and the
means of the invariant distributions

Bias in itself is not necessarily problematic in a learning
system where ability measures are solely used for optimiz-
ing item selection, as long as the rank ordering of the stu-
dent and item parameters is maintained. In these systems,
the primary goal is to ensure that learners are presented
with items that are appropriately challenging and motivat-
ing rather than obtaining perfectly accurate parameter es-
timation. As long as the relative positioning of the learners
is maintained even if the estimates are biased, the adaptive
item selection can still function effectively. To assess this,
we calculated the correlation between the invariant mean
and the true values across all individuals. If the correlation
is close to 1, this suggests that the system is maintaining an
accurate ranking of the individuals.

4. RESULTS
4.1 Properties of the MERS. and MELO with

correctly specified weights
To ensure that the algorithms were comparable for the sub-
sequent analyses, we first ran the ERS algorithms for a
range of K-values and compared them in terms of their
hitting time and the variance of their invariant distribu-
tion. It is important to take variance and hitting time into
account at the same time, because if for a given K-value
one algorithm achieves faster convergence by having more
noise (higher variance), then for another algorithm one could
speed up convergence by simply increasing K. Therefore,
hitting times should be compared for a given level of noise
in the system. Figure 1 illustrates that both ERS extensions
exhibit similar variance at lower K-values2. However, as K
increases, the variances of the two algorithms began to di-
verge. Note that Figure 1 is based on the scenario where
the skills are correlated .6. However, the same pattern oc-
cured for other correlation values. These differences in vari-
ance complicate direct comparisons between the algorithms,
2Because for lower K-values not all persons’ ratings con-
verged to the invariant distribution within 1000 time points,
for the K-values .1-.3, the simulation was rerun with 1500
games instead of 1000 and hitting time was recalculated for
this plot.

making it harder to assess their relative performance across
different K-values. To address this, all analyses from now
on were done on data generated for a K-value of .2 ensur-
ing consistency in all subsequent comparisons. In addition,
unless we specifically look at the effect of the correlation
between the skills, the reported results concern the .6 corre-
lation scenario.

We find that for all algorithms the ratings reached an invari-
ant distribution, but how fast it happens differed between
the multidimensional extensions and also depended on the
K-value. For all algorithms, when the K value increased,
the noise in the ratings increased and the variance went up,
but fewer responses were needed to reach the invariant dis-
tribution (i.e., lower hitting times). Additionally, Figure
1 revealed an interesting pattern in terms of hitting time.
The unidimensional ERS and the MELO algorithm exhib-
ited similar hitting times, suggesting they both stabilize at
comparable rates. For a given level of noise (i.e., variance),
the MERS required most responses to reach convergence.

Figure 1: Hitting time and variance of the invariant distribu-
tion for the different ERS algorithms with different K-values.

When both multidimensional extensions were run with cor-
rectly specified weights, notable differences in their perfor-
mance emerged. While both algorithms eventually reached
an invariant distribution, indicating that the ratings stabi-
lized over time, the MELO, and even the unidimensional
ERS, exhibited a notably faster hitting time compared to
the MERS (see Figure 1). However, in educational con-
texts, the stabilization of ratings is not the sole property
of interest. Other key measurement properties, such as the
unbiasedness of the ratings and their accuracy, also play an
important role in evaluating the utility of these algorithms.
To further compare the performance of the two multidimen-
sional ERS algorithms, explored these measurement proper-
ties in more detail, focusing on how accurately the ratings
reflect true abilities and the level of prediction error associ-
ated with each algorithm.

Figure 2 illustrates the development of the mean rating over
time for five different individuals (with θ1 closest to 0, 1,
-1, 2,and -2). This figure clearly illustrates that after mov-
ing away from the starting values, the ratings reached an
invariant distribution. This figure also confirms our earlier
findings with regard to hitting times: While the mean rat-
ings from the MELO stabilized fast, for the MERS it took
more games before the means stabilized. However, despite
the slower stabilization process for the MERS, it is evident
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that the mean ratings for the MERS are closer to the true
values when compared to the MELO. This suggests that the
MERS is less biased in its estimates, as it provides ratings
that more accurately reflect the true abilities of the individ-
uals. Note, however, that while the MERS mean ratings are
very close to the true values, as expected based on the re-
sults on unidimensional ERS from [5] we still see some bias
here.

Figure 2: Mean ratings of five persons with different true
values of θ1 over time for the MERS and MELO algorithm
when the correlation between abilities is .6.

For Figure 3 we calculated the bias for all persons and plot-
ted these values as a function of the true values. From
this plot, it is clear that all three algorithms exhibited some
form of bias, but the bias in the MERS was minimal when
compared to the other algorithms. An interesting pattern
emerged from the analysis of bias across different ability lev-
els. For the MERS, a small amount of outward bias was ob-
served, which aligns with findings from the unidimensional
ERS in [5]. This means that for individuals with an ability
above zero, the MERS tends to slightly overestimate their
ability, whereas for individuals with an ability below zero,
the MERS slightly underestimates their ability. This out-
ward bias is also clearly visualized in Figure 2.

In contrast, the MELO and the unidimensional ERS exhib-
ited mostly inward bias, which reflects the opposite pattern.
In this case, the majority of the individuals with abilities
above the average are systematically underestimated by the
algorithm, while those below average are overestimated. Ad-
ditionally, the magnitude of bias for the MELO increased as
the absolute true ability values became larger, indicating
that the MELO faces increasing difficulty in accurately esti-
mating the abilities of individuals with extreme ability lev-
els. This pattern is clearly visualized in Figure 2, where the
mean ratings for the MELO stabilized further away from the
true ability values as the true ability increased or decreased.
However, this effect is less pronounced for individuals whose
true ability values are closer to zero. In other words, the
MELO struggles to converge to the true values the further
the true ability deviates from zero.

To investigate how the correlation between skills affects bias,
we calculated the average absolute bias for each algorithm
across different correlation conditions. The results are pre-
sented in Figure 4, which shows that the absolute bias for

Figure 3: Visualization of the bias as a function of the true
values of θ1 for the MERS, MELO and the unidimensional
ERS when the correlation between abilities is .6, K = .2.

the MERS remains small and does not vary significantly
across the different correlation scenarios. In contrast, both
the MELO and the unidimensional ERS, showed noticeable
bias (more even so for the unidimensional ERS than the
MELO). Interestingly, as the correlation between the skills
increased, the absolute bias for both of these algorithms de-
creased. This trend is expected for the unidimensional ERS,
where a higher correlation between the skills allows the ERS
to better represent the underlying abilities as a single dimen-
sion, improving its performance and reducing bias.

Figure 4: Visualization of the average absolute bias for the
different correlation conditions

The inward bias observed in the MELO and the unidimen-
sional ERS can be problematic since it has been suggested
that learners with high skill levels benefit from challenge
while learners with lower skill levels benefit more from items
more suited for their skill level. If learners skills are not cor-
rectly estimated, this might affect the item selection process,
which might be especially problematic in the case of inward
bias. However, it is possible that while there is some bias
the rank ordering is correct. In such a scenario, the system
can still perform optimal item selection based on the relative
ranking of abilities, which is often the main goal of adaptive
learning systems. As long as the rank order is maintained,
even if the exact numerical values of the ratings are slightly
biased, the system can still make effective decisions regard-
ing which items to present to each student. For an optimal
ERS algorithm, we need thus look at both the ordinal and
numerical properties of the ratings. Note that bias becomes
a much bigger obstacle in high-stakes situations where the
ratings might be used to take educational decisions.
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To see whether the algorithms obtain correct rank ordering
of the abilities, we calculated the correlations between the
true values and the means of the invariant distributions.
Figure 5 shows that the MERS reached an almost perfect
correlation, regardless of the correlation between the true
values. The correlations for the MELO on the other hand
were much lower, especially when the skills were not strongly
correlated. Only when the correlation between the abilities
is .8, a correlation higher than .95 is reached. These results
indicate that beside a higher bias for the MELO compared
to the MERS, the MELO also does not provide accurate
measurement on ordinal level.

Figure 5: Correlation between the true values of θ1 and the
means of the invariant distributions of the ratings for the
different correlation conditions.

In addition, we looked at how the mean ratings (over replica-
tions) correlate with the true values at different time points.
This provides insight into how well the algorithms’ ratings
align with the true ability values as the simulation pro-
gresses. As expected, the MERS showed a slow but steady
increase, eventually reaching an almost perfect correlation
for all correlation conditions. In contrast, the MELO demon-
strated a plateau effect, where the correlation with the true
values reached a maximum but never exceeded 0.96, regard-
less of the correlation condition. Interestingly, the unidimen-
sional ERS exhibited an even more peculiar pattern. The
correlation between the mean ratings and the true values
slightly decreased over time, with this process being more
pronounced for the lower correlation conditions. This could
be due to the unidimensional model’s inability to accurately
capture the multidimensional nature of the skills involved,
leading to a deterioration of the correlation as the learning
environment unfolds.

While hitting time, unbiasedness, and measurement preci-
sion are all important properties of a student model used in
a learning environment, one of the most important things
to consider is the prediction accuracy. The ERS is often
implemented in adaptive learning environments, where we
aim to select items given a certain success rate. If ratings
are far off from their true values, this might influence the
item selection process. To assess the prediction accuracy of
the models, we calculated the MSE of prediction for each
game averaged over persons and replications. The MSE is a
common metric for evaluating student model performance,
where a larger MSE indicates a higher discrepancy between
the predicted and actual outcomes. In our simulation, start-
ing ratings were initialized at zero, which means that the
ratings began far from the true values, as such we expected
high initial MSE values. Figure 7 shows the MSE over time

Figure 6: Visualization of the correlations between the true
values of θ1 and the mean ratings of the persons over time
for the different correlation conditions.

for the different algorithms for the condition with a .6 corre-
lation between the skills. The results align with our hypoth-
esis: initially, the MSE values were high, but they decreased
rapidly as the algorithms updated their ratings. When the
algorithms had correctly specified weights, the MELO exhib-
ited a faster reduction in MSE at the beginning, however,
after approximately 45-50 games, the MERS catched up and
ultimately achieved a lower MSE compared to the MELO,
maintaining this advantage for the remainder of the games.
This pattern suggests that while the MELO is initially more
responsive to changes, the MERS outperforms it over time,
providing more accurate predictions in the long run. 3

Interestingly, the unidimensional ERS shows a similar trend.
At the start, it had a slightly lower MSE than the MERS,
indicating better prediction accuracy early on. However, as
the simulation progressed, the advantage of the unidimen-
sional ERS disappeared. This suggests that, although the
unidimensional ERS may be slightly better at the start, it
struggles to further improve prediction accuracy as it does
not capture the full multidimensional nature of the data as
effectively as the MERS.

3To assess the performance stability of each algorithm, we
computed the mean MSE over the final 800 games under
correctly specified conditions, along with the correspond-
ing 95% confidence intervals. MERS achieved the low-
est mean MSE of 0.148856[0.148834,0.148877], indicating
both high accuracy and low variability. MELO followed
with a mean MSE of 0.150366 [0.150346,0.150387], while
the unidimensional model reported a slightly higher error at
0.151623[0.151602,0.151644]. Although the absolute differ-
ences between algorithms are small, the narrow and non-
overlapping confidence intervals suggest that the perfor-
mance distinctions are statistically meaningful.
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Figure 7: Visualization of the MSE of prediction of the algo-
rithms over time for the different misspecification conditions
when the correlation between skills is .6.

4.2 MERS with misspecified weights
For the previous analyses, we assumed an ideal condition
where the weights used in the algorithms were correctly
specified. From Figure 4 and Figure 5 it is clear that both
misspecification scenarios do not drastically impact the bias
and rank ordering of the algorithms. However, if we take a
closer look, it is clear that the MERS suffers more from a
misspecified Q-matrix structure than from incorrectly spec-
ified weights. A stronger bias emerged, and bias in the rat-
ings was no longer independent of the correlation conditions.
Interestingly, this bias was no longer linear, as can be seen in
8. In contrast to the outward bias previously observed with
correctly specified weights, here we see that bias mostly af-
fected higher-skilled individuals who will be systematically
underestimated, while for lower-skilled individuals the bias
is less pronounced. This nonlinearity in the bias can also
be observed if we look at the traceplot of the mean ratings
in 9. While for lower-skilled individuals the ratings stabi-
lized close to the true ratings (showing a similar pattern as
we observed for the MERS when there is no misspecifica-
tion), some of the lower skilled individuals had ratings that
stabilize around a value lower than their true skill level.

Figure 8: Visualization of the bias caused by misspecification
in the MERS, MELO and the unidimensional ERS when the
correlation between abilities is .6.

In contrast, misspecification of the weights or the Q-matrix
did not seem to influence the bias of the MELO algorithm as

Figure 9: Mean ratings of five persons with different true
values of θ1 over time for the MERS when the structure of
the Q-matrix is misspecified for the correlation condition of.6.

much. A possible explanation can be found in the structure
of the updating rules used by the MELO. In the MELO al-
gorithm, the weights are not involved in the updating rules
for the persons’ ratings. This means that the algorithm is
less sensitive to the accuracy of the weight specifications,
and therefore, the misspecification of weights has a mini-
mal effect on its ratings. Another explanation is that even
when the MELO algorithm uses a correct Q-matrix, its per-
formance in terms of bias is already suboptimal. The al-
gorithm tends to exhibit a high level of bias compared to
MERS, and misspecifying the Q-matrix or weights simply
does not exacerbate this issue that much.

Another interesting finding is that when the weights were
misspecified the MERS and MELO did not differ that much
in predictive accuracy as demonstrated in Figure 7. A possi-
ble explanation for this is that while the MERS is affected by
misspecified weights, the weights are not used in the updat-
ing rule for the learner abilities in the MELO. Still, the pre-
diction accuracy of the MERS remains slightly better than
that of the other two algorithms. Overall, these observations
highlight the robustness of the MERS to specification errors
in terms of weights and Q matrix structure.

5. DISCUSSION
In this study we performed a simulation to compare the
measurement properties of two multidimensional ERS algo-
rithms, in terms of their ability to handle multidimensional
data using key performance metrics, including prediction ac-
curacy, speed of convergence, bias, and variance of the rat-
ings. In addition, we included the unidimensional ERS as
baseline to the analyses. This allowed us to make conclu-
sions about the necessity of multidimensional extensions to
the ERS when confronted with multidimensional data. Our
findings revealed that while the MELO resulted in faster hit-
ting times compared to the MERS, it exhibited significantly
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more bias, had worse prediction accuracy and performed
worse in terms of maintaining the rank ordering of the per-
sons. Nevertheless, despite its worse performance compared
to MERS, the MELO is a superior alternative to the unidi-
mensional ERS.

In addition, we found that even given misspecifications of the
weights or the structure of the Q-matrix, the MERS still out-
performs both the MELO and the unidimensional ERS on all
metrics except speed of convergence. Our findings show that
when the skills involved in the item are correctly identified,
assuming a weight of 1/2 on both skills even though the true
weights deviate from 1/2 and the skills are not equally im-
portant does not drastically impact the performance of the
algorithm. This robustness is particularly valuable because
determining the correct loadings for items is challenging,
as it typically requires extensive item calibration, a process
that can be time-consuming and resource-intensive, espe-
cially when large item banks are involved. The resilience of
the MERS against misspecifications in the Q-matrix elimi-
nates the complex task of constructing a perfect Q-matrix,
streamlining the process of skill measurement in educational
environments. A simplified Q-matrix can be adopted with-
out sacrificing much in terms of prediction accuracy and
rank order maintenance.

While the MERS produces more accurate ratings and demon-
strates robustness against misspecification, a disadvantage is
that it takes a considerable amount of games to converge to
the invariant distribution. In addition, MSE values show
that the MELO has a better prediction accuracy for the
first 45–50 trials, indicating that it is initially better suited
for adaptive item selection. However, as mentioned earlier,
although the MELO stabilizes faster, it does so around val-
ues far from the true ratings, leading to lower prediction
accuracy on average. Similarly, the unidimensional ERS
also exhibits better prediction accuracy early on in the es-
timation process. This initial slower decrease in MSE is a
disadvantage of the MERS, especially in learning environ-
ments. Lower prediction accuracy can affect item selection,
potentially leading to disengagement and increased dropout
rates. Therefore, future studies are needed to explore perfor-
mance of the MERS in combination with extensions aimed
at faster escaping this cold start, such as an adaptive K func-
tion [39, 40] or obtaining more accurate start ratings from
historical data (i.e., a ‘hot’ start). Another avenue is to ex-
plore the possibility of combining both algorithms. Specifi-
cally, the MELO could be used at the start of the estimation
process to take advantage of its initial better prediction ac-
curacy, after which we transition to the MERS which would
result in less bias and obtaining correct rank order. This hy-
brid method would allow taking advantage of the strengths
of both algorithms throughout the learning process.

The results of our study are promising, particularly in show-
ing that the multidimensional extensions outperform the
unidimensional ERS when data is multidimensional. How-
ever, it is important to recognize that our findings are based
on specific conditions and assumptions. For instance, in all
simulations we implemented a fixed K-value. Further re-
search is needed to explore the effect of a dynamic K func-
tion, particularly in combination with a multidimensional
ERS extension, as this could potentially lead to more effi-

cient convergence towards the true values and more accurate
estimates across a wider range of conditions.

Additionally, our simulations assumed that ability levels re-
main constant throughout the study, which was done to eval-
uate the asymptotic behavior of the ratings. In a real learn-
ing environment, however, student abilities are expected to
change and evolve over time. To better mirror the dynamic
nature of the learning process, future studies should investi-
gate the impact of fluctuating ability levels. Given its slow
initial convergence it is to be expected that the MERS will
also struggle to adapt to sudden changes in ability levels,
something an adaptive K-function might be able to solve
as it would allow the MERS to dynamically adjust the K-
value based on what happens with the ratings which would
improve its responsiveness. Furthermore, to keep the simula-
tion design simple, we only looked at random item selection.
In most adaptive learning environments, however, items are
selected with a certain success rate (e.g., aiming for .75%
probability correct). Expanding the scope of the simula-
tions to include these factors will enhance the applicability
of the findings to real-world applications.

Despite its limitations, our study highlights the importance
of thoroughly investigating the measurement properties of
any ERS extension in the literature before its implementa-
tion in real world settings. Although the MERS and the
MELO may appear quite similar at first glance (both being
build on the compensatory MIRT model), our findings re-
veal substantial differences in their performance with each
their strengths. These distinctions highlight the need for
careful considerations of the algorithms in different contexts
in order to be able to make informed decisions. While our
results suggest superiority of the multidimensional ERS ex-
tensions over the unidimensional approach when confronted
with multidimensional data, implementing these algorithms
in learning environments is not straightforward. Practical
challenges include a higher complexity as implentation might
require the system to keep track of more skills and update
more ratings at the same time. The operational demands of
developing and maintaining a multidimensional ERS exten-
sion are directly linked to the complexity of the skill struc-
ture involved in the items. Defining the Q-matrix, especially
in learning environments with vast item banks, can become
time consuming and expensive. In addition the algorithm
might be less intuitive for parents and teachers who are
important stakeholders in adaptive learning environments.
The motivational impact of the algorithm is another impor-
tant factor. Our results showed that the MERS in its initial
stages has worse prediction accuracy than the MELO which
might result in the selection of items that are too difficult
or too easy, contributing to disengagement and drop-out.
This reinforces the importance of considering a hybrid algo-
rithm that initally relies on the MELO and transitions to
the MERS as prediction accuracy reaches desirable values.

References
[1] S. Abdi, H. Khosravi, S. Sadiq, and D. Gasevic. A

multivariate elo-based learner model for adaptive ed-
ucational systems. In C. F. Lynch, A. Merceron,
M. Desmarais, and R. Nkambou, editors, Proceedings
of The 12th International Conference on Educational
Data Mining (EDM 2019), pages 228–233, 2019.

152



[2] S. Abdi, H. Khosravi, S. Sadiq, and D. Gasevic. A
multivariate elo-based learner model for adaptive ed-
ucational systems. arXiv preprint arXiv:1910.12581,
2019.

[3] J. E. Beck and B. P. Woolf. High-level student modeling
with machine learning. In International Conference on
Intelligent Tutoring Systems, pages 584–593. Springer,
2000.

[4] M. L. Bernacki, M. J. Greene, and N. G. Lobczowski. A
systematic review of research on personalized learning:
Personalized by whom, to what, how, and for what pur-
pose (s)? Educational Psychology Review, 33(4):1675–
1715, 2021.

[5] M. Bolsinova, B. Gergely, and M. Brinkhuis. Keeping
elo alive: Evaluating and improving measurement prop-
erties of learning systems based on elo ratings. preprint,
2024.

[6] W. Bonifay. Multidimensional item response theory.
Sage Publications, 2019.

[7] M. J. Brinkhuis, A. O. Savi, A. D. Hofman,
F. Coomans, H. L. van Der Maas, and G. Maris. Learn-
ing as it happens: A decade of analyzing and shaping a
large-scale online learning system. Journal of Learning
Analytics, 5(2):29–46, 2018.

[8] K. Chrysafiadi and M. Virvou. Student modeling ap-
proaches: A literature review for the last decade. Expert
Systems with Applications, 40(11):4715–4729, 2013.

[9] A. T. Corbett and J. R. Anderson. Knowledge trac-
ing: Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction, 4:253–278,
1994.

[10] M. Csikszentmihalyi. Flow: The psychology of happi-
ness. Random House, 2013.

[11] J. de la Torre and C.-Y. Chiu. A general method of
empirical q-matrix validation. Psychometrika, 81:253–
273, 2016.

[12] E. L. Deci and R. M. Ryan. Handbook of self-
determination research. University Rochester Press,
2004.

[13] B. Deonovic, P. Chopade, M. Yudelson, J. de la Torre,
and A. A. von Davier. Application of cognitive diag-
nostic models to learning and assessment systems. In
M. von Davier and Y.-S. Lee, editors, Handbook of Di-
agnostic Classification Models: Models and Model Ex-
tensions, Applications, Software Packages, pages 437–
460. Springer, 2019.

[14] A. E. Elo. The rating of chessplayers, past and present.
Arco Pub., 1978.

[15] L. M. Hvattum and H. Arntzen. Using elo ratings for
match result prediction in association football. Inter-
national Journal of forecasting, 26(3):460–470, 2010.

[16] S. Klinkenberg, M. Straatemeier, and H. L. van der
Maas. Computer adaptive practice of maths ability
using a new item response model for on the fly abil-
ity and difficulty estimation. Computers & Education,
57(2):1813–1824, 2011.

[17] Y. Long, K. Holstein, and V. Aleven. What exactly do
students learn when they practice equation solving? re-
fining knowledge components with the additive factors
model. In Proceedings of the 8th International Con-
ference on Learning Analytics and Knowledge, pages
399–408, 2018.

[18] F. Martin, Y. Chen, R. L. Moore, and C. D. West-
ine. Systematic review of adaptive learning research
designs, context, strategies, and technologies from 2009
to 2018. Educational Technology Research and Devel-
opment, 68:1903–1929, 2020.

[19] C. Neumann, J. Duboscq, C. Dubuc, A. Ginting, A. M.
Irwan, M. Agil, A. Widdig, and A. Engelhardt. Assess-
ing dominance hierarchies: validation and advantages
of progressive evaluation with elo-rating. Animal Be-
haviour, 82(4):911–921, 2011.
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