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ABSTRACT 
This study explores the use of webcam-based eye tracking during a 

learning task to predict and better understand neurodivergence with 

the aim of improving personalized learning to support diverse 

learning needs. Using WebGazer, a webcam-based eye tracking 

technology, we collected gaze data from 354 participants as they 

engaged in educational online reading. We extracted both gaze fea-

tures and text characteristics, as well as interactions between gaze 

and text. Results show that the supervised machine-learned model 

predicting whether a learner is neurodivergent or not achieved an 

AUROC of 0.60 and a Kappa of 0.14, indicating slight agreement 

beyond chance. For specific neurodivergent diagnoses, AUROC 

values ranged from 0.53 to 0.61, demonstrating moderate predic-

tive performance. Additionally, SHAP analysis was used to 

examine the influence of features selected through forward feature 

selection, revealing both commonalities and differences between 

predicting broad neurodivergence and specific diagnoses.  These 

findings should not be used for diagnostic purposes or to single out 

any individual but instead underscore the potential for personalized 

modeling to better support diverse learning needs. 
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1. INTRODUCTION 
Understanding how learners process information is essential for im-

proving educational experiences, particularly for neurodivergent 

learners who often face unique challenges in attention and cogni-

tive processing [8, 42]. Neurodivergent individuals, including those 

with Attention Deficit Hyperactivity Disorder (ADHD), Autism 

Spectrum Disorder (ASD), Dyslexia, and other learning disabili-

ties, represent approximately 15-20% of the general population [3] 

but frequently experience disparities in educational outcomes due 

to limited tailored support [7, 44, 56]. Identifying differences 

between how neurodivergent and neurotypical learners interact 

with learning material can lead to more personalized educational 

interventions that support diverse learning needs [50, 68]. In this 

study, we leverage webcam-based eye tracking during a self-paced 

reading task, collecting multiple data streams in real time to better 

understand learners’ individual differences, laying the groundwork 

for more personalized support.   

Eye tracking has long been a method for understanding learners. 

Research-grade eye-tracking has been widely used in cognitive and 

educational research to study reading behaviors and attention shifts 

[23, 62, 71]. However, these research-grade technologies are ex-

pensive and require a tightly controlled data collection 

environment, limiting their scalability in real-world educational 

settings. Recent advancements in webcam-based eye tracking pro-

vide a promising alternative, allowing for real-time gaze tracking 

using standard webcams [22, 23, 69, 71]. This technology enables 

scalable, cost-effective assessments of cognitive processing in di-

verse environments, including online learning platforms. 

Few studies have examined how gaze behaviors differ between 

neurotypical and neurodivergent learners or how such differences 

could be leveraged to analyze specific neurodivergent diagnoses 

[71]. Given the growing emphasis on personalized learning, utiliz-

ing machine learning models that can distinguish between 

neurodivergent and neurotypical learners—as well as predict indi-

vidual differences within that group—could significantly enhance 

targeted educational interventions.  

This study explores the use of webcam-based eye tracking to pre-

dict whether a learner is neurodivergent or neurotypical and to 

further classify specific neurodivergent diagnoses. By leveraging 

gaze behavior, text characteristics, and interactions between these 

features, we trained machine learning models to differentiate be-

tween learner groups. Through SHapley Additive exPlanations 

(SHAP) [40], we examined the influence of key features selected 

via forward feature selection [29, 30], identifying both commonal-

ities and differences in predictive patterns for classifying 

neurodivergent learners and identifying individual differences. It 

should be noted that this work is not intended to be a diagnostic tool 

in any way, but instead contributes to the growing field of person-

alized learning, supporting efforts to create more inclusive and 

adaptive learning environments. The goal is to support learners by 

informing educational strategies that accommodate diverse 
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learning needs. This approach could inform the development of 

adaptive learning systems that personalize content delivery, adjust 

instructional methods, and increase engagement based on individ-

ual neurodivergent profiles. By employing the findings of this 

study, educators can develop more tailored interventions that create 

equitable learning opportunities for all learners. 

2. LITERATURE REVIEW 
Eye-tracking technology has gained significant attention in educa-

tion and cognitive research, providing insights into learning 

behaviors, attention shifts, and comprehension. By analyzing gaze 

patterns, researchers can assess how learners allocate attention, 

which aspects of learning materials they engage with most, and 

where cognitive difficulties arise. These insights enable educators 

to refine instructional methods, improve student engagement, and 

develop personalized learning frameworks tailored to individual 

learning needs [55, 64, 66].  Machine learning algorithms have 

played a significant role in advancing the accuracy, calibration, and 

data quality of eye-tracking technology. Researchers have utilized 

classifiers and regression models to detect and predict gaze error 

patterns under various conditions [32]. Additionally, machine 

learning models such as K-nearest neighbor, naïve Bayes, decision 

trees, and random forests have been applied to analyze eye move-

ment data, classify visual attention patterns, and enhance human-

computer interaction [58].  

Traditional research-grade eye-tracking technology are expensive 

and typically require controlled laboratory environments, limiting 

their accessibility and applicability in broader educational settings. 

To overcome these constraints, recent advancements in webcam-

based eye tracking have introduced cost-effective and scalable al-

ternatives that enable gaze monitoring in real-world learning 

environments [10, 26]. Unlike traditional eye tracking devices, 

webcam-based technology utilizes standard hardware alongside 

mathematical models, making it accessible for remote learning and 

online educational research. This approach supports ecological va-

lidity by allowing data collection in naturalistic settings such as 

participants’ homes, rather than controlled laboratory environ-

ments. 

Studies have demonstrated the feasibility of webcam-based eye 

tracking for various educational applications. For example, it has 

been used to measure visual expertise in medical education, where 

gaze data helps assess how learners interpret diagnostic images and 

perform clinical assessments [9]. Additionally, webcam-based eye 

tracking has been employed to detect mind wandering and compre-

hension difficulties during online reading tasks, providing insights 

into how students remain engaged or disengage from educational 

materials [23]. Researchers have also used webcam eye tracking to 

analyze student behaviors in digital learning environments, helping 

to identify factors that contribute to effective online learning expe-

riences [10]. By tracking gaze patterns - including fixation duration 

and pupil dilation, this technology provides valuable insights into 

cognitive load, engagement levels, and information processing 

strategies. Researchers have explored its role in detecting atten-

tional shifts, monitoring stress and relaxation levels, and assessing 

self-regulated learning behaviors [10, 36, 37, 73]. These factors can 

then, in turn, be used to optimize digital learning platforms by ena-

bling adaptive interventions that cater to individual learners' needs 

[10, 17]. 

Gaze estimation accuracy and stability can be affected by chal-

lenges including eye variations, occlusion and varying light 

conditions. To address these challenges, researchers have em-

ployed machine learning-based approaches to improve the 

accuracy of webcam-based eye-tracking data [14, 26, 54]. Ad-

vancements such as deep learning models, including DeepLabCut 

and neural networks, have improved gaze estimation accuracy, 

achieving a median error of about one degree of visual angle [75]. 

These have significantly enhanced the usability of webcam eye 

tracking systems, making them a promising tool for cognitive as-

sessments, learning analytics, and adaptive educational 

technologies. 

Beyond educational applications, eye tracking technology has been 

increasingly explored for predicting neurodivergence. Studies sug-

gest that gaze behavior and eye movement patterns can provide 

valuable markers for identifying individual differences such as 

those experienced by neurodivergent populations. Recent studies 

highlight the potential of webcam-based eye tracking for assessing 

cognitive challenges in neurodivergent population. For instance, 

webcam-based eye tracking offers a non-invasive and scalable ap-

proach for assessing reading comprehension difficulties, task-

unrelated thoughts (TUT), and executive functioning challenges 

commonly experienced by neurodivergent learners [71]. 

In clinical settings, eye-tracking data has been employed for neuro-

psychiatric assessments, predicting psychomotor test performance 

[1]. Researchers have also used scanpath analysis to differentiate 

between autistic and neurotypical individuals, showing that gaze 

patterns can serve as diagnostic markers for autism spectrum disor-

der (ASD) [65]. In educational environments, this technology has 

been applied to identify reading difficulties and thought processing 

patterns among neurodivergent learners, offering insights into how 

they interact with text and process information differently from 

neurotypical learners [71]. 

Eye-tracking research has also focused on its role in early autism 

detection, particularly in identifying distinct gaze behaviors associ-

ated with social cue processing and eye contact difficulties [31, 63]. 

Studies show that individuals with ASD exhibit different gaze pat-

terns when engaging with social stimuli, such as faces and eye 

contact, compared to neurotypical individuals. Machine learning 

models trained on scanpath images and gaze patterns have success-

fully classified ASD diagnoses, achieving high classification 

accuracy [4, 13], effectively differentiating individuals with ASD 

from neurotypical individuals. This finding highlights the potential 

of gaze-based biomarkers as reliable indicators of ASD. These 

models, when implemented in real-world applications, could facil-

itate early detection, enabling timely intervention and personalized 

support. 

Similar to ASD detection, eye-tracking technology has been used 

to predict dyslexia by analyzing reading patterns, fixation dura-

tions, and saccadic movements [28, 53]. Studies have shown that 

dyslexic readers exhibit distinct gaze behaviors, including longer 

fixation times and increased regressions that is, backward move-

ments in text. Machine learning models trained on eye-tracking 

data have achieved high classification performance in distinguish-

ing between dyslexic and non-dyslexic readers [51]. 

Compared to traditional diagnostic methods, such as MRI-based 

dyslexia screening [11, 19], eye-tracking approaches offer a non-

invasive, cost-effective, and scalable solution. Early identification 

of dyslexia through eye movement analysis could facilitate timely 

interventions, allowing educators to provide specialized reading 

support and accommodations for learners with dyslexia [28]. 

In addition to learning disabilities, eye-tracking research has ex-

plored its application in predicting anxiety disorders, particularly 

Generalized Anxiety Disorder (GAD). Studies have found that eye 
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movement patterns can reveal attentional biases, such as the avoid-

ance of mild threat stimuli over time, a characteristic frequently 

observed in individuals with GAD [46]. 

Machine learning models trained on eye-tracking data combined 

with facial recognition technology have demonstrated high accu-

racy in predicting anxiety symptom severity [20, 25]. In 

educational settings, webcam-based eye tracking has been em-

ployed to detect mind wandering, providing opportunities for 

adaptive learning technologies that respond dynamically to stu-

dents’ engagement levels and emotional states [23]. 

2.1 Current Study and Novelty 
As eye-tracking technologies continue to evolve, they offer a scal-

able, accessible, and real-time approach for cognitive 

measurements in educational settings. By leveraging gaze behav-

ior, fixation metrics, and machine learning models, researchers can 

develop personalized interventions and support diverse learning 

needs. 

This study investigates how webcam-based eye tracking can be 

used to predict both broad neurodivergence and specific neurodi-

vergent diagnoses in learners. Our study extends the application of 

gaze-based modeling to multiple neurodivergent conditions, in-

cluding ADHD, dyslexia, and GAD, which are known to impact 

learning processes in different ways. This approach helps identify 

key gaze features that distinguish individual learner profiles.  By 

comparing models trained on the entire population to those trained 

specifically on neurodivergent learners with specific diagnoses, the 

study evaluates the effectiveness of a generalized approach versus 

diagnosis-specific models.  

Additionally, we employ forward feature selection and SHAP to 

determine the most influential gaze and cognitive features contrib-

uting to neurodivergence classification. This approach enhances the 

interpretability of machine learning models, allowing educators and 

researchers to gain an understanding of how these diagnoses are 

reflected in learner gaze behaviors. Such findings can inform the 

design of adaptive learning environments that accommodate the di-

verse cognitive needs of neurodivergent learners, leading to more 

inclusive and effective instructional strategies. 

The goal of this study was to explore machine learning models in 

identifying neurodivergent learners and predicting specific neuro-

divergent diagnoses based on eye gaze and text features. We aimed 

to answer two key questions: (1) Can we predict whether a learner 

is neurodivergent or neurotypical? (2) Can specific neurodivergent 

diagnoses - including ADHD (Attention Deficit Hyperactivity Dis-

order) or ADD (Attention Deficit Disorder), Autism/ Asperger’s/ 

Autism Spectrum Disorder (ASD), Dyslexia/ Dyspraxia/ Dyscal-

culia/ Dysgraphia, Other language/reading/math/non-verbal 

learning disorders and Generalized Anxiety Disorder (GAD) - be 

accurately predicted? Accurate prediction of both broad neurodi-

vergence and specific diagnoses will show that our models capture 

the distinct gaze patterns, and text characteristics that show cogni-

tive processing differences. By examining which gaze and text 

features drive these predictions, we can understand how each 

learner group allocates attention, processes information, and where 

they encounter difficulties. Moreover, using multiple data streams 

to model learners can create the potential for understanding cogni-

tive processing differences and inform targeted personalization.  

3. METHOD 

3.1 Participants 
A total of 354 learners participated in an online study conducted 

through Prolific [48], a platform for online research. Participants 

self-reported whether they identified as neurodivergent or neuro-

typical, with 176 learners classified as neurodivergent and 178 as 

neurotypical (note this balance was artificially created through 

study recruitment methods in the Prolific platform).  Table 1 shows 

the distribution of neurodivergent diagnoses. 

Table 1. Self-reported diagnoses distribution 

Diagnoses Number of Participants 

ADHD/ADD 75 

Autism/Asperger’s/ASD 67 

Dyslexia/Dyspraxia/Dyscal-

culia/Dysgraphia 

14 

Other language/read-

ing/math/non-verbal learning 

disorders 

13 

Generalized Anxiety Disorder 90 

Other diagnoses 38 

No response/ never diagnosed 34 

Since the unspecified diagnoses and those who chose not to dis-

close their diagnoses could not be clearly identified, these 

categories were excluded from our analysis. 

The gender distribution included 182 males, 150 females, 20 iden-

tifying as Other/Non-Binary, and 2 who preferred not to disclose. 

Participants also reported their racial and ethnic backgrounds, with 

1 identifying as Black or African, 40 as Hispanic/Latina/La-

tino/Latinx, 19 as East Asian, 9 as Southeast Asian, 4 as South 

Asian, 3 as Other Asian, 5 as Native American, Alaskan Native, or 

First Nations, 4 as Middle Eastern or North African, 1 as Native 

Hawaiian or Pacific Islander, 251 identifying as White or Cauca-

sian and 27 identifying with another race or ethnicity. Some 

individuals identified with multiple racial identities. Additionally, 

2 participants preferred not to disclose their race. Participants' ages 

ranged from 18 to 84 years, with an average age of 37. 

3.2 WebGazer: Webcam-Based Eye Tracking 
WebGazer is a JavaScript-based, real-time eye-tracking library de-

signed for seamless integration into web browsers with webcam 

access [49]. It utilizes various facial detection tools, including clm-

trackr, js-objectdetect, and tracking.js [49], to identify key facial 

and eye regions within the webcam feed, enabling non-intrusive 

gaze tracking. 

Once the eyes are detected, WebGazer locates the pupil by identi-

fying its darker contrast relative to the iris. The eye region is then 

converted into a grayscale image patch and processed into a 120-

dimensional feature vector, which is mapped to screen coordinates 

using ridge regression models. These models dynamically update 

as the user interacts with the screen, improving tracking accuracy 

over time. WebGazer’s sampling rate varies depending on browser 

performance and webcam specifications [12]. Operating entirely 

within the client’s browser, it only records x/y gaze coordinates 

without storing any video data, ensuring participant privacy and se-

curity. Prior research has demonstrated its ability to adapt to user 

interactions and provide reliable gaze approximation [49], making 
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it a viable tool for large-scale, webcam-based cognitive research. 

Additionally, WebGazer has been applied to model attention in 

learners, particularly in predicting mind wandering and comprehen-

sion during learning tasks [23].  

3.3 Study Design and Procedure 
To ensure accurate gaze tracking, each participant then underwent 

WebGazer calibration before starting the reading task. Participants 

were instructed to maintain a well-lit environment to optimize 

tracking accuracy. The study involved reading a 40-paragraph text 

discussing psychological mechanisms influencing consumer be-

havior, with each paragraph averaging 46 words in length. The 

reading task was self-paced, with learners spending an average of 

11.55 seconds per paragraph. While reading, WebGazer continu-

ously recorded participants’ eye movements. 

Throughout the reading session, participants were intermittently 

presented with seven thought probes assessing their attentional 

state. Each probe consisted of four questions aimed at capturing the 

participant’s cognitive state at that moment. After completing the 

reading task, participants answered 10 multiple-choice comprehen-

sion questions designed to assess their understanding of the text. 

The questions required that the text was well comprehension, as 

many answers were not explicitly stated in the text, encouraging 

active engagement with the material. 

This study design as described above was reviewed and approved 

by the Institutional Review Board (IRB #2022-102) at Landmark 

College. Participants provided informed consent prior to data col-

lection and could remove themselves from the study at any time 

(including after data collection was completed). Participants were 

also informed of exactly what data was collected and its future uses.   

3.4 Feature Engineering 
For each learner, gaze data was mapped to corresponding para-

graphs of text. To estimate fixations from gaze data in relation to 

the text, we applied the fixation approximation method proposed 

by Hutt et al [22]. To contextualize the gaze data, we used natural 

language processing techniques to extract key linguistic features. 

Sentiment analysis was performed using TextBlob, which assigned 

sentiment scores ranging from -1 (negative) to 1 (positive). Textstat 

computed syllable count and the Flesch Reading Ease score to as-

sess readability. Additionally, Natural Language Toolkit (NLTK) 

was used for part-of-speech tagging [6, 33, 59]. 

Both gaze and text-based features were calculated at the paragraph 

level. Gaze-related features captured onscreen and offscreen eye 

movements while text-based features provide context on how dif-

ferent textual characteristics influence reading behavior. Eye-

tracking data was leveraged to derive fixation features, including 

the number of fixations and fixation duration statistics (mean, 

standard deviation, and skew). Prior research has established links 

between these fixation features and attentional processes across 

various tasks [21, 52].  

Interaction-based features were also extracted to capture relation-

ships between gaze behavior, text characteristics and reading 

patterns. These features help to understand how learners process 

written information and differentiate reading patterns across neuro-

divergent and neurotypical learners and identify specific 

neurodivergent diagnoses. 

In total, 24 features were extracted for analysis, including gaze-

based, text-based, NLP and interaction-based features. Table 2 pre-

sents a summary of the feature groups along with their descriptions 

Table 2. Summary of feature groups and descriptions 

Feature Group # Description 

Gaze-Based Fea-

tures 

9 Features related to gaze behavior, 

including gaze count, fixation 

counts, duration, and dispersion. 

Text-Based Fea-

tures 

4 Features extracted from the text, 

including text response time and 

word count. 

NLP features 2 Natural language processing fea-

tures, including sentiment, and 

readability scores. 

Interaction-Based 

Features 

9 Interaction-based features captur-

ing relationships between gaze 

behavior, NLP and text character-

istics. 

3.5 Data Processing 
The initial dataset consisted of 354 participants and 14,160 in-

stances (individual paragraphs). We first filtered out instances with 

low-quality gaze data, reducing the dataset to 332 participants and 

10,955 instances. Instances were considered low quality and re-

moved if the text response time was less than 1 second or if the ratio 

of gaze count to text response time was below 5. Finally, instances 

with missing values were excluded, further reducing the dataset to 

9,964 instances while maintaining the participant count at 332. The 

missing values primarily came from the fixation duration features, 

which were unavailable in cases where eye-tracking data failed to 

capture consistent fixations [70] . Since fixation duration is crucial 

for assessing attentional patterns, instances with missing values 

were removed to maintain data quality and consistency.  

The cleaned dataset containing 9964 instances, from a total of 332 

participants, was then subsetted into two categories – one for pre-

dicting whether a learner was neurodivergent or neurotypical and 

another for predicting specific neurodivergent diagnoses. The first 

category included all instances from the cleaned dataset to classify 

learners as neurodivergent or neurotypical. The second category for 

predicting specific neurodivergent diagnoses was created by filter-

ing the cleaned dataset to include only neurodivergent participants 

resulting in 4939 instances and 164 participants. 

3.6 Machine Learning Approach 
We explored five supervised classification models – Random For-

est (RF), Extreme Gradient Boosting (XGB), Logistic Regression 

(LR), K-Nearest Neighbors (KNN) and Naïve Bayes. – We selected 

these classical approaches based on prior research with similar data 

[22, 23, 27]  These classification models perform reliably on lim-

ited data, and provide the interpretable predictions needed for 

guiding educational interventions. Due to the limited volume of 

data available we did not explore Deep Learning approaches at this 

time. 

We implemented a forward feature selection method which itera-

tively selects features that contribute the most to our models’ 

performance. The process starts with an empty feature set and adds 

the feature that provides the most improvement in model perfor-

mance at each iteration until a stopping criterion is met. Throughout 

this process, each newly added feature is evaluated for its contribu-

tion to model accuracy, ensuring that only the most informative 

features are retained. This approach improves model performance 

while reducing overfitting by eliminating redundant or less relevant 
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features. We used learner-level stratified 5-fold cross-validation to 

ensure that each fold contained a balanced proportion of classes 

while preventing instances from the same participant from appear-

ing in both the training and testing sets. This approach helped 

maintain class distribution and reduce the risk of overfitting. 

To address the imbalance present in the dataset, we applied the Syn-

thetic Minority Oversampling Technique (SMOTE) [5] to the 

training set to synthesize new samples from the minority class. This 

was done for both neurodivergence prediction and specific diagno-

ses prediction. To evaluate the effectiveness of oversampling, we 

trained models both with and without SMOTE, allowing for a com-

parative analysis of its impact on model performance. 

We evaluated the models focusing on two performance metrics – 

Cohen’s kappa, which considers imbalanced datasets and corrects 

for chance agreement, ranging from -1 to 1 where 0 means no 

agreement beyond chance and 1 means complete agreement, and 

Area Under the Receiver Operating Characteristic Curve (AU-

ROC), which accesses the models’ ability to distinguish between 

neurodivergent and neurotypical categories as well as specific neu-

rodivergent diagnoses, ranging from 0 to 1 where 0.5 represents 

chance performance and 1 represents perfect performance [38]. 

After evaluating multiple classification models on the datasets, we 

selected the best performing models for distinguishing neurodiver-

gent learners from neurotypical learners and predicting specific 

diagnoses. This was achieved using the kappa metric. Since kappa 

was the only metric used, its weight was set to 1.0, meaning the 

composite score was equivalent to the Kappa value.  The model 

with the highest composite score, that is, the best-performing model 

above chance was selected.  

We further used this selection method in choosing the best perform-

ing model by comparing models that used SMOTE to those that did 

not. This was done to determine whether applying SMOTE im-

proved the models’ results or not. In the case where models 

achieved similar composite scores, the AUROC was used as a sec-

ondary metric to break the ties and identify the best model. 

To ensure clarity, reliability, and avoid introducing bias associated 

with metrics like accuracy, kappa was selected as the primary met-

ric for selecting the best model. 

To understand the influence and direction of the selected features 

in both neurodivergence classification and specific diagnoses pre-

diction, we employed SHapley Additive exPlanations (SHAP). 

Implementing SHAP allowed us to interpret how each feature con-

tributed to the model’s predictions, revealing the magnitude and 

direction of its impact. SHAP enabled us to observe how the influ-

ence of these features varied across different diagnoses. 

4. RESULTS 

4.1 Predicting Neurodivergence – Neurodi-

vergent versus Neurotypical 
The focus here was to predict whether a learner is neurodivergent 

or neurotypical using their behavioral, cognitive and textual fea-

tures. This classification can help identify what differentiates a 

neurodivergent from a neurotypical learner, thereby enabling edu-

cators to be able to identify a learner’s category and tailor their 

teaching strategies to meet an individual’s needs. 

Table 3 presents the result of the model for identifying whether a 

learner is neurodivergent. After evaluating the performance of the 

models with and without SMOTE, Logistic Regression (LR) with-

out SMOTE was selected as the best model for predicting 

neurodivergence. The base rate of 0.50 indicated that half of the 

learners in the dataset were labelled as neurodivergent. The model 

achieving a kappa score of 0.14 and an AUROC of 0.60 shows that 

there was an agreement beyond chance. This result establishes the 

baseline performance of LR model without using a balancing tech-

nique. 

Table 3. Model performance for predicting neurodivergent ver-

sus neurotypical  

# SMOTE Model Base rate Kappa AUROC 

332 No  LR 0.50 0.14 0.60 

Of the three features selected by the forward feature selection tech-

nique for predicting neurodivergence, gaze count was the most 

influential feature, as seen by its wide range of SHAP values in 

Figure 1. It differentiated neurodivergence based on the direction 

and position of a person’s gaze, where high values of gaze had a 

strong positive impact in predicting neurodiversity. Gaze-to-word 

count feature captured how gaze behavior relates to the count of 

words per paragraph where gaze per word count positively influ-

enced predicting neurodiversity. Text response time distinguished 

neurodivergence based on the time taken to respond to paragraphs 

of text. Higher response times contributed positively to predicting 

that a learner is neurodivergent. Gaze-to-word count and text re-

sponse time features had smaller, but significant contributions to 

predicting neurodivergence when compared to gazes. 

 

 

Figure 1. SHAP plot to predict neurodivergence – neurodiver-

gent vs neurotypical 

4.2 Predicting Neurodivergent Diagnoses 
After predicting the 332 learners with 9964 instances as either neu-

rodivergent or neurotypical, we also trained models to predict 

specific diagnoses. Identifying these diagnoses provides a granular 

understanding of cognitive differences among the 164 neurodiver-

gent learners with 4939 instances allowing for more targeted 

interventions and personalized support strategies. Each diagnosis 

was treated as an individual target variable where the models were 

evaluated to determine the absence (diagnosis = 0) or presence (di-

agnosis = 1) of that diagnosis. Given the presence of overlap among 

neurodivergent diagnoses (a learner could report having more than 

one diagnosis), this approach enables the identification of co-oc-

curring diagnoses shedding more light into individual learning 

profiles. To better understand the variability within the neurodiver-

gent population, models were trained and evaluated for each self-

reported diagnosis. Table 4 summarizes the performance metrics 

for predicting specific diagnoses. The results reveal some variabil-

ity in model performance across different neurodivergent groups. 
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Table 4. Model performance for predicting specific neurodiver-

gent diagnoses 

Diagnosis # SMOTE Model Base 

rate 

Kappa AUROC 

ADD/ADHD 164 Yes  LR 0.43 0.13 0.61 

Autism/ 

Asperger’s/ 

ASD 

164 No  RF 0.38 0.11 0.56 

Dyslexia/ 

Dyspraxia/ 

Dyscalculia/ 

Dysgraphia 

164 No  RF 0.08 0.15 0.59 

Other  

language/ 

reading/ 

math/  

non-verbal 

learning dis-

order 

164 Yes  RF 0.08 0.08 0.53 

Generalized 

Anxiety  

Disorder 

164 No  RF 0.51 0.17 0.58 

Models predicting ADD/ADHD had moderate performance, indi-

cating the model’s ability to reliably predict whether or not a learner 

had this diagnosis. The Autism/Asperger’s group exhibited slightly 

lower predictive reliability, suggesting greater variability in cogni-

tive patterns associated with this diagnosis compared to 

ADD/ADHD. For learners with Dyslexia/ Dyspraxia/ Dyscalculia/ 

Dysgraphia, the models showed higher prediction consistency com-

pared to Autism/Asperger’s group, suggesting that there is a signal 

in specific learning disabilities having predictable cognitive pro-

files. Other Language/Reading/Math/Non-Verbal Learning 

Disorders group showed the lowest predictive performance. Mod-

els predicting Generalized Anxiety Disorder also demonstrated 

moderate reliability. 

From the SHAP plot in Figure 2, the feature, number of fixations, 

had a positive impact on predicting ADD/ADHD when the value 

was high, indicating that learners with higher number of fixation 

clusters during tasks are more likely to exhibit patterns associated 

with ADD/ADHD. Whereas lower values had little impact on the 

models’ prediction of ADD/ADHD.  

 

Figure 2. SHAP plot to predict ADD/ADHD diagnosis 

Five features were selected using the forward feature selection as 

shown in Figure 3. Text response time was the most impactful fea-

ture, with medium to high values positively contributed to 

predicting Autism/Asperger’s, suggesting that longer response 

times are indicative of this diagnosis. Low fixation duration stand-

ard deviation and low fixation duration average positively 

influenced predictions, highlighting the role of shorter fixation pat-

terns. Also, the interaction between ease of reading and gaze 

behaviors and between ease of reading and text response time both 

exhibit a similar trend in that lower values positively influence the 

prediction of the diagnosis. Ease of reading features had a smaller 

influence compared to the other features but still had high scores 

positively influencing the prediction. 

 

Figure 3. SHAP plot to predict Autism/Asperger’s diagnosis 

Three features were selected using forward feature selection for 

predicting Dyslexia: text response time, average fixation duration-

to-gaze, and offscreen proportion per word count, as seen in Figure 

4. Text response time was the most impactful feature, with low val-

ues positively contributing to predicting 

Dyslexia/Dyspraxia/Dyscalculia/Dysgraphia diagnosis, suggesting 

that shorter response times are indicative of this group of learners. 

Low fixation duration values per gaze and offscreen proportion-to-

word count contributed positively and negatively to predicting the 

diagnosis.  This suggests that the relationship between these fea-

tures and the diagnosis is complex, with varying fixation patterns 

and offscreen gaze behaviors influencing predictions differently 

across individual cases. 

 

Figure 4. SHAP plot to predict Dyslexia/Dyspraxia/Dyscal-

culia/Dysgraphia diagnosis 

The SHAP plot for predicting Other Language/Reading/Math/Non-

Verbal Learning Disorders in Figure 5 reveals a complex relation-

ship between the features and the model’s predictions. Text 

response time and offscreen proportion per word count features 

both exhibit mixed effects on the negative side, reflecting variabil-

ity in the behaviors of learners not predicted to have this diagnosis. 

Shorter text response times and lower offscreen proportion per 

word count seem to have more influence with predicting this diag-

nosis.  

 

Figure 5. SHAP plot to predict Other Language/Read-

ing/Math/Non-Verbal Learning Disorders diagnosis 

In predicting Generalized Anxiety Disorder as shown in Figure 6, 

text response time impacts with both high and low values influenc-

ing prediction positively and negatively. The number of fixations 

shows that while low values impact prediction throughout the dis-

tribution, high values are mostly indicative of Generalized Anxiety 

Disorder in regions with higher SHAP values. 
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Figure 6. SHAP plot to predict Generalized Anxiety Disorder 

diagnosis 

5. DISCUSSION 
Eye-tracking research has established gaze metrics as reliable indi-

cators of attention and cognitive processes [61], yet the high cost 

and intrusiveness of research-grade trackers have largely confined 

this work to laboratory settings [41, 71]. Recent developments in 

webcam-based eye trackers, specifically the WebGazer, provides a 

scalable and cost effective tracker that allows real-time gaze meas-

urement in ecologically valid learning environments [71]. Because 

neurodivergent diagnoses including ADHD, Autism and dyslexia 

are characterized by distinctive attentional and processing patterns 

[2, 24, 43], using WebGazer to collect gaze data from these learner 

groups allows us to understand those differences. In our study, par-

ticipants completed a self-paced reading task while we recorded 

multi-stream data from both neurodivergent and neurotypical learn-

ers using WebGazer. Our analysis not only distinguished broad 

neurodivergence from typical profiles but also revealed diagnoses-

specific gaze and reading patterns within neurodivergent groups. 

These findings demonstrate the feasibility of low-cost eye tracking 

for data-driven learner modeling and lay the groundwork for per-

sonalized interventions that respond to individual needs. 

To interpret the most influential features that drove our prediction, 

we applied SHapley Additive exPlanations (SHAP) across both 

broad neurodivergence and diagnosis-specific models. The SHAP 

analysis revealed considerable variation in feature importance 

across different neurodivergent groups, emphasizing the diversity 

in cognitive and attentional processes among learners.  Importantly, 

these findings must be considered alongside the machine learning 

model performance, as classification effectiveness varied across 

different neurodivergent profiles. 

5.1 Main Findings 
Although our sample size for this study was modest compared to 

large-scale machine learning studies, it remains substantial relative 

to most participant samples in neurodivergent research. Using this 

sample, we evaluated five classification models and found that lo-

gistic regression without SMOTE was the best-performing model 

for neurodivergence classification, achieving a kappa score of 0.14 

and an AUROC of 0.60. While this result indicates only slight 

agreement beyond chance, it establishes a foundational baseline for 

further improvement. 

For specific neurodivergent diagnoses, models exhibited varying 

performance. Considering the kappa scores, the best predictive per-

formance was observed for Generalized Anxiety Disorder 

(AUROC = 0.58, Kappa = 0.17) and Dyslexia/Dyspraxia/Dyscal-

culia/Dysgraphia (AUROC = 0.59, Kappa = 0.15), suggesting more 

consistent cognitive patterns within these groups. The model for 

ADD/ADHD also demonstrated moderate predictive capability, 

achieving the highest AUROC (AUROC = 0.61, Kappa = 0.13). 

Conversely, models for Autism/Asperger’s/ASD (AUROC = 0.56, 

Kappa = 0.11) and Other Language/Reading/Math/Non-Verbal 

Learning Disorders (AUROC = 0.53, Kappa = 0.08) exhibited 

lower predictive performance, likely due to greater variability in 

these diagnoses. 

The SHAP analysis further highlighted the most influential features 

for both neurodivergence classification and specific neurodivergent 

diagnoses. For broad neurodivergence classification, gaze count 

was the most predictive feature, suggesting that differences in gaze 

behaviors are an important factor in distinguishing neurodivergent 

learners from neurotypical learners. Gaze-to-word count interac-

tion and text response time were also significant, indicating that 

neurodivergent learners may process text differently, by taking 

longer to engage with the material.  

When predicting specific neurodivergent profiles, different feature 

sets were identified as the most important for each classification 

with commonalities observed across certain diagnoses. Selected 

through forward selection, text response time was a common pre-

dictor across multiple diagnoses - Autism/Asperger’s, 

Dyslexia/Dyspraxia/Dyscalculia/Dysgraphia, Other Lan-

guage/Reading/Math/Non-Verbal Learning Disorders, and 

Generalized Anxiety Disorder. 

For ADD/ADHD, fixation count was the strongest predictor, align-

ing with prior research that associates frequent attentional shifts 

with this disorder [39]. For Autism/Asperger’s/ASD, text response 

time and fixation duration were highly influential, consistent with 

studies indicating that individuals with ASD exhibit shorter fixation 

duration [34] and slower text engagement [15]. For Dyslexia/Dys-

praxia/Dyscalculia/Dysgraphia, text response time, fixation 

duration-to-gaze, and offscreen proportion-to-word count were the 

most predictive features, with shorter response times indicating a 

higher likelihood of diagnosis, while lower values of fixation dura-

tion-to-gaze and offscreen proportion-to-word count showed mixed 

effects, reflecting varied reading strategies among these learners. 

Given the heterogeneity of this group – encompassing multiple dis-

tinct learning differences – the observed variability reflects diverse 

cognitive and reading strategies across these diagnoses. For Other 

Language/Reading/Math/Non-Verbal Learning Disorders, fixation 

duration and offscreen proportion per word count were key, reflect-

ing challenges in visual processing and reading fluency. For 

Generalized Anxiety Disorder, SHAP analysis showed a mix of 

positive and negative effects related to text response time and fixa-

tions, mirroring findings in anxiety research that suggest variability 

in engagement [45, 46, 57]. 

5.2 Applications 
We first start with how this work should not be applied. Though 

encouraging, the model accuracies reported in this work are not 

suitable for medical diagnosis.  Given the potential for false posi-

tives or negatives, gaze-based detectors should not be used instead 

of validated behavioral and cognitive assessments. This approach 

should not be used for diagnostic reasons or to single out any indi-

vidual student. However, by leveraging webcam-based eye 

tracking combined with machine learning, this approach provides a 

scalable, non-invasive, and accessible method to create more per-

sonalized and adaptive learning experiences. By responding to 

learners’ interaction patterns, future technology, if designed mind-

fully, can provide real-time alterations that support various 

individual differences, regardless of official diagnosis. 

Such adaptations or interventions may include adjusting text 

presentation, modifying reading complexity, or integrating multi-

modal content to support learners with ADHD, dyslexia, or other 

neurodivergent diagnoses. More overt interventions, such as visual 

prompts or structured scaffolding, could provide real-time support 
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when indicators of cognitive overload or disengagement are de-

tected. Given the moderate accuracy of the models, all interventions 

should be designed to “fail soft”, that is, to have no negative impact 

on learning in the event of a false positive.  

Additionally, gaze and text interaction data could be integrated into 

teacher dashboards, offering real-time formative feedback on 

learner’s cognitive engagement, enabling educators to refine their 

teaching methods and enhance classroom inclusivity. Researchers, 

in turn, can use this technology to study cognitive processing dif-

ferences across neurodivergent and neurotypical learners, 

informing educational policies and intervention strategies. 

With all technology, especially that which collects learners’ per-

sonal data, it is critical that we respect learners’ privacy. All 

applications should be transparent about when and why gaze is be-

ing recorded and how it is used. The intended use of this technology 

should remain within educational support, rather than high-stakes 

decision-making. Applications will need to build trust with learners 

and instructors that the data collected will not be used for other pur-

poses.  

5.3 Limitations and Future Work  
A primary limitation of this study is the need for model refinement 

to improve predictive accuracy. While our approach demonstrated 

moderate success in classifying neurodivergent learners – including 

kappa of 0.15 for classifying ADD/ADHD diagnoses, which re-

flects slight agreement above chance – future research should focus 

on improving model performance by integrating multimodal data 

sources, such as facial expressions, keystroke dynamics, and phys-

iological signals. With further advancements, the use of webcam-

based eye tracking in combination with machine learning has the 

potential to contribute to more inclusive and adaptive educational 

environments that better support the needs of neurodivergent learn-

ers.  

Another key limitation is the inherent variability in webcam-based 

eye-tracking accuracy. Unlike research-grade eye trackers, which 

provide high precision under controlled conditions, webcam-based 

tracking is more susceptible to external factors such as lighting con-

ditions, webcam resolution, and participant positioning [18, 35, 

74]. These inconsistencies can lead to missing or inaccurate gaze 

data, which may impact model performance [16] or overall data 

collection. While missing values were removed to maintain data 

quality, future work should explore improved gaze estimation al-

gorithms and calibration techniques to enhance tracking robustness. 

Beyond technical limitations, the dataset used in this study presents 

challenges related to sample size, diversity and generalizability. 

Roughly 19% of Americans identify as neurodivergent [47]; how-

ever, specific diagnoses are less common within this population 

[67, 72], making it difficult to recruit large samples for individual 

diagnosis. The reliance on self-reported neurodivergent diagnoses 

introduces potential biases, such as misclassification or underre-

porting of neurodivergent traits. Additionally, although the models 

were trained on a diverse population of learners, there was insuffi-

cient representation across racial and demographic groups. This 

lack of diversity limits the generalizability of the findings, as gaze 

behaviors and cognitive processing patterns may vary across differ-

ent cultural and demographic backgrounds [60]. Future research 

should aim to validate these models using clinically diagnosed pop-

ulations and ensure broader representation to improve model 

applicability across various learner profiles.  

Another important limitation is the heterogeneity within the Dys-

lexia/Dyspraxia/Dyscalculia/Dysgraphia category. While these 

diagnoses were grouped together during data collection, the extent 

to which they share common cognitive and gaze-based patterns re-

mains unclear. Future research should examine the distribution of 

diagnoses within the Dyslexia/Dyspraxia/Dyscalculia/Dysgraphia 

category and consider refining classification strategies to better ac-

count for distinct symptom profiles across these conditions. 

We also note for this initial exploration, we used a single task (read-

ing). Future work should consider if findings generalize to other 

learning tasks and environments, especially those that are more vis-

ual rich such as intelligent tutoring systems and educational games.  

6. CONCLUSION 
This study explored the use of webcam-based eye tracking to pre-

dict whether a learner is neurodivergent or neurotypical and to 

identify specific neurodivergent diagnoses using machine learning 

models. Our findings demonstrate the feasibility of gaze-based fea-

tures, and text characteristics in predicting neurodivergence with 

moderate success. Notably, text response time emerged as a key 

predictor across multiple neurodivergent profiles, reinforcing its 

potential as a generalizable indicator of cognitive processing differ-

ences. 

Overall, these findings underscore the potential of webcam-based 

eye tracking as a scalable, non-intrusive method for cognitive mod-

eling in educational settings. While current models demonstrate 

only moderate predictive power, they pave the way for improve-

ment through enhanced feature engineering, larger datasets, and 

advanced machine learning techniques. This study highlights the 

importance of personalized learning analytics and lays the founda-

tion for further exploration into real-time adaptive interventions for 

neurodivergent learners. 
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