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ABSTRACT
Transforming educational technologies through the integra-
tion of large language models (LLMs) and virtual reality
(VR) offers the potential for immersive and interactive learn-
ing experiences. However, the effects of LLMs on user en-
gagement and attention in educational environments remain
open questions. In this study, we utilized a fully LLM-driven
virtual learning environment, where peers and teachers were
LLM-driven, to examine how students behaved in such set-
tings. Specifically, we investigate how peer question-asking
behaviors influenced student engagement, attention, cogni-
tive load, and learning outcomes and found that, in condi-
tions where LLM-driven peer learners asked questions, stu-
dents exhibited more targeted visual scanpaths, with their
attention directed toward the learning content, particularly
in complex subjects. Our results suggest that peer ques-
tions did not introduce extraneous cognitive load directly,
as the cognitive load is strongly correlated with increased
attention to the learning material. Considering these find-
ings, we provide design recommendations for optimizing VR
learning spaces.

Keywords
Virtual classroom, eye tracking, cognitive load, human-computer
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1. INTRODUCTION
Education is undergoing a significant digital transforma-
tion, accelerated by technological advancements and further
driven by the COVID-19 pandemic, which necessitated a

shift from in-person to digital learning environments [103,
15]. Virtual reality (VR) technologies have become increas-
ingly prevalent in this transformation. Advances in VR
technology have made head-mounted displays (HMDs) more
affordable and accessible, leading to their widespread ap-
plication across various fields, including healthcare [39, 76,
50], entertainment [19, 6], and education [82, 23, 13, 24, 36,
25]. In education, VR is revolutionizing traditional teaching
methods by transitioning them into a dynamic digital land-
scape. Institutions like Stanford University have begun con-
ducting entire classes in VR, showcasing VR’s potential to
transform conventional teaching [90]. Virtual environments
enable immersive experiences and enhanced visualizations,
which can lead to more effective and engaging learning.

In the digital transformation of education, large language
models (LLMs), which are powerful AI systems trained on
vast amounts of text data to understand and generate human-
like language, are increasingly being applied [46, 1, 102,
40]. In educational settings, integrating LLMs with VR en-
vironments enables a more interactive learning experience
by allowing students to engage in realistic simulations, ask
questions, and receive immediate, contextually accurate re-
sponses [38, 58, 44, 27]. These advancements allow for nat-
ural conversations and personalized interactions, enhancing
the ability to create tailored learning experiences that adapt
to individual student needs [66, 46, 65]. By combining VR
with LLMs, educational environments can offer more inter-
active and flexible learning experiences that accommodate
diverse learning styles and preferences, improving student
engagement and retention.

Building on advancements in VR and AI-driven systems like
LLMs, educational settings have increasingly enabled adapt-
able and tailored learning experiences that address individ-
ual student needs and preferences. Such personalized envi-
ronments allow students to progress independently and at
their own pace, aligning their learning journeys with their
unique goals [77, 88, 89]. However, despite offering substan-
tial flexibility and autonomy, these individualized learning
settings often lack the collaborative dynamics characteris-
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(a) View 1 from the virtual classroom. (b) View 2 from the virtual classroom.

Figure 1: Views from the LLM-driven virtual classroom environment.

tic of traditional classroom environments. Peer interactions,
particularly question-asking behaviors, significantly enhance
the learning experience by capturing students’ attention, fos-
tering deeper engagement, and encouraging cognitive elab-
oration [48, 60, 5]. These interactions function as instruc-
tional signals, effectively guiding learners toward critical in-
structional content, focusing their attention, and enhancing
comprehension [94, 64, 29]. Thus, incorporating peer ques-
tions into virtual learning environments can not only direct
student attention to crucial concepts but also enrich engage-
ment and foster meaningful interactions within the learning
process.

Addressing these challenges and building on technological
advancements, our study focuses on integrating LLMs into
virtual learning environments to enhance the realism and ef-
fectiveness of VR-based education. While previous research
has explored the use of VR in education [13, 24, 56, 82, 41],
particularly in simulating real-world environments and im-
proving engagement, the integration of LLMs to create more
interactive and personalized experiences has not been widely
studied. Few studies [58] have examined how LLM-driven
interactions within VR classrooms can mirror the dynam-
ics of traditional classrooms, particularly in peer-to-peer or
teacher-student exchanges. Our work takes a first step to-
ward addressing this gap by simulating a fully LLM-driven
virtual environment (see Figure 1), where an LLM-powered
teacher delivers content based on provided slides, comple-
mented by LLM-powered peer interactions. This setup aims
to create an immersive learning experience that mirrors real-
world educational settings. To evaluate the impact of this in-
tegration, we test two conditions: LLM-driven Peer Interac-
tion with Questions and Answers (Peer-QnA), where LLM-
driven peers (students) ask questions to the teacher, cre-
ating a more interactive classroom environment, and LLM-
driven Peer without Question and Answer Interaction (Peer-
NoQnA), where LLM-driven peers do not ask questions,
leaving the participant as the only entity interacting with
the teacher. To understand the effects of these two settings,
we evaluated factors including student engagement, cogni-
tive load, and eye-tracking behaviors within the VR.

The contributions of this work are fivefold: (1) we designed
a fully LLM-driven virtual classroom environment and col-
lected data from 19 participants, demonstrating the effec-

tiveness of LLM-driven interactions in immersive educational
settings; (2) we evaluated two distinct interaction condi-
tions, Peer-QnA and Peer-NoQnA, and found significant
differences in student attention, with the Peer-QnA condi-
tion leading to increased attention and engagement with the
learning content; (3) we analyzed cognitive load using NASA
Task Load Index (NASA-TLX) assessments, supplemented
by eye-tracking data, revealing that the Peer-QnA condition
resulted in higher cognitive load, as evidenced by increased
pupil diameter, which strongly correlated with student at-
tention on crucial content; (4) peer questions led to more
targeted attention, resulting in longer mean fixation dura-
tion and shorter average saccade amplitude; and (5) in more
complex subjects, these changes in cognitive load and visual
attention were more noticeable, emphasizing the importance
of subject complexity.

2. RELATED WORK
In the evolving educational technology landscape, immer-
sive VR and LLMs have become transformative tools that
significantly impact learning environments. In the follow-
ing subsections, we review the literature in these two areas,
highlighting how each contributes to advancements in edu-
cational technology.

2.1 VR Environments in Education
Virtual learning spaces are increasingly integrated into ed-
ucational settings [78, 82], providing valuable insights from
both teacher and student perspectives [72, 68]. For teach-
ers, VR allows them to simulate complex, real-world scenar-
ios, allowing them to practice classroom management and
lesson delivery in a controlled environment [74, 37]. This
improves their confidence and teaching strategies before en-
tering a real classroom. From the student perspective, VR
enhances engagement by creating immersive, interactive en-
vironments that support experiential learning, enabling stu-
dents to explore concepts in a more hands-on way than tra-
ditional methods [104, 67, 20].

In addition to offering general classroom preparation, par-
ticularly for teachers in training, VR environments provide a
unique opportunity to simulate complex classroom scenarios
that can help develop essential teaching and classroom man-
agement skills. To this end, Westphal et al. [100] found that
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student teachers who focused on self-reflection using first-
person pronouns in a VR environment experienced higher
stress levels, which caused increased stress in subsequent
teaching sessions. This highlights the psychological impact
of self-focused reflection in VR settings and the importance
of preparing teachers to manage stress effectively. Similarly,
Huang et al. [37] examined how complex classroom envi-
ronments, characterized by multiple and overlapping disrup-
tions, impact student teachers’ ability to detect and respond
to those disruptions. Their study reveals that higher com-
plexity reduces the likelihood of noticing and effectively ad-
dressing disruptions, underscoring the potential of VR to
simulate challenging teaching environments that can bet-
ter prepare teachers for real-world scenarios. Additionally,
Huang et al. [35] explored the effect of class size on stress
levels in pre-service teachers. The authors find that larger
class sizes in a VR classroom significantly increase heart rate
and perceived stress, indicating that VR effectively simu-
lates classroom management challenges, helping educators
develop the skills needed to handle real-world classroom de-
mands.

From the student perspective, VR environments have been
shown to enhance engagement, motivation, and overall learn-
ing outcomes. Liu et al. [57] demonstrate that primary
school students in an immersive VR classroom achieved higher
academic success and increased science motivation compared
to those in traditional classrooms while also experiencing re-
duced cognitive load. This suggests that VR can create more
engaging and less mentally taxing learning environments for
students. Furthermore, Gao et al. [24] and Bozkir et al. [13]
explore how various factors, such as student seating posi-
tions, visualization styles, and hand-raising behaviors of vir-
tual peers, impact students’ engagement and attention in a
VR classroom. The findings reveal that students seated at
the back of the classroom struggle to effectively extract in-
formation, while realistic visualization styles of avatars lead
to better engagement with lectures.

Building on previous research that has examined student
behaviors and interactions in VR classrooms, Hasenbein et
al. [32] investigate how students interact with social compar-
ison information, particularly in relation to peers’ achievement-
related behaviors. The authors’ findings indicate that stu-
dents who spend more time observing their peers’ achieve-
ments tend to have lower self-evaluations, highlighting the
psychological effects of peer interactions in virtual settings.
Stark et al. [92] examine student interactions by using gaze
entropy to identify and differentiate classroom discourse events.
They are able to predict teacher-led activities and expla-
nations with a high degree of accuracy, demonstrating the
potential of gaze entropy as a tool for analyzing classroom
participation and engagement in VR settings. While exist-
ing studies emphasize the immersive potential of VR in ed-
ucation, there is a research gap regarding fully LLM-driven,
dynamic individual learning environments that closely re-
semble real-world educational experiences. The effects of
these AI-driven interactions on student engagement, atten-
tion, and learning outcomes are still largely unexplored.

2.2 Large Language Models in Education
Recent advancements in LLMs significantly expand their ap-
plications across various fields, including healthcare [98], ed-

ucation [46], and beyond [105, 101]. In the education do-
main, these models are now playing a larger role in enhanc-
ing both teaching and learning experiences. These mod-
els provide personalized learning opportunities, helping stu-
dents learn independently and adapt to their unique needs,
thereby contributing to more equitable education [46, 102,
73, 31].

LLMs have demonstrated their versatility and effectiveness
across various educational levels, from primary schools to
universities. For instance, Yan et al. [102] identify 53 dif-
ferent application scenarios where LLMs are used to auto-
mate educational tasks at different levels, including assess-
ment and grading, teaching support, and knowledge repre-
sentation. This broad applicability highlights the potential
of LLMs for innovating traditional educational processes.
At the university level, Abd-alrazaq et al. [1] explore the
potential of LLMs in medical education, noting their abil-
ity to innovate curriculum design, teaching methodologies,
and student assessments. Similarly, in secondary education,
Lieb and Goel [54] introduced NewtBot, a personalized tutor
chatbot for physics students, which provides positive learn-
ing experiences and demonstrates the potential of LLMs as
effective virtual tutors. Moreover, Lu and Wang [61] uti-
lize these models to simulate student profiles for evaluating
multiple-choice questions. The authors find that the sim-
ulated responses are consistent with real student answers,
aiding in the refinement of question quality.

LLMs have also been utilized in enhancing interactive learn-
ing environments. Liu et al. [58] introduced ClassMeta, a
GPT-4 driven agent that simulates an active student in a
VR classroom. This integration of LLMs with VR signif-
icantly expands engagement and learning outcomes, pro-
viding a more immersive and effective educational experi-
ence. Similarly Izquierdo-Domenech et al. [38] combined
VR and LLMs to create context-aware educational experi-
ences. Participants using this integrated setup achieve sig-
nificantly better learning outcomes compared to those using
traditional methods, highlighting the potential of LLMs to
enhance interactive learning.

Despite the promising advancements in integrating LLMs
with VR environments [11], research in this area is still in its
early stages. While there have been successful applications
of LLMs for tasks like individual tutoring and knowledge
representation, there is still much to explore the effects of
interacting with AI-powered peers and teachers in immer-
sive settings have not been fully investigated. This high-
lights the need for further research into how LLMs can en-
hance not only individual learning experiences but also cre-
ate more engaging and interactive virtual classrooms. Our
study takes an initial step toward addressing these gaps by
exploring how LLMs can be integrated into VR to simulate
more interactive and realistic classroom dynamics.

3. METHODOLOGY
As LLM-driven classrooms become more common, it is im-
portant to understand how students interact and learn in
these new environments. The main purpose of this study is
to evaluate student behaviors in fully LLM-driven classroom
settings and to analyze the impact of LLM-driven peer ques-
tions on engagement, attention, cognitive load, and learning
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outcomes. Understanding how student attention and cogni-
tive load evolve in these virtual environments can guide the
design of more effective and engaging LLM-driven learning
spaces. In this section, we provide an overview of the par-
ticipant details, apparatus, experimental design, procedure,
measurement techniques, and data pre-processing steps.

3.1 Participants
The study included 19 participants with a mean age of 25.32
and standard deviation 8.57, with a gender distribution of
68.42% male (n = 13) and 31.58% female (n = 6). Educa-
tional backgrounds varied, with 63.16% holding a bachelor’s
degree, 26.32% having completed high school or equivalent,
and 10.53% possessing a master’s degree. Occupationally,
68.42% were students, while 31.58% were recent graduates
employed in various industries. Most participants (68.42%)
had prior experience with VR; however, only 5.26% had used
VR in educational settings. Additionally, 94.74% had inter-
acted with LLMs before, indicating a certain level of famil-
iarity with AI technologies.

3.2 Apparatus
The study was conducted using a VR classroom environment
designed in Unity3D (see Figures 1). The virtual classroom
was equipped with avatars representing a teacher and stu-
dents, all powered by LLMs to simulate real-time interac-
tions. Specifically, we utilized “ChatGPT-4o” [69] to power
the interactions within the classroom. For speech recogni-
tion, we employed OpenAI’s Whisper API [70] for speech-
to-text conversion and Amazon Polly [86] for text-to-speech
synthesis. This environment was designed to mirror a real-
istic classroom, with all avatars equipped with animations
to enhance realism. Student avatars featured both speak-
ing and idle animations, while the teacher avatar included
additional variations of idle and speaking animations. For
question-asking behavior, student avatars raise their hands
before speaking, while the teacher avatar uses both a se-
lection gesture and verbal cue when calling on a student.
Participants took on the role of a student seated at the cen-
ter of a 3 × 3 grid, surrounded by eight desks assigned to
LLM-driven peers. Participants could ask questions using
the HTC Vive controller; pressing the trigger button initi-
ated the speech input system, allowing them to verbally ask
their question. The study was conducted with a Varjo XR-
3 [96] mixed reality HMD paired with a desktop featuring a
13th Gen Intel Core i7-13700K processor, 32.0 GB of RAM,
and an NVIDIA GeForce RTX 4080 GPU. Eye-tracking data
was collected using the Varjo XR-3’s built-in eye tracker, op-
erating at the maximum sampling rate of 200Hz.

3.3 Experimental Design
In the study, we evaluated the VR classroom environment
by addressing the effectiveness of the virtual setting, which
is essential for understanding how well it replicates a real
classroom and how immersive and engaging it is for individ-
ual participants. Additionally, two separate conditions were
tested to examine the effects of interactive dynamics. In the
first condition, the participant could address the teacher and
ask questions, but the LLM-powered students did not inter-
act. In the second condition, both the participant and the
LLM-powered students could address the teacher by asking
questions. In both conditions, the teacher presented a set

of instructional slides, explaining the content of each one.
After the explanation of each slide, a structured opportu-
nity for questions followed. In the Peer-NoQnA condition,
the participant could ask a question using a button on the
controller, and the teacher responded accordingly. In the
Peer-QnA condition, the participant could still ask a ques-
tion using the same method. Additionally, one or two ran-
domly selected AI student avatars also asked questions after
each slide, regardless of whether the participant chose to ask
one.

In this study, we employed a within-subjects experimen-
tal design, where each participant experienced two inter-
action conditions within a virtual reality classroom. For
each participant, to avoid content repetition, each condi-
tion was associated with a different topic, and the order of
topic presentation was counterbalanced across participants
to mitigate potential order effects. This design ensured
that any observed differences in engagement or learning out-
comes were attributable to the interaction model rather than
the sequence in which the topics were presented. Although
we observed variation in participant behavior and outcomes
across the two topics, topic complexity was not manipu-
lated as an independent variable. Instead, topic assignment
served solely as a counterbalancing mechanism. Nonethe-
less, the differences observed across topics provide valuable
exploratory insights into how content complexity may affect
attention, cognitive load, and learning outcomes.

In the experiment, participants were exposed to four cases
involving two topics: the Double-Slit Experiment and the
History of Video Games. We choose those topics to allow
for an analysis of user behavior in both a technical and a less
specialized or non-technical subject, providing deeper in-
sights into how the virtual environment performs across dif-
ferent types of content. Each case varied based on whether
questions were asked solely by the user or by the user and AI
students. In Case 1, only the participant was allowed to ask
questions during the Double-Slit Experiment, whereas both
the participant and AI students could ask questions during
the History of Video Games. Case 2 reversed this setup,
with both the participant and AI students asking questions
during the Double-Slit Experiment, followed by only partic-
ipant questions during the History of Video Games. Case
3 and Case 4 mirrored the structure of Case 1 and Case 2,
respectively, but with the order of topics reversed.

In the experiment, we collected eye-tracking data to analyze
student behavior in the virtual reality classroom, following
the approach used in other studies [79, 91, 33, 13]. This
method provided valuable insights into how participants di-
rected their attention and interacted with various elements
of the virtual environment. Additionally, the cognitive load
was assessed to measure the mental effort required, consis-
tent with approaches in similar studies [57, 4]. The NASA
Task Load Index (NASA-TLX), a widely recognized tool for
evaluating cognitive load [21, 14], was used to gather sub-
jective assessments of participants’ mental demand, effort,
and overall workload. These measures offer a comprehen-
sive approach to understanding attention, engagement, and
mental effort in the virtual learning environment, validat-
ing the use of eye-tracking and cognitive load as key tools
for this evaluation. Additionally, we administer pre- and
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post-questionnaires to gather participants’ feedback on their
experience in the virtual classroom environment.

3.4 Procedure
Upon arrival, participants were welcomed and asked to com-
plete informed consent forms and a pre-questionnaire with
demographic questions. Following this, they were intro-
duced to the first condition of the experiment, conducted
in a VR classroom environment. After completing the first
condition, participants took the NASA-TLX test to assess
the task load. They then proceeded to the second condi-
tion, again in the VR classroom, followed by the NASA-
TLX test once more. Finally, participants completed a post-
questionnaire that gathered general feedback on the overall
experience. To ensure participants remained attentive to the
lecture content in the virtual classroom, a set of questions
related to the presented topic was asked after each condition,
assessing their retention and engagement. Each VR session
took approximately 15-18 minutes, and the total duration
of the experiment was about 1 to 1.5 hours. Participants
received compensation for their time and participation.

3.5 Measurements
Data collection in this study involved multiple methods to
comprehensively assess participant experiences and outcomes.

3.5.1 Visual Scanpath
Eye-tracking data was collected using the Varjo XR-3 head-
set’s built-in capabilities. From this data, we extract fixation
points, where the gaze remains focused for a significant pe-
riod, and saccades, which are rapid eye movements between
fixation points. We analyze key metrics such as total fix-
ation duration, mean fixation duration, saccade amplitude,
and saccade velocity.

The eye-tracking data is crucial for understanding the be-
haviors of the students in the virtual classroom [24, 13, 26,
22]. Total fixation durations represent the user’s attention
to specific content and areas of interest, indicating how long
the information is engaged with [30]. In our experiment,
we normalize these durations by dividing them by the total
fixation duration for each participant to evaluate attention.
The mainboard and teacher were identified as the primary
instructional content, and we designated them as the key
areas of interest for analyzing how participants focused on
the content. Mean fixation duration serves as an indicator
of cognitive processing demands [43, 30]. Higher values gen-
erally suggest that deeper cognitive processing is required to
process the information being viewed. It is engaged in more
complex mental activities, such as understanding, analyz-
ing, or integrating different pieces of information, which also
supports meaningful learning [80, 87]. Saccade amplitudes
provided insight into how broadly or narrowly participants
scanned the environment, indicating their visual exploration
patterns. Larger saccade amplitudes suggest participants
were scanning across a wider area, while smaller amplitudes
indicate higher cognitive load with a more concentrated fo-
cus on particular content [17]. Saccade velocities indicate
how cognitive load and task demands impact attention and
engagement. As cognitive load rises, saccade velocity tends
to increase. This indicates deliberate focus, where partic-
ipants take more time to process detailed information or

engage more with the content [28] However, higher average
saccade velocities are often associated with increased stress
and reduced concentration during cognitive tasks [8, 52]. In
addition to fundamental fixation and saccade metrics, we
examined the total fixation duration on key objects, such
as the mainboard and teacher, to assess students’ attention.
These objects were identified as the primary sources of in-
structional content, reflecting where the core learning mate-
rial was delivered.

3.5.2 Cognitive Load
Cognitive Load Theory [94, 93] is a framework for under-
standing the mental effort involved in learning. Cognitive
load is classified into three categories: intrinsic, extrane-
ous, and germane. Intrinsic load is primarily related to the
inherent difficulty of the material. Extraneous load arises
from unnecessary complexity in the environment. Germane
load results from processing information to support under-
standing [49, 99]. Effective instructional design focuses on
minimizing extraneous load while enhancing germane load,
enabling learners to concentrate on the essential material
without being overwhelmed. In this study, we evaluate the
impact of the fully LLM-driven virtual classroom on partic-
ipants’ cognitive load to understand how interacting with
AI-driven peers and teachers influences mental effort. The
NASA-TLX was used after each condition to assess partici-
pants’ perceived workload. In addition to measuring cogni-
tive load with NASA-TLX, pupil diameter was also utilized
to assess the cognitive load experienced by participants dur-
ing the experiment, serving as an objective indicator of cog-
nitive effort [7, 51, 47, 12].

Additionally, we investigate the relationship between cogni-
tive load and visual attention using Pearson correlation and
linear regression analyses. The Pearson correlation mea-
sured the strength and direction of the association between
cognitive load, as assessed by NASA-TLX, and normalized
fixation duration on primary instructional elements. Fol-
lowing the correlation analysis, a linear regression was con-
ducted to predict cognitive load based on normalized fix-
ation duration on these key instructional areas. This re-
gression analysis quantified how much variance in cognitive
load could be explained by participants’ attention to these
primary content areas.

3.5.3 Questionnaires
We administered several questionnaires in the study, and
their details are as follows.

Pre-Questionnaire includes demographic questions to cap-
ture participants’ background information, including their
age, gender, education level, prior experience with VR and
AI technologies, and familiarity with the subject. Knowl-
edge questionnaire has a multiple-choice test designed to
assess their understanding and retention of the content pre-
sented during the VR sessions. To investigate the relation-
ship between visual attention and learning outcomes, we
conducted a regression analysis. Post-Questionnaire was ad-
ministered to gather participants’ overall impressions and
feedback on their experience within the virtual classroom
environment. This questionnaire was divided into five cate-
gories and employed a 5-point Likert scale with response op-
tions: “strongly disagree,”“disagree,”“neutral,”“agree,” and
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“strongly agree.”The questionnaire was structured into five
categories. First, we focused on “Technical Challenges and
Audiovisual Quality”, addressing any technical issues par-
ticipants faced that could have impacted their engagement.
Second, we evaluated the Teacher-Student Interaction Qual-
ity, focusing on the clarity of the LLM-driven teacher’s con-
tent delivery and the effectiveness of its responses during in-
teractions. Third, we examined “Student Participation and
Peer Influence”, particularly how the question-and-answer
dynamics between peers and the teacher affected partici-
pants’ attention, engagement, and overall learning process.
Fourth, we assessed “Assessment Quality and Relevance”,
collecting participants’ feedback on the appropriateness and
difficulty of the test questions used to evaluate their under-
standing of the lecture content. Finally, we collected feed-
back on Overall Experience and Satisfaction, reflecting par-
ticipants’ general impressions of the LLM-driven VR class-
room environment.

3.6 Data Processing
Eye-tracking data was processed using the Identification by
Velocity Threshold (I-VT) algorithm [84, 45] to identify fixa-
tions and saccades. The I-VT algorithm classifies eye move-
ments by measuring gaze velocity, with slower movements
being categorized as fixations and faster movements as sac-
cades. We also incorporated the head movements in the
fixation detection, as fixations were only counted when both
eye and head movements were stable. The specific criteria
used for detecting fixations and saccades, including veloc-
ity and duration thresholds [24, 2], are provided in Table 1.
For the pupil diameter data, we applied a Savitzky-Golay
filter [85] to smooth the data and remove noise. Following
this, divisive baseline correction with a baseline duration of
1 second [63] was used to normalize the readings, ensuring
a more precise analysis of cognitive load and engagement,
as seen in similar studies [24, 10, 9]. Similarly, to analyze
the total fixation duration on key objects (mainboard and
teacher), we normalized this metric by dividing it by the
overall fixation duration for each participant.

Table 1: Criteria for Fixation and Saccade Detection.

Event Velocity (v) Duration (∆)

Fixation vhead < 7◦/s
vgaze < 30◦/s

∆fixation > 100 ms
∆fixation < 500 ms

Saccade vgaze > 40◦/s ∆saccade > 20 ms
∆saccade < 100 ms

3.7 Analysis
We conducted a separate analysis of cognitive load, visual
scanpath, and learning outcomes for each topic, the Double-
Slit Experiment and the History of Video Games. For both
topics, we compared the Peer-QnA and Peer-NoQnA condi-
tions in terms of cognitive load, pupil diameters, fixations,
saccades, and learning outcomes. We conducted an indepen-
dent t-test for normally distributed samples. For distribu-
tions that did not conform to a normal distribution, we used
the non-parametric Wilcoxon signed-rank test. Normality
was evaluated using the Shapiro-Wilk test for sample sizes
under 2000 [81, 83] and the Kolmogorov-Smirnov test [55]
for larger samples. In all analyses, a significance level of
α = 0.05 was applied to determine statistical significance.

To analyze the questionnaire data, we calculated the mean
and standard deviation for each question using the Likert
scale, where “strongly agree” corresponds to 5 and “strongly
disagree” corresponds to 1 [42]. A mean score above 3 in-
dicates general agreement or a positive response, while a
mean below 3 reflects disagreement or negative feedback.
For reverse-worded questions, we adjusted the scoring by
inverting the response values during analysis to maintain
consistency. Additionally, we calculated internal consistency
for each category using Cronbach’s alpha [95]. This method
evaluates how well the items within each category measure
the same construct. A Cronbach’s alpha value above 0.8
is considered high reliability, between 0.6 and 0.8 indicates
moderate reliability, and below 0.6 suggests low reliabil-
ity [71]. A high alpha value indicates strong internal con-
sistency, meaning that the items within each category are
reliably measuring the intended construct. We used Cron-
bach’s alpha as a robust reliability indicator, although it can
underestimate reliability when applied to a small number of
items [16, 62, 95].

4. RESULTS
We presented the results for each topic’s cognitive load anal-
ysis, visual-scanpath analysis, and learning outcomes sep-
arately. Following this, we provided the findings from a
general questionnaire, where user feedback on their overall
experience was collected.

4.1 Topic 1: Double-Slit Experiment
4.1.1 Cognitive Load Analysis

In the Double-Slit Experiment, the interactivity of LLM-
driven peers significantly impacted cognitive load, as as-
sessed by the NASA-TLX. We observed significantly higher
cognitive load scores in the Peer-QnA condition (M = 60.50,
SD = 18.16) compared to the Peer-NoQnA (M = 41.73,
SD = 15.36). This difference was statistically significant,
with a p-value of p = .026 (p < .05), as given in Figure 2
(a). This finding is further supported by pupil diameters,
with significantly higher mean pupil diameters in the Peer-
QnA condition (M = .59, SD = .11) compared to the Peer-
NoQnA condition (M = .51, SD = .19), indicating a signif-
icant difference (p < .001), as shown in Figure 2 (b).

In our regression analysis, we identified a significant rela-
tionship between cognitive load and the normalized total
fixation duration on the primary instructional content. The
Pearson correlation coefficient was r(18) = 0.60, p = .0067,
indicating a strong positive correlation between these vari-
ables. As the total fixation duration on the primary instruc-
tional content increased, cognitive load also increased. The
regression model explained a significant portion of the vari-
ance in cognitive load, with R2 = .36, adjusted R2 = .32,
F (1, 18) = 9.53, p = .007, indicating that 32.2% of the vari-
ance in cognitive load could be attributed to participants’
fixation duration on the main instructional content.

4.1.2 Visual Scanpath Analysis
A significant difference in fixation durations is observed be-
tween the Peer-QnA and Peer-NoQnA groups, with the Peer-
QnA condition showing slightly higher means. The mean fix-
ation duration for the Peer-QnA condition is M = 233ms,
SD = 103ms, compared to M = 228ms, SD = 101ms for
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(a) Cognitive load scores. (b) Mean pupil diameters.
(c) Fixation duration on primary

instructional content.

Figure 2: Results for the Double-Slit Experiment across Peer-QnA and Peer-NoQnA conditions.

the Peer-NoQnA condition, indicating a statistically signifi-
cant difference (p < .001).

A significant difference is found between the Peer-QnA and
Peer-NoQnA conditions in saccade amplitudes. The mean
saccade amplitude for the Peer-QnA condition is lower, M =
135.99◦, SD = 68.74◦, compared to M = 137.87◦, SD =
69.89◦ for the Peer-NoQnA condition, with a statistically
significant difference (p = .015, p < .05). There are no sig-
nificant differences in saccade velocities between the Peer-
QnA and Peer-NoQnA groups. The mean saccade veloc-
ity for the Peer-QnA condition is M = 127.22◦/s, SD =
68.70◦/s, while for the Peer-NoQnA condition, it is M =
128.29◦/s, SD = 69.34◦/s, with no statistically significant
difference.

Additionally, we observed that participants gazed signifi-
cantly more at the primary instructional content. The nor-
malized total fixation duration is significantly higher in the
Peer-QnA condition (M = 0.72, SD = 0.11) compared to
the Peer-NoQnA condition (M = 0.60, SD = 0.08). The t-
test results confirmed a significant difference between these
two conditions in the Double-Slit Experiment (p = .02, p <
.05), as shown in Figure 2 (c).

4.1.3 Learning Outcome
The results of the knowledge questionnaire indicate that in
the Peer-QnA condition, the scores were higher compared to
the Peer-NoQnA condition, although the difference was not
statistically significant. For the Double-Slit Experiment, the
mean score for the Peer-QnA condition was M = 7.50, SD =
2.07, while the mean score for the Peer-NoQnA condition
was M = 6.82, SD = 1.60 as shown in Figure 4 (a).

Additionally, we applied regression analysis to identify the
relationship between visual scanpath metrics and the knowl-
edge questionnaire scores for the Double-Slit Experiment.
The analysis revealed a significant negative correlation be-
tween mean saccade duration and knowledge scores, with
Pearson correlation r(17) = −.52, p = .024, indicating that
shorter saccade durations were associated with higher ques-
tionnaire scores, as shown in Figure 3 (b). Linear regression
analysis further demonstrated that mean saccade duration
explained a significant portion of the variance in the ques-

tionnaire scores, R2 = .27, adjusted R2 = .22, F (1, 17) =
6.19, p = .024. When we considered only the mean saccade

(a) Cognitive Load vs Normalized Total Fixation
Duration on Primary Instructional Content.

(b) Knowledge Questionnaire Scores vs Mean Saccade
Duration.

Figure 3: Linear regression results for the Double-Slit Exper-
iment.

duration while participants focused on the primary instruc-
tional content, the relationship became more pronounced.
The Pearson correlation was r(18) = −.61, p = .006, indicat-
ing a stronger negative correlation. Mean saccade duration
explained 33.6% of the variance in knowledge questionnaire
scores, with R2 = .37, adjusted R2 = .34, and the regres-
sion model showing statistical significance, F (1, 18) = 10.12,
p = .005.
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4.2 Topic 2: History of Video Games
4.2.1 Cognitive Load Analysis

In the History of Video Games, cognitive load metrics were
generally lower compared to the Double-Slit Experiment.
When comparing the Peer-QnA and Peer-NoQnA condi-
tions, no significant differences in cognitive load were found.
The mean cognitive load for the Peer-QnA condition was
M = 43.58, SD = 15.38, and for the Peer-NoQnA condition,
it was M = 42.57, SD = 17.04. Similarly, normalized pupil
diameters showed no significant variation between the two
conditions, with M = 0.64, SD = 0.11 for Peer-QnA and
M = 0.62, SD = 0.11. These results indicate that, within
the context of the video games topic, the level of interactiv-
ity had no statistically significant effect on cognitive load or
pupil responses. Similarly, correlation and regression analy-
ses revealed no significant relationship between total fixation
duration on the primary instructional content and cognitive
load.

4.2.2 Visual Scanpath Analysis
Similar to the Double-Slit Experiment, a significant differ-
ence in fixation durations was found between the two con-
ditions. The mean fixation duration for the Peer-QnA con-
dition was slightly higher (M = 237ms, SD = 101ms) com-
pared to the Peer-NoQnA condition (M = 235ms, SD =
103ms), with the difference being statistically significant, p
= .017 (p < .05). Saccade amplitudes were similar across
both conditions. However, there was a significant difference
in saccade mean velocities. The mean velocity for the Peer-
QnA condition was slightly higher (M = 1.28◦/s, SD =
0.71◦/s) compared to the Peer-NoQnA (M = 1.26◦/s, SD =
0.67◦/s), with a statistically significant difference, p = .040
(p < .05). This suggests that participants in the Peer-QnA
condition exhibited more rapid saccadic movements com-
pared to those in the Peer-NoQnA condition. We did not
observe any significant difference in the normalized total fix-
ation duration on the primary instructional content.

4.2.3 Learning Outcome
A difference in knowledge questionnaire scores is observed
between the conditions. The mean score for the Peer-QnA
condition is M = 7.36, SD = 1.21, while the Peer-NoQnA
condition has a mean score of M = 5.88, SD = 1.96. Al-
though the difference is not statistically significant, it ap-
proached the threshold (p = .056), indicating a potential
trend towards improved performance in the Peer-QnA con-
dition, as shown in Figure 4 (b). In the regression analysis,
no significant relationship was found between visual scan-
path metrics and knowledge questionnaire scores.

4.3 General Analysis
The results of the questionnaire are summarized in Table
2, which includes the mean and standard deviation for each
question. For each category, Cronbach’s alpha has been cal-
culated to assess the internal consistency of the items, and
the corresponding reliability level is provided to indicate the
strength of this consistency. Additionally, questions that are
reverse-worded are marked with “(R)”.

5. DISCUSSION
This section discusses the impact of LLM-driven peer inter-
actions on cognitive load, attention, and learning outcomes.

(a) Knowledge questionnaire scores for Double-Slit
Experiment.

(b) Knowledge questionnaire scores for History of Video
Games.

Figure 4: Knowledge questionnaire scores for Peer-QnA and
Peer-NoQnA conditions.

We explore how peer-driven questions and content complex-
ity influence these factors on attention, engagement, cog-
nitive load, and learning outcomes. Then, user feedback
on the LLM-driven VR classroom environment provides in-
sights into the user experience and design improvements.

5.1 Cognitive Load, Attention, and Peer
Interactions

The results from the Double-Slit Experiment indicate that
the Peer-QnA condition significantly increases cognitive load
compared to the Peer-NoQnA condition, as reflected in both
NASA-TLX scores and pupil diameter. This increase in cog-
nitive load is attributed to participants’ directed attention
toward the primary instructional content, supported by the
positive correlation between cognitive load and the normal-
ized total fixation duration on key instructional elements.
Peer questions effectively direct participants’ attention to
the lecture material, increasing the cognitive effort required
as learners engage more deeply with the primary instruc-
tional content. These questions do not directly cause extra-
neous cognitive load; rather, the observed increase in cog-
nitive load is primarily related to the enhanced focus on
the lecture material. Furthermore, no significant increase in
cognitive load was observed in the History of Video Games
topic, also suggesting that peer questions did not introduce
extraneous load. This indicates that peer questions do not
inherently increase cognitive load; instead, the increase de-
pends on the directed attention to the main lecture content
and intrinsic complexity of the material.
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Table 2: The means and standard deviations of each question, along with reliability statistics for each category.

Items M S.D.

Technical Challenges and Audiovisual Quality (Cronbach’s α = .660, Acceptable)
I experienced the latency, and it was disturbing. (R) 4.4737 0.6967
I experienced technical issues during the session. (R) 3.7368 1.3267
The audio quality was clear, allowing me to understand the teacher and other students. 4.3684 0.7609

Interaction Quality (Cronbach’s α = .875, High)
The teacher’s slide presentations and explanations were understandable and effective. 4.0526 0.7799
The content of the teacher’s responses was satisfactory. 3.2632 1.1945
The responsiveness of the teacher was satisfactory. 3.5263 1.0203
The teacher’s responses to my questions were adequate and helpful. 3.5789 1.1698
The teacher made clear explanations. 3.3684 1.1648
Students’ questions were realistic. 3.8421 0.8342
The length of the questions was appropriate. 3.6316 1.0651
Interaction between the teacher and students seemed natural and fluid. 3.6316 1.0116

Student Participation and Peer Influence (Cronbach’s α = .708, Moderate)
The peer interactions make the environment more engaging. 3.9474 0.8481
The presence of active students in the VR environment enhanced my learning experience. 4.0000 0.8165
Other students’ questions added value to my learning experience. 3.8947 0.9366
Seeing other students ask questions encouraged me to ask questions as well. 3.5789 0.9612
Seeing other students ask questions helped maintain my focus on the subject matter. 4.0000 0.6667
The questions asked by other students in the VR classroom were distracting and made it difficult to
maintain focus. (R)

4.2105 0.7873

Assessment Quality and Relevance (Cronbach’s α = .826, High)
Multiple-choice questions regarding the lecture content were comprehensive and relevant. 4.2632 0.6534
The level of difficulty of the multiple-choice questions was appropriate for my level of understanding. 3.9474 0.8481

Overall Experience and Satisfaction (Cronbach’s α = .794, Moderate)
I felt comfortable interacting in the VR environment. 3.5789 1.1213
I believe the immersive nature of VR classrooms enhances the learning experience. 3.9474 0.8481
The VR environment made the subject matter more interesting. 3.3684 1.0116
VR classroom enhanced my understanding of the material. 3.2632 0.6534
Using VR technology/experiments changed my perspective on virtual learning positively. 4.1053 0.7375
I would recommend VR classroom experiences to others. 4.1579 0.7647
Overall, I was satisfied with my VR classroom experience. 4.1053 0.5671

In addition to enhancing attention to the main content in
the Double-Slit Experiment, the peer questions in the Peer-
QnA condition help direct participants to key points within
the lesson. This is evidenced by longer mean fixation dura-
tions and shorter saccade amplitudes, indicating that par-
ticipants’ attention is not only more focused but also more
precisely targeted. Longer mean fixation durations suggest
that participants spend more time processing specific ele-
ments of the material, allowing for deeper cognitive engage-
ment [75, 30]. Shorter saccade amplitudes, on the other
hand, reflect more localized and deliberate eye movements,
with participants scanning less broadly across the visual field
and honing in on relevant instructional elements [17]. These
shorter saccade amplitudes suggest a more efficient and con-
centrated visual processing strategy, where attention is fo-
cused on specific, relevant information without being dis-
tracted by peripheral content. Together, these visual at-
tention patterns—longer fixation durations and shorter sac-
cades—indicate better performance [18] and also imply that
peer questions acted as signals, guiding participants to focus
on critical aspects of the lesson. This aligns with signaling
theory [29, 59, 64], which proposes that cues in the learn-
ing environment, such as peer questions, can direct learn-
ers’ attention to the most important information, thereby
enhancing the learning process. In this context, the LLM-
driven peer questions in the Double-Slit Experiment func-
tion as effective signals, guiding participants to identify and
concentrate on the most critical parts of the lesson. These

questions contribute to a more focused and targeted learning
experience, particularly in the more complex instructional
environment.

Another important point is that the results from the His-
tory of Video Games topic show no significant differences
in cognitive load, pupil diameter, or total fixation duration
between the Peer-QnA and Peer-NoQnA conditions. This
highlights the influence of content complexity on attention
and cognitive load. The History of Video Games, being
less technically demanding, likely does not require the same
level of cognitive effort as the Double-Slit Experiment. As
a result, the LLM-driven peer questions do not significantly
impact attention on the primary content, but there was a
noticeable trend toward improved learning outcomes in the
Peer-QnA condition. This trend, though not statistically
significant, suggests that peer interactions might still sup-
port learning even in less complex topics by fostering engage-
ment and verbal processing rather than through increased
cognitive load.

These findings have important implications for the design of
LLM-driven virtual learning environments. In more complex
subjects, like the Double-Slit Experiment, LLM-driven peer
interactions can effectively direct attention toward key in-
structional elements and increase cognitive engagement. In
less complex subjects, such as the History of Video Games,
peer interactions may not significantly impact visual atten-
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tion but can still provide educational benefits by promoting
engagement and verbal processing, enhancing learning out-
comes without introducing extraneous cognitive load.

These findings suggest that the effects of peer interactions
may be influenced by content complexity. Although topic
complexity was not manipulated as an independent vari-
able, exploratory patterns indicate that peer questions in the
more demanding topic, the Double-Slit Experiment, were as-
sociated with increased cognitive load, more focused visual
attention, and improved learning outcomes. In contrast, for
the less complex topic, the History of Video Games, peer
interactions had no significant effect on cognitive load or at-
tention metrics, though a trend toward improved learning
outcomes was observed. These exploratory insights high-
light the need for future research to explicitly manipulate
topic complexity and examine interaction effects more rig-
orously.

The observed negative correlation between mean saccade
duration and knowledge questionnaire scores indicates that
shorter saccade durations are associated with higher learn-
ing outcomes. This suggests that participants exhibiting
more rapid eye movements between fixations processed the
instructional content more effectively. Shorter saccades typ-
ically reflect more focused and efficient visual scanning, fa-
cilitating quicker identification and engagement with key in-
formation. As a result, this visual processing efficiency likely
contributed to improved retention and comprehension of the
material. These findings emphasize the critical role of visual
attention dynamics in enhancing learning outcomes within
virtual learning environments.

5.2 User Feedback and Design Implications
The post-experiment questionnaire offers key insights into
participants’ experiences within the fully LLM-driven vir-
tual classroom, revealing both positive aspects and areas
for improvement. Participants generally rated the technical
aspects of the VR environment positively. However, “I expe-
rienced technical issues during the session. (R)” (M = 3.74)
is reported as relatively low by some participants, indicating
some issues. These were primarily related to the speech-to-
text functionality. This emphasizes the importance of sys-
tem robustness, as those problems could impact the practi-
cal use of the technology in real-world educational settings.
The interaction quality between LLM-driven peers and the
teacher is mostly rated positively. However, some questions,
such as “The content of the teacher’s responses was satisfac-
tory” (M = 3.26), score lower, suggesting room for improve-
ment in response quality. The quality of responses could be
enhanced by employing prompting strategies that provide
more comprehensive content and by using advanced tech-
niques such as retrieval-augmented generation (RAG), which
can deliver more accurate information and reduce halluci-
nations [34, 53]. Despite this, the overall interaction qual-
ity received positive feedback, with positive scores across
items like “The teacher made clear explanations” and “The
teacher’s responses to my questions were adequate and help-
ful.” In general, Peer interactions were well-received, with
most participants finding them engaging rather than dis-
tracting. For instance, “Peer questions encouraged me to
ask questions as well” was rated positively (M = 3.57), in-
dicating that peer involvement promotes engagement and

participation. Participants also agreed that peer questions
enhanced their focus and learning experience, as reflected in
statements like “The presence of active students in the VR
environment enhanced my learning experience” (M = 4.0).
These findings suggest that incorporating peer interactions
makes the learning environment more dynamic and engag-
ing. However, there is room for improvement in exploring in-
teraction strategies, such as peer-to-peer interaction, which
could offer additional benefits. Furthermore, the effective-
ness of these interactions may also depend on the individual
learning styles of the participants [3, 97]. Regarding the
quality of knowledge questionnaires, participants find the
questions “comprehensive and relevant” (M = 4.26) and the
difficulty level appropriate (M = 3.95). This feedback, sup-
ported by strong reliability scores, indicates that the assess-
ments effectively aligned with the instructional content and
measured participants’ comprehension.

In terms of the overall experience, the lowest-rated state-
ment is “The VR classroom enhanced my understanding
of the material” (M = 3.26), reflecting varied perceptions.
This suggests that while VR tools can be effective, their suc-
cess may depend on factors such as the topic, environment
design, and individual learning preferences [78, 82]. Despite
this, the majority of participants expressed satisfaction with
their VR classroom experience, with many agreeing to the
statement, “I would recommend VR classroom experiences
to others” (M = 4.16), indicating a generally positive per-
ception.

Individual virtual learning environments can be designed
similarly to traditional classroom settings, even in self-directed
and personalized learning contexts. The integration of LLMs,
which are currently highly effective and satisfactory for lec-
ture presentations, also allows these environments to be tai-
lored to individual needs. Incorporating peer interactions
can help sustain attention and increase engagement. How-
ever, the impact of peer interactions may vary depending
on the complexity of the subject matter. In more complex
subjects, peer interactions are more effective in guiding at-
tention, whereas, in less demanding subjects, their effects are
less pronounced. Importantly, these interactions do not in-
troduce excessive cognitive load and can still enhance learn-
ing outcomes.

5.3 Limitations and Future Work
While this study highlights the benefits of LLM-driven peer
interactions, there are several limitations to consider. The
sample size was relatively small, and there were gender im-
balances. Expanding the range of subjects and increasing
the participant pool would help strengthen the generaliz-
ability of the findings. Although avatar behaviors were ani-
mated to simulate natural interactions, the realism and qual-
ity of these animations and interactions were not formally as-
sessed through user or expert evaluation. Future work could
incorporate such assessments and further examine the qual-
ity of the AI-generated questions and answers. The study
also focused on only two specific topics. Future research
could explicitly investigate how topic complexity influences
the suitability of virtual environments and identify which
interaction settings are most effective for different content
types. Additionally, examining long-term learning outcomes
and the role of more active learning environments in fully
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LLM-driven classroom settings could offer deeper insights
into how to optimize these virtual learning experiences.

6. CONCLUSION
In this study, we designed an individual learning environ-
ment with a fully LLM-driven virtual classroom, where stu-
dents could interact with LLM-driven teachers and engage
in a classroom setting with LLM-driven peers who also inter-
acted with the instructor. We investigated student behav-
ior using eye-tracking data and cognitive load assessments
across two interaction conditions: one where LLM-driven
peers asked questions and interacted with the teacher and
another where peer interactions were not present. Our find-
ings reveal that LLM-driven peer interactions significantly
enhanced student engagement and attention, particularly
in complex subjects like the Double-Slit Experiment. The
interaction of LLM-driven peers increased the duration of
students’ fixated time on the primary instructional content,
promoting sustained attention and improving learning out-
comes. Although cognitive load increased in complex sub-
jects, this was primarily attributed to the heightened at-
tention participants directed toward the learning material.
In less complex subjects, peer interactions did not increase
attention or cognitive load, yet they demonstrated the po-
tential to enhance learning outcomes without introducing
excessive cognitive load.

LLM-driven peer interactions in virtual learning environ-
ments not only replicate real-world classroom dynamics but
also have the potential to improve learning by keeping stu-
dents engaged and focused for longer periods. This approach
could be particularly valuable in higher education or special-
ized training, where understanding difficult concepts is cru-
cial. Additionally, incorporating LLM-driven peers allows
educators to create more personalized and interactive virtual
learning environments, making advanced educational oppor-
tunities accessible to a broader range of learners. These
insights may also support the development of self-directed
learning environments by helping to sustain learner atten-
tion and provide more effective, personalized learning expe-
riences. Future research should focus on expanding these
insights by exploring more diverse subject areas, different
types of interactions, and the long-term impact on learning
retention, to fully understand the potential of LLM-driven
classrooms in supporting personalized and active learning
experiences.
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