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ABSTRACT
When tutoring students it is useful to be able to predict
whether they are succeeding as early as possible. This paper
compares multiple methods for predicting from sequential
interaction data whether a student is on a successful path.
Predicting students’ future performance and intervening has
shown promise in improving learner outcomes and alleviat-
ing learner difficulty during open-ended learning. However,
the literature lacks a systematic comparison of different clas-
sifiers across different open-learning datasets. This paper
compares four real-time binary classifiers of learner types
(on track to succeed or not) - an association rule-based clas-
sifier, a hidden Markov model-based classifier, a long short-
term memory neural network classifier, and a stratified base-
line classifier. Classifiers are trained and evaluated on three
datasets representing different avenues of learning - an in-
teractive simulation, massive open online courseware, and
collaborative learning. A statistical evaluation of the real-
time predictive performance of classifiers is conducted. This
work also provides insights into model interpretability us-
ing explainable AI tools and discusses the tradeoff between
accuracy and inherent interpretability of classifiers.

Keywords
Data-driven classifiers, Interaction Data, Comparitive Eval-
uation

1. INTRODUCTION
Open-ended learning [18] refers to exploratory student learn-
ing with minimal constraints and has shown success in sup-
porting student learning (eg. [19, 20]) through exploration
and experimentation and to promote reflection, problem-
solving and critical thinking [21]. Unfortunately, for some
learners, the exploratory nature of open-ended learning envi-
ronments (OELEs) can be confusing leading to detrimental
interaction [29]. Personalized AI systems for open-learning
activities have been shown to improve student learning (eg.
[6, 23, 34, 37, 43]) and deliver the benefits of individualized

interaction by monitoring and responding to the learners in
real-time (see [13] for an overview). While plenty of possible
variables exist that can drive personalization, our work fo-
cuses on predicting students’ future learner performance (eg.
student task completion, relative learning gains, outcome of
pass or fail) using real-time sequential data collected during
learning, where early classification can enable personalized
interventions for struggling students who are predicted to
have lower performance. Typically, researchers build these
classifiers from scratch for a specific application in learn-
ing or leverage existing classifiers used in similar learning
contexts. Although there is a vast number of classifiers for
learner performance (eg. [2, 24, 34]) using sequential inter-
action data in different open-ended applications of learn-
ing, the field lacks a comprehensive evaluation of classifiers
across multiple open-ended learning datasets. Such a com-
parison can guide researchers looking to implement person-
alized adaptive support and enable the development of more
accurate adaptive support systems, enhancing personalized
interventions and potentially improving student learning.

This paper focuses on the binary classification of students’
learner type (eg. high learners - will complete the task/low
learners - will not complete the task, gainer/non-gainers,
pass/fail) using sequential interaction data collected during
open-ended learning. Four classification methods are inves-
tigated - i) the Framework of User Modeling and Adapta-
tion (FUMA) [22], a rule-based student classifier; ii) a hid-
den Markov model-based (HMM) classifier; iii) a long short-
term memory (LSTM) neural network classifier; iv) a strat-
ified dummy classifier (baseline). Classifiers are trained and
evaluated on three open-ended learning datasets with vary-
ing size and feature complexity - an interactive simulation,
a massive open online courseware (MOOC), and collabora-
tive learning with a social robot. The performance of each of
these classifiers is evaluated through a comprehensive statis-
tical analysis evaluating the potential for real-time person-
alization in each dataset. Classifier performance over time
is studied in each dataset along with insights into the useful-
ness of these classifiers for early-stage and late-stage predic-
tions. Further insights into model interpretability of these
classifiers are obtained through two explainable artificial in-
telligence (XAI) tools - permutation importance (PI) [4] and
approximating Shapley values (SHAP) [15, 33]. These find-
ings provide insights about the underlying mechanisms of
the classifiers in each specific learning context which is use-
ful for understanding the potential impact of deploying these
classifiers in novel contexts.
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To the best of our knowledge, this is the first comprehen-
sive study that evaluates and compares different classifiers
across multiple datasets of sequential interaction data in dif-
ferent open-ended learning datasets. The analysis looks at
datasets of various sizes, levels of feature complexity, and
data modality, which aims to help a diverse group of ed-
ucators looking to implement adaptive personalization in
learning and researchers who are aiming to design and select
models to predict learner type for adaptive personalization
during learning. It simulates real-time personalization by
looking at the performance of predictive classifiers across
incremental time windows. This provides insights into how
predictions can inform timely interventions. This is a crit-
ical step towards deploying adaptive systems that respond
promptly to learner needs. By looking at the most predic-
tive features based on interpretability techniques, the anal-
ysis provides insights into the strengths and weaknesses of
different classifiers along with a discussion about the trade-
off of inherent interpretability and accuracy. These findings
aim to contribute to the development of more effective and
transparent adaptive support systems and scaffold research
on building personalized systems in learning and other areas
where sequential interaction data can be used for prediction
such as games [25], wellbeing [45] and web services [31].

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the three datasets
of different open-ended learning contexts that we use in our
analysis. Section 4 introduces the four classifiers used in the
paper and their mechanisms. Section 5 provides an overview
of the process of training the classifier and our evaluation in
terms of model performance and model importance. Sec-
tion 6 discusses our results on model performance, and sec-
tion 7 discusses our findings with the XAI tools in relation
to the model performance. Finally, we conclude in section 9
and provide future work.

2. RELATED WORK
Our work focuses on predicting learner type in open-ended
learning using sequential interaction data. There is existing
literature where learner types have been successfully pre-
dicted in open-learning contexts. For example, Murali et.
al [34] showed that a rule-based classifier can be used to
predict student learner types using action logs across mul-
tiple datasets in an open-ended game-design-based environ-
ment. Kaser et. al [24] showed that a probabilistic model
jointly representing student knowledge and strategies can
significantly improve the prediction of external posttest re-
sults compared to only using accuracy data collected from
an inquiry-based environment. Al-azazi and Ghurab [2] were
able to successfully predict students’ performance using an
artificial neural network and LSTM leveraging student inter-
action records in a MOOC dataset. Moreover, prior stud-
ies [23, 34, 37] on personalized adaptive support have shown
that timely interventions based on learner-type predictions
can improve student experiences by targeting students who
are likely to struggle or underperform. While these meth-
ods have been applied individually in various contexts, com-
prehensive performance comparisons across multiple open-
ended learning datasets are lacking. Our work addresses this
gap by systematically comparing the performance of classi-
fiers across different datasets, providing insights into their
effectiveness and generalizability.

There are existing studies where interpretability techniques
have helped researchers in education with insights into pre-
dictive models outside of the context of open-learning en-
vironments. For example, Nagy et. al [35] look at various
interpretability techniques for predicting student drop-out
in a dataset of a large public university. Leveraging inter-
pretability tools including permutation importance (PI) and
SHAP values, they demonstrate how the predictions can be
explained for that particular dataset. Wang et. al [46] lever-
age SHAP values to explain a model that predicts student
achievement in a dataset from a public university of aca-
demic records. Choi et. al [11] compared several machine
learning algorithms to predict student programming learn-
ing performance in a virtual learning environment leveraging
various educational data, such as course information, stu-
dent demographics, and interactions with the online learning
platform. Their work leverages SHAP to interpret the best-
performing classifier. To the best of our knowledge, while
these interpretability techniques have been applied in educa-
tional contexts, they have not been contrasted across multi-
ple classifiers or datasets in open-ended learning. Thus, our
work attempts to fill this gap by comparing and contrasting
the top features from these interpretability techniques across
multiple classifiers and datasets in open-ended learning.

3. DATASETS
This work uses three different open-ended learning datasets
and their characteristics are summarized in table 1, detail-
ing in each dataset the number of data points N , the total
number of features, data modality, and the binary variable
of student learner type that is predicted. These datasets
have various degrees of feature complexity and participant
size.

3.1 Unity-CT (interactive simulation)
Context: Unity-CT is an open-ended learning environment
that engages students in interactive game construction. Stu-
dents learn how to design platformer games using the Unity
game engine during an online lesson to improve computa-
tional thinking (CT) skills. Each lesson usually poses a
particular objective that the student must achieve. This
analysis focuses on data from the first lesson of the cur-
riculum which fosters two CT skills in alignment with the
well-established Brennan and Resnick’s framework [9] - i)
Being Incremental and Iterative, and ii) Testing and Debug-
ging. The lesson involves making a simple platformer game
with the following instructions - ”Create a ramp and bucket
with different types of platform objects. Add a ball that must
hit at least once each type of platform before landing in the
bucket”.

Each online class included a human teacher and up to 12 stu-
dents. No researchers attended the remote classrooms nor
interacted with the students or teachers in any way. Each
class lasted 60 minutes and included an initial tutorial (20-
30 minutes) led by the teacher describing the basics of using
the Unity editor and the steps involved in achieving the goal
for the initial lesson. The remaining time consisted of the
student’s interaction with Unity-CT to complete the objec-
tive. Teachers monitored students’ progress and provided
help to students if they needed it. Students could signal to
the teachers if they finished the objective early or keep work-
ing on their solution until the end of the 60-minute class.
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Table 1: Dataset characteristics

Dataset N Data Modality Number of Features Binary Variable

Unity-CT 206 Actions 572 High/Low Learners
CS1 MOOC 469 Actions 28 Pass/Fail
JUSThink 35 Actions, Speech, Affective states, Gaze 102 Gainers/Non-gainers

During interaction with Unity-CT, action logs were collected
in real-time, tracking clickstream data of the students’ inter-
action with the game objects in Unity (eg. delete a Ground
Slide platform, add a ball, Select a ground platform, du-
plicate a ball), and students’ final solutions to the challenge
were saved for analysis. Student solutions were graded based
on 4 binary criteria defined by the teachers who taught this
lesson - whether the solution has a ramp, whether the solu-
tion has a bucket, whether the ball hits all special platforms,
and whether the ball ends up in the bucket. These criteria
are evaluated with either 1 or 0 if they complete it or not.
Finally, the 4 criteria are averaged and students get a solu-
tion score of 0, 0.25, 0.5, 0.75, or 1.

Dataset: This dataset was obtained with permission from
the authors of [34]. This dataset consists of log data ob-
tained from online classes conducted in 2021 and has been
studied previously to build a pedagogical agent that delivers
help interventions [34]. This dataset consists of 205 students
with an average interaction length with Unity-CT of 28.39
minutes (std.dev 6.23 minutes). Learner types were labeled
based on a median split of solution scores. The average grade
for students was 0.61 (std.dev 0.49) and median = 1, thus the
median-split bifurcates students into those who completed
the challenge successfully, and those who did not complete
some part of the challenge. Of the 205 students, 125 stu-
dents were labeled as high-learners, and 79 students were
low-learners. The aim here is to predict whether students
would successfully complete the challenge or not as early as
possible into the interaction. Action logs are processed into
features in a similar way employed in other research with
data from Unity-CT [28, 34] as described in table 2. Ac-
tion features are generated for each action-object pair (as
tuples) available in Unity-CT, as described in table 2. The
features in table 2-(a) indicate summative statistics over all
pairs and indicate overall student engagement, while the fea-
tures in table 2-(b) are generated for each pair, indicating
behaviors specific to individual actions and target objects.
For each student, these action features were computed over
each 10-second window interval, and its cumulative value
was also calculated. Thus each feature was computed twice -
as a non-incremental feature, and an incremental feature. A
non-incremental feature would mean the value of a feature in
only that particular time window while an incremental type
would mean the value of a feature aggregated up until that
particular time window. Classifiers were trained on the en-
tire collection of features (incremental + non-incremental).

3.2 CS1 Introductory Programming (MOOC)
Environment: The CS1 MOOC [30] utilizes an Integrated
Development Environment (IDE) to teach introductory pro-
gramming concepts in Java covering typical CS1 concepts
like variables, conditionals, loops, and lists. The self-guided
course uses online materials and is split into seven parts

Table 2: Feature for Unity-CT data. Each feature appears
twice in the dataset: it is processed in an incremental and
non-incremental way

Features on all
action-object
pairs together

• Total Number, Frequency of
Actions • Average, SD of intervals
in-between actions

Features on each
action-object pair

• Frequency, Count of tuple,
Longest repetition of this tuple
• Average, SD of time intervals
in-between next action
• Time to first, Time to last tuple
occurrence

Pausing
• Number, frequency of pauses
• Average and SD of pause
duration

where students work on ten to thirty exercises. In addition
to the exercises, there were three online exams, and passing
the course was determined based on both points received
from the exercises and points received from the online ex-
ams (see [30] for a full overview). Student action logs were
tracked during the interaction.

Dataset: An open-access dataset [30] is used that con-
sists of log data collected in the 2021 offering of the CS1
MOOC. In total, the dataset consists of 469 students1, with
an average interaction length with the IDE of 2066 min-
utes (std.dev 1878 minutes). Learner types were labeled by
whether students passed or failed the course. Of the 469
students, 159 students passed the course, and 310 students
failed the course.

The action logs consist of unique identifiers for each student
and timestamps with seven different types of events, which
were processed into action features described in table 3.
For each student, these action features were calculated at
increasing 60-second window2 intervals in incremental and
non-incremental ways3. As compared to other MOOCs stud-
ied for adaptive support such as the video-watching MOOC
in [28], the CS1 MOOC dataset offers fewer features which
may affect certain classification methods that rely on a com-
plex set of features. The CS1 MOOC dataset serves as an
example where complex interaction data with a vast set of
features is unavailable, providing insights into the ability of
classifiers to work with a limited set of features, which can

1Four students from the original dataset were dropped as
they only had a single row of data.
2We chose a larger increment than in the Unity-CT or JUS-
Think datasets as the interaction length was considerably
longer in the CS1 MOOC
3In the same manner described in section 3.1
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often be the case in the real world.

Table 3: Features for MOOC data. Each feature appears
twice in the dataset: it is processed in an incremental and
non-incremental way

Features
related to text

• Frequency and Count for text being
added into the IDE (at the key-stroke
level)
• Frequency and Count for text being
removed from the IDE
• Frequency and Count for text being
pasted into the IDE

Features
related to IDE
focus

• Frequency and Count for the IDE
gaining focus (student clicked into the
IDE)
• Frequency and Count for the IDE
losing focus (student clicked away
from the IDE)

Other features
• Frequency and Count for the
student executing their program
• Frequency and Count for the
student submitting their program

3.3 JUSThink (collaborative learning)
Environment: JUSThink [36, 38] is a robot-mediated col-
laborative and constructivist learning activity for children
aged 9-12 mediated by a social robot. Interaction with JUS-
Think involves a learning activity that aims to improve stu-
dents’ computational thinking (CT) skills through a map-
based learning scenario. Students collaborate and interact
with the environment and an interactive social robot robot
intervenes intermittently during the learning task to pro-
vide feedback on the progress, give hints, and lend support
through verbal and non-verbal behaviors. Students’ actions,
speech behavior, affective states through OpenFace [5], and
gaze patterns are tracked during the interaction.

Personalized adaptive support has been provided before in
JUSThink [37] by defining a learner engagement score using
a complex sequence mining and HMM-based model, but no
previous work has been done on evaluating classifiers that
predict learner types on this dataset.

Dataset: The open-access PE-HRI-temporal dataset [39]
consists of a total of 64 learners interacting with the JUS-
Think environment. The participants were organized in
teams of two, resulting in a total of 32 teams with an av-
erage interaction length with JUSThink of 24.745 minutes
(std.dev 5.1 minutes). Team-level learning gains were eval-
uated through a pre-test and post-test. Team-level learner
performance is measured as the average of the two individ-
ual relative learning gains of the team members. Among the
32 teams, learner types were labeled based on the valence
(positive/negative) of the team-level learner performance:
15 teams had positive learning gains (gainers) and 17 teams
did not have learning gains (non-gainers). The dataset con-
sists of the features described in table 4. For each student,
these action features were calculated at increasing 10-second
window intervals in incremental and non-incremental ways.
This dataset has the most rich and complex set of features
among the three datasets. It is also the smallest dataset

of the three due to the difficulty in obtaining complex mul-
timodal data. The JUSThink dataset will provide insights
into the ability of each classifier to leverage small but rich
and diverse features.

Table 4: Features for JUSThink data. Each feature appears
twice in the dataset: it is processed in an incremental and
non-incremental way

Action
features

• Number of times a team
added/removed an edge on the map
• The ratio of addition of edges
over deletion of edges by a team
• The total number of actions
taken by a team
• The number of times a team
opened the sub-window with the
history of their previous solutions
• The number of times a team
opened the instructions manual
• The number of times either of
the two members in the team
followed the pattern consecutively:
add/delete and then delete/add
• The number of times the team
had redundant edges in their map

Emotion
Features

• The average value of
positive/negative valence for the
team

Gaze Features

• The average of the two team
member’s gaze when looking at
their partner/robot/opposite to
robot/ left or right side of the
screen

Speech
features

• The average of the two team
member’s speech
activity/silence/short pauses/long
pauses
• The average percentage/ratio of
time the speech of the team
members overlaps

4. USER CLASSIFICATION METHODS
The classification problem in this analysis is the binary clas-
sification of learner types such as high-learners/low-learners,
gainers/non-gainers, and pass/fail. This analysis looks at
classifiers that work with any type of sequential interaction
data that is commonly collected during learning such as fea-
turized action logs, emotion, speech, and gaze data. The
first classifier is an existing framework FUMA [22] that has
shown success in predicting learner types in various con-
texts such as interactive simulations [16, 23, 27, 34], and
MOOCs [28]. The next two classifiers were built for this
analysis: a Bayesian HMM-based model, and a neural net-
work involving an LSTM layer. The last classifier is a base-
line.

4.1 FUMA
The Framework of User Modeling and Adaptation or FUMA,
fully described in [22], is an unsupervised method of mod-
eling student behaviors from interaction data that applies
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to almost any open learning environment, and consists of
two main parts - behavior discovery and user classification
as portrayed in fig. 1.

Figure 1: FUMA Framework (figure from [34])

In behavior discovery, a k-means clustering algorithm is ap-
plied to users’ aggregated interaction features to identify
groups with similar interaction behaviors. To determine the
optimal number of clusters, FUMA aggregates three mea-
sures4 to choose the best value of k. Once k is chosen,
the clusters are associated with each learner type. Previous
applications of FUMA [16, 23, 28, 34] typically found two
clusters (k=2 ) with significant differences in learner perfor-
mance (learning gains in [16, 23, 28], and solution scores,
a proxy for student performance in [34]) and labeled the
learner types in these clusters as high-performing and low-
performing students. Then, behaviors in each cluster are
mined using association rule mining. This process extracts
behavior patterns in terms of class association rules in the
form X → c, where X is a feature-value pair and c is the
predicted class label for the data points where X applies.
Particularly, the hotspot algorithm in the WEKA data min-
ing toolkit [17] is used to extract behaviors in the form of
feature trees. These feature trees comprise branches with
rules of the form X → c (X implies c) as nodes. Each
branch can be interpreted as the intersection of the rules, ie.
(X1 → c1)and(X2 → c2)and · · · and(Xm → cm).

During user classification, the labeled clusters and corre-
sponding association rules learned during behavior discov-
ery are used to build a rule-based classifier. This classifier
works in real time by calculating membership scores that
summarize how well the user’s behavior matches the asso-
ciation rules of each cluster. The class with the highest
score is assigned as the predicted label for the user. Thus,
in addition to classifying students in one of the clusters,
this phase returns the specific association rules describing
the user’s behaviors that caused the classification. These
behaviors have been used [22, 34] to trigger real-time in-
terventions designed to encourage productive behaviors and
discourage detrimental ones. Unlike the other classifiers con-
sidered in the analysis, FUMA is a simple rule-based clas-
sifier built on aggregated features and may not explicitly
model time-based dependencies. However, there is an ad-
vantage of FUMA in that its rule-based classifier shows in-
herent interpretability to an extent that may be useful for
personalization. Most previous work with FUMA evaluated
student models through cross-validation against the clus-
ter labels5obtained at the end of the interaction, however,
this analysis provides a more accurate assessment by validat-

4C-index [26], Calinski-Harabasz index [10], Silhouettes [42]
5The clusters were usually labeled as high/low learners
based on a sample of proxy measures for learner performance

ing predictive models against ground-truth labels of learner
types.

4.2 HMM
HMMs have been shown to predict student performance us-
ing educational game activity logs [14], and knowledge states
in educational datasets [1]. HMMs have also been used to
predict cognitive states [44] and learner engagement [7, 37]
in open-ended learning activities.

This analysis considers a Gaussian Mixture Model Hidden
Markov Model-based (GMM-HMM) schema with Bayesian
inferencing portrayed in fig. 2. A GMM-HMM is an HMM
where the emission probabilities are sampled from a mixture
of Gaussians.

Figure 2: HMM-based Model depicted by a directed graph
with plate notation for time

The HMM classifier consists of two separate GMM-HMMs
with N (hyper-parameter) hidden states representing the
two learner types (we shall use the learner type: gainer/non-
gainer for this explanation). During training, depending on
the training label, ie. the learner type, sequential obser-
vational data is used to train a gainer type HMM or the
non-gainer type HMM. For inference, given unseen sequen-
tial interaction data, Bayes rule gives us the probability of
an observation sequence belonging to the respective learner
type. Let P(gainer) and P(non-gainer) be the prior probabil-
ities of gainer and non-gainer types. These prior probabili-
ties are initialized by the proportion of gainer and non-gainer
data points seen during training data. During training, the
training set’s observation sequences from gainers and non-
gainers are used to train the respective HMMs the Baum-
Welch expectation-maximization (EM) algorithm [41]. Dur-
ing inference, given an unseen observation O, the EM algo-
rithm lets you obtain observation probabilities P(O|gainer)
and P(O|non-gainer) for the two learner types. The output
prediction is then derived as follows:

Pred(O) =





gainer, if P(O|gainer)× P(gainer)

> P(O|non-gainer)× P(gainer)

non-gainer, otherwise

This HMM-based model has fewer parameters and involves
less complex calculations than some other HMM-based method-
ologies previously used for adaptive support such as leverag-
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ing sequence mining to interpret temporal behaviors in a col-
laborative learning context [37], or the Hierarchical Dirichlet
Process HMM to predict student proficiency in educational
games [14].

4.3 LSTM
Long Short-Term Memory Networks (LSTMs) are a type of
recurrent neural network (RNN) that handles the problem
of long-term dependencies [47]. LSTMs have shown success
in early student performance prediction using interaction
data in MOOCs [2], and learner performance in learning
management systems using featurized report data [3] and
featurized action logs [32]. Our LSTM framework is outlined
in fig. 3.

Figure 3: LSTM Model Outline

This analysis leverages an LSTM neural network classifier
with 2 hidden layers. An observation X(t) with D dimen-
sions/features is passed to the first LSTM layer with output
dimensionality N representing the number of hidden units in
the LSTM (N is treated as a hyper-parameter during train-
ing). The next layer is a neural network layer with N

2
units

with linear activation. The final output layer is a sigmoid
neuron that predicts the learner type. This network was
chosen as it includes an LSTM layer to model time-based
dependencies and a densely connected neural network layer
to learn more complex interactions between features. During
training, learner types are used as labels to train the net-
work through backpropagation with a binary cross-entropy
loss and Adam optimizer. Inferencing is done by passing un-
seen sequential interaction data to the network and taking
its output.

4.4 Baseline Classifier
Baseline classifiers are commonly used in the field [16, 27,
34] to establish a simple standard to compare the perfor-
mance of other classifiers. This analysis uses a stratified
dummy classifier from the scikit-learn package [40] which
randomly samples one-hot vectors from a binomial distribu-
tion parametrized by the empirical class prior probabilities.

5. METHODOLOGY
5.1 Training

For each dataset, four binary classifiers are trained and eval-
uated using 8-fold nested cross-validation: 1) the rule-based
classifier from the FUMA framework; 2) the GMM-HMM
classifier; 3) The LSTM neural network; 4) a Stratified Dummy
classifier from the sci-kit learn package [40]. Classifiers are
trained to predict the binary learner type for that dataset.
For Unity-CT, the binary variable corresponds to high/low
learners (based on median-split solution scores); for JUS-
Think, the binary variable corresponds to gainers/non-gainers
(based on learning gains); and for the MOOC the binary
variable corresponds to pass/fail (the class outcome).

In each cross-validation iteration, the interaction data from
7 folds is used to train the classifiers, and the remaining fold
is used as a test set to simulate a classification problem for
real-time personalization. The trained classifier is evaluated
on incremental data windows corresponding to interaction
time. In each dataset, students’ interaction lengths vary
considerably, so increments are used up to the longest time
it took for any student to complete their interaction. At
each window, test data consists of available interaction data
for a student up until that window. 5-minute linear incre-
ments are used for the Unity-CT and JUSThink datasets
which have similar average interaction lengths, and an ap-
propriate logarithmic time scale starting at 110 minutes (5%
of the average interaction length) is used for the CS1 MOOC
dataset that includes a large range of interaction lengths.

A hyper-parameter grid search that optimizes accuracy is
performed inside the cross-validation folds6. For FUMA,
the hyper-parameters for its association rule-mining algo-
rithm are: minsupport ∈ {0.7, 0.8}, branch ∈ {3, 4}, impv ∈
{0.07, 0.08}. For the HMM model, the hyper-parameter
N ∈ {2, 3, 4, 5}, and or the LSTM, the hyper-parameter
N ∈ {32, 64, 96, 128} is the number of units in the LSTM
layer. Accuracies over time are averaged across folds and
compared in a statistical analysis.

5.2 Performance Evaluation
Model performance is measured using the metric of accuracy
(defined as the ratio of correctly predicted data points to to-
tal data points). Accuracy provides a straightforward mea-
sure of overall performance, showing how often the classifier
is correct. Accuracy is chosen because previous work on per-
sonalized support for open-ended learning (eg. [23, 34]) has
considered this metric to build and evaluate student models.
Moreover, the interventions implemented in these studies
have been based on a discrete binary prediction of student
learner type, ie. whether the student is on track to succeed
or not. For each dataset, accuracies across folds of classi-
fiers are compared using pairwise t-test at each data win-
dow, and the adjusted p-values 7 with effect size Cohen’s d
are reported. It is important to note that when looking at
relatively small datasets, the effect size plays a meaningful
role when the p-value of the t-test is not low enough simply
due to a lack of test sample size.

5.3 Interpretability tools
6For FUMA, we use the hyper-parameters in a previous ap-
plication [27]. For the HMM and LSTM, we chose a range of
hyperparameters with computational constraints in mind.
7p-values were adjusted for multiple comparisons using Ben-
jamini/Hochberg correction [8]
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In each cross-validation fold, two explainable artificial in-
telligence (XAI) tools are applied to try to interpret each
classifier. In particular, this analysis looks at two tools -
permutation importance (PI) and Shapley (SHAP) values.
PI tells us how our model would differ in performance in
the absence of a particular feature, while the SHAP values
tell us how much a feature contributed to increasing or de-
creasing model output. This analysis looks at these XAI
tools to explain the prediction at the last data window for
each dataset, with the aim of understanding what features
contributed to the models’ predictions overall. We aim to
provide insights into these models explaining the top con-
tributing features in relation to their performance.

During each run of nested cross-validation at the last data
window, to calculate the PI for a particular feature, the re-
maining features are shuffled across the test dataset (call this
the permuted dataset), and the difference in overall accuracy
between the test dataset and the permuted dataset is mea-
sured. Thus, PI = original accuracy−permuted accuracy.
This analysis focuses on the global explanations of SHAP as
opposed to local explanations and looks at the mean SHAP
value for each feature. SHAP values are computed using a
linear approximation (see [15, 33] for overviews of approx-
imating Shapley values) over 1000 random iterations. For
both PI and SHAP, results are averaged across all cross-
validation folds for robustness. For each classifier (exclud-
ing baseline) and dataset, the top 3 features (based on the
highest mean absolute PI and mean absolute SHAP value)
are reported along with their PI and SHAP values (non-
absolute/true value).

6. RESULTS ON MODEL PERFORMANCE
This section discusses the results of the statistical analysis.
While we expect accuracies to generally trend upwards with
more data available for classification, this analysis looks at
two aspects of prediction in terms of performance in early
or late data windows. If a model performs well at later data
windows, it may be used to personalize future interactions,
serve as an automated assessment for a particular learning
environment, or provide direct adaptive feedback at the end
of the interaction. If a model performs well at early data
windows, it can be useful to drive early personalization that
may impact the rest of the interaction like personalized in-
terventions for struggling students [23, 34]. Thus, for each
dataset, we look at i) statistical comparisons at the last win-
dow to understand the potential for late-stage personaliza-
tion; ii) statistical comparisons overtime against the baseline
to understand the potential for early-stage personalization.

The performance of classifiers when tested in the last data
window (and hence all possible interaction data) in each
dataset is summarized in table 5. The table lists the aver-
age accuracy across folds for each classifier on each dataset,
as well as the results of pairwise t-test comparisons for all
classifiers.

This summary suggests that the HMM classifier performs
the best overall for each dataset as it is not significantly
worse or significantly outperforms all the other classifiers.
These results look at classifiers that use the entire length of
interaction data, and thus the HMM classifier is likely useful
when making predictions for late-stage personalization or

personalization after the interaction of a learner in each of
these learning contexts.
Unity-CT Dataset: Figure 4 plots the percentage accuracies
of the four classifiers at each of the data windows. Error
bars are provided for all classifiers excluding the baseline.

Figure 4: Classifier accuracies over incremental data win-
dows for Unity-CT dataset

i) Comparisons at last window: Pairwise t-test comparisons
of classifiers accuracy using at the last data window show
that the HMM classifier is not statistically significant from
FUMA ((p > 0.05, d = 0.523) but it significantly outper-
forms both the LSTM and the Baseline classifier with a large
effect size(p < 0.01, d = 1.313 and 1.628 against LSTM, and
Baseline classifiers respectively). Individual t-test compar-
isons at each data window do not yield any statistically sig-
nificant difference between the HMM and FUMA classifiers
for all data windows and between the HMM and LSTM for
t ≤ 35 minutes. This is likely due to the small sample size
as suggested by the minimal overlap in error bars and the
moderate effect sizes (range of d: 0.273 - 0.523)

ii) Comparisons over time: Pairwise t-test comparisons show
that the HMM classifier significantly outperforms the base-
line with large effect sizes (p < 0.05, d range: 1.226 - 1.840)
across all data windows (0 < t ≤ 50. Pairwise t-test com-
parisons of the FUMA classifier show that it significantly
outperforms the baseline with large effect sizes8 (p < 0.05,
d range: 1.134 - 1.268) for t ≤ 15 minutes. Pairwise t-test
comparisons show that the LSTM classifier significantly out-
performs the baseline with large effect sizes (p < 0.05, d
range: 1.095 - 1.370) for t ≤ 30 minutes. Interestingly, at
the 10-minute mark, the LSTM significantly outperforms all
other classifiers with moderate effect sizes (p < 0.05, range of
d: 0.111 - 0.444) with minimal overlap in error bars, suggest-
ing that LSTM might be suitable for early personalization
in Unity-CT.
CS1 MOOC Dataset: Figure 5 plots the percentage accura-
cies of the four classifiers at each data window.

i) Comparisons at last window: Pairwise t-test comparisons
of classifier accuracy at the last data window show that the
HMM classifier significantly outperforms all the other clas-
sifiers with large effect sizes (p < 0.05, d =7.013, 1.024 and
4.126 against FUMA, LSTM, and Baseline classifiers respec-
tively). Individual t-test comparisons of the HMM classifier
against other classifiers at each data window show that it is

8Guidelines for d are 0.2 (small), 0.5 (medium), and 0.8
(large) as per [12]
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Table 5: Classification analysis summary using entire interaction data. Accuracies are averaged over all folds and presented
with a standard error. T-test: ’=’ indicates no significant difference (p > 0.05), > indicates the mean accuracy was significantly
greater with an adjusted p < 0.05.

HMM FUMA LSTM Baseline T-test

Unity-CT (n=206) 64.81 +- 2.78 59.60 +- 3.74 56.08 +- 1.40 50.62 +- 2.99 HMM = FUMA >LSTM >Baseline
MOOC (n=469) 76.97 +- 1.42 34.65 +- 2.44 71.51 +- 2.05 53.95 +- 2.19 HMM >LSTM >Baseline > FUMA
JusThink (n = 35) 67.50 +- 5.99 59.38 +- 7.78 58.75 +- 6.72 43.75 +- 9.79 HMM = LSTM = FUMA >Baseline

Figure 5: Classifier accuracies over incremental data win-
dows for CS1 MOOC dataset

not statistically different from the LSTM for t < 104, and
for t > 104 it significantly outperforms all other classifiers
(p < 0.05) with large effect sizes (range of d: 0.91 - 7.013
). This suggests that both the LSTM and HMM classifiers
could be used for early personalization in MOOC contexts,
but our results favor HMM for later predictions. These find-
ings are consistent with the results in [2] which found value
in LSTMs for early predictions in MOOCs.

ii) Comparisons over time: Pairwise t-test comparisons of the
HMM and LSTM classifiers against the baseline show that
they both significantly outperform the baseline with large ef-
fect sizes (p < 0.01, d range: 1.780 - 4.500, 1.707 - 2,681 for
HMM and LSTM respectively) for all data windows. Pair-
wise t-test comparisons of the FUMA classifier against the
baseline show that it performs significantly worse than the
baseline with large effect sizes (p < 0.01, d range: 2.756 -
2.756 for HMM and LSTM respectively) for all data win-
dows. Previous work with FUMA in MOOCs [28] showed
higher accuracies for predicting high and low learners, but
that involved a richer and diverse dataset including video-
watching features and specific usage features. This suggests
that FUMA may not perform well on a dataset like the CS1
MOOC which only involves simple features related to stu-
dent interface events. This is likely due to the rule-based
nature of the FUMA classifier, which requires meaningful,
curated features to build an accurate user model.
JUSThink Dataset: Figure 6 plots the percentage accuracies
of the four classifiers at each data window.

i) Comparisons at last window: Pairwise t-test comparisons
of classifier accuracy at the last data window show that the
HMM classifier has no significant difference to the LSTM
(p > 0.05, d = 0.455) and FUMA classifiers (p > 0.05,
d = 0.028), and significantly outperforms the baseline with

Figure 6: Classifier accuracies over incremental data win-
dows for JUSThink dataset

a large effect size (p < 0.05, d = 0.967). We suspect that
the lack of statistical significance is due to a small sample
size rather than a lack of an effect, and it requires more data
points to achieve statistical significance for the t-tests on this
dataset. Although there is no significant difference between
the HMM and the other classifiers, a trend is observed in
fig. 6 similar to the other datasets where the HMM classifier
seems to perform best by the end of the interaction with
higher accuracies.

ii) Comparisons over time: Pairwise t-test comparisons of
the HMM, FUMA, and LSTM classifiers against the base-
line do not show any statistically significant differences at all
data windows except at the last data window. Individual t-
test comparisons between classifiers at each data window do
not yield any statistically significant p-values as well, how-
ever at the 10-minute mark, statistical comparisons between
FUMA and the other classifiers show moderate to large ef-
fect sizes (range of d: 0.425 - 0.818) and minimal overlap
in error bars, suggesting that FUMA might be suitable for
early personalization in a collaborative learning setting.

7. MODEL INTERPRETABILITY
This section describes the top features for each classifier in
each dataset in terms of the highest absolute value of PI
and SHAP values. The baseline classifier is omitted as all
the importance values are zero due to its output being in-
dependent of the features. Features with a negative im-
portance have a value highlighted in red, and those with a
positive importance are highlighted in green. A positive PI
means that permuting that feature lowers accuracy, indicat-
ing that the feature is important for that classifier to make
predictions, whereas a negative PI indicates that including
the feature was detrimental to predictive performance. A
positive SHAP value indicates the feature contributed to-
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Table 6: Top 3 Features for Unity-CT dataset based on Permutation Importance (PI) and SHAP Values. Green cells indicate
positive importance and red cells indicate negative importance.

Unity-CT: Top 3 Features Based on PI and SHAP Values

Model Feature (PI) PI Feature (SHAP) SHAP

FUMA
Move Ground Slide timefirst 1.92 Remove Component freq 0.0200

Play freq 0.52 Play freq 0.0150
Stop freq 0.50 Move Ground Slide timefirst 0.0063

HMM
Select Tool interval mean -3.83 Select Tool interval sd -0.0225

Pause mean 0.50 Select Tool interval mean 0.0150
Delete Ground count 0.48 Delete Ground count 0.0113

LSTM
Select Tool timefirst 1.50 Pause mean -0.0039

Unselect timefirst non inc 1.46 Select Tool interval sd 0.0021
Zoom interval mean 1.44 Delete Ground count -0.0023

wards increasing the value of the model output, ie. in terms
of predicting the positive class (high learner performance),
whereas a negative SHAP value indicates the feature con-
tributed towards predicting the negative class (low learner
performance).

Unity-CT: Table 6 lists the top features for Unity-CT. For
the FUMA classifier, the top 3 important features match
with those found in a previous study with Unity-CT [34],
where these features were used to define interventions, namely
- Moving a special ground object and frequency of play-
ing/pausing the game. As FUMA is a rule-based classifier,
the top PI features simply correspond to the most common
occurrences in the feature trees that define the rule-based
classifier. Two out of the three top SHAP features match
the top PI features for FUMA, with the exception of the top
SHAP feature: frequency of Remove Component. While
this feature seemed to contribute the most to predicting
high learner performance, its impact on overall model per-
formance is quite low with a PI of 0.02. The HMM classifier
has different top features suggesting a different mechanism
for predicting learner type. Here as well, two out of three
top features match between PI and SHAP. Interestingly, the
top PI feature - Select Tool interval mean - impacted perfor-
mance negatively. A student who irregularly uses the Select
Tool and has a high interval mean would not be interacting
with the game objects and is likely a low-performing stu-
dent. The corresponding SHAP value tells us that this fea-
ture predicted high learner performance for the HMM, which
explains the negative PI. We are unable to identify trends
relating the top PI and SHAP values of the LSTM classifier
in relation to its performance on the dataset as there was no
consistency between the top PI and SHAP features.

CS1 MOOC: Table 7 lists the top features for CS1 MOOC
dataset. Two out of three top PI and SHAP features are
observed to match for FUMA and LSTM classifiers, and all
three match for the HMM classifier. This is likely due to the
simplicity of the data in the CS1 MOOC dataset. The top PI
and SHAP feature for FUMA is run frequency, as opposed
to text insert count for the HMM and LSTM models. Given
that the HMM and LSTM models both outperform FUMA
significantly in terms of performance, it suggests that this
feature was indeed crucial to distinguish between learner
types in this dataset. This finding alludes to a limitation

of FUMA’s rule-based approach to be effective with simple
datasets such as the CS1 MOOC. The LSTM classifier looks
heavily reliant on text insertion, whereas the HMM clas-
sifier seems to emphasize both text insertion and removal.
This may explain why the HMM classifier performs better
towards the end of the interaction as compared to the LSTM
classifier as student behavior tends to increase in complexity
and reliance on multiple features may improve performance.

JUSThink: Table 8 lists the top features for the JUSThink
dataset. As there are no statistical differences in accuracy,
the impact of the differences in top features across clas-
sifiers on accurate prediction is uncertain. However, the
LSTM classifier is observed to rely solely on two features
whereas the FUMA and HMM classifiers rely on multiple
features suggesting that the underlying mechanisms are dif-
ferent. Moreover, there no overlap in top features among
the different classifiers suggesting that multiple behavioral
patterns exist across different features in this dataset and
can lead to equally accurate predictions.

8. DISCUSSION
Across the three datasets — Unity-CT, CS1 MOOC, and
JUSThink, the HMM classifier performed well and signifi-
cantly outperformed the baseline for both early-stage and
late-stage predictions in each dataset. In the CS1 MOOC
and Unity-CT datasets, the LSTM shows potential for early
predictions, and in the JUSThink dataset, FUMA shows po-
tential for early predictions. Thus, while the HMM classi-
fier provides consistently high accuracy across datasets, the
choice of classifier for real-time personalization in adaptive
learning environments can depend on the learning context
or required timing of the personalized interventions.

Our results on model interpretability with PI and SHAP
values provided more insights into these classifiers. First,
results for the FUMA classifier in the Unity-CT dataset
align with previous work in that the most impactful features
overlap with the important features identified by Murali et.
al [34]. In all datasets, the HMM and LSTM classifiers had
different top features as compared to FUMA showcasing dif-
ferent underlying mechanisms. There was some overlap in
top SHAP features between the HMM and LSTM indicating
that there may be some common student behavioral patterns
that were picked up by both classifiers. On the other hand,
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Table 7: Top 3 Features for CS1 MOOC dataset based on Permutation Importance (PI) and SHAP Values.

CS1 MOOC: Top 3 Features Based on PI and SHAP Values

Model Feature (PI) PI Feature (SHAP) SHAP

FUMA
Run frequency 3.29 Run frequency 0.0138

Text insert frequency 1.32 Text insert frequency -0.0025
Submit frequency -0.88 Submit count -0.0088

HMM
Text insert count 13.13 Text insert count 0.0400

Text remove count 10.30 Text remove count 0.0025
Focus gained count 1.10 Focus gained count -0.0025

LSTM
Text insert count 30.05 Text insert count 0.0006

Focus gained count 2.07 Text remove count -0.0059
Run count 1.30 Focus gained count -0.0012

Table 8: Top 3 Features for JUSThink dataset based on Permutation Importance (PI) and SHAP Values.

JUSThink: Top 3 Features Based on PI and SHAP Values

Model Feature (PI) PI Feature (SHAP) SHAP

FUMA
Redundant exist 6.25 T overlap -0.0200

T overlap 6.25 T long pauses -0.0150
Gaze at partner 3.75 Gaze at partner 0.0113

HMM
T add 6.25 T action 0.0388

Gaze at screen right non inc 3.13 Redundant exist 0.0113
Gaze at screen right 3.13 T add 0.0088

LSTM
T short pauses 3.13 T action 0.0004

T speech activity 3.13 T speech activity inc 0.0006
T add 0.00 Gaze at screen right -0.0008

there were some differences in the way these classifiers relied
on certain important features for predictive performance.
The LSTM classifier often heavily relied on only one fea-
ture as seen in the simple but large CS1 MOOC dataset and
two features in the complex and small JUSThink dataset,
whereas the HMM classifier relied on more features.

Overall, when choosing a classifier to build an adaptive sup-
port system, one has to consider to what extent is it valu-
able to understand why the classifier makes a certain pre-
diction. FUMA is a rule-based classifier and is inherently
interpretable in simple interaction datasets (it is not al-
ways interpretable as is the case with data in more unstruc-
tured environments [34]). The inherent transparency of the
FUMA model due to its feature trees makes it a good can-
didate model for those who definitely require transparent
classifiers for adaptive personalization. On the other hand.
both the HMM and LSTM classifiers lack inherent inter-
pretability, and while insights using PI and SHAP values
may provide a general idea of which features contribute the
most to predictions (which may not always be useful to un-
derstand the classifier as was the case in the Unity-CT and
JUSThink datasets), they are unable to explain individual
predictions. Thus, to choose the most suitable classifier for a
specific application, one must consider the tradeoff between
accuracy and interpretability, and whether personalization
can be provided with a simple understanding of important
features, or if personalization requires a more sophisticated
understanding of the inner workings of the classifier.

9. CONCLUSIONS AND FUTURE WORK
This paper addresses the need for a comparative evalua-
tion of classifiers for sequential interaction data in learning.
This paper compared classifiers that use sequential interac-
tion data to predict learner types for personalized adaptive
support across multiple learning contexts. This is the first
attempt at a systematic evaluation of classifiers in different
open-ended learning datasets and testing them in a cross-
validation schema. Moreover, further insights into model
interpretability are provided using XAI tools like PI and
SHAP values. The results and statistical analysis showed
that the HMM classifier performed best overall, however,
depending on the specific context, required timing of the
personalized interventions, or the need for inherent inter-
pretability, one may choose to opt for another classifier like
the LSTM or FUMA classifier. These findings may be use-
ful to practitioners looking to implement a personalization
mechanism in any context where sequential interaction data
is leveraged including learning environments, as well as re-
searchers interested in analyzing interaction datasets. While
the datasets this paper focuses on arise in learning, our anal-
ysis applies to any context where predictions are needed us-
ing sequential interaction data.

For future work, larger multimodal datasets are desired and
the impact of different modalities on classifier performance
could be studied. While beyond the scope of this paper,
future work may look into dissecting the interpretability of
the HMM and LSTM classifiers in more detail by looking
at local explanation techniques like LIME [33] which may
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provide more insights into individual personalization, or it
may be possible to identify specific transitions between hid-
den states in the HMM-based classifier that correspond to
learning behaviors, offering a form of post-hoc interpretabil-
ity similar to Nasir et. al [38]. Future work also entails
acquiring larger multimodal interaction datasets and test-
ing out more sophisticated classifiers.
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modeling in open-ended learning environments.
Handbook of Artificial Intelligence in Education, pages
170–183, 2023.

[14] Mohammad H Falakmasir, José P González-Brenes,
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