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ABSTRACT
In Computer Science (CS) education, understanding factors
contributing to students’ programming difficulties is cru-
cial for effective learning support. By identifying specific
issues students face, educators can provide targeted assis-
tance to help them overcome obstacles and improve learn-
ing outcomes. While identifying sources of struggle, such
as misconceptions, in real-time can be challenging in cur-
rent educational practices, analyzing logical errors in stu-
dents’ code can offer valuable insights. This paper presents
a scalable framework for automatically detecting logical er-
rors in students’ programming solutions. Our framework is
based on an explainable Abstract Syntax Tree (AST) em-
bedding model, the Subtree-based Attention Neural Net-
work (SANN), that identifies the structural components of
programs containing logical errors. We conducted a series
of experiments to evaluate its effectiveness, and the results
suggest that our framework can accurately capture students’
logical errors and, more importantly, provide us with deeper
insights into their learning processes, offering a valuable tool
for enhancing programming education.
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1. INTRODUCTION
To effectively support students in mastering introductory
programming, timely identification and resolution of fac-

tors contributing to students’ programming challenges, es-
pecially difficulties with fundamental concepts, are impera-
tive [48]. However, the increased number of CS majors has
created significant challenges in supporting students with
limited teaching resources [31]. As such, instructors’ real-
time monitoring of students’ learning progress is often in-
feasible [47, 56]. Addressing this challenge requires an au-
tomated approach to efficiently identifying students’ pro-
gramming struggles, enabling personalized feedback delivery
through either teachers or automated systems. However, au-
tomated identification of students’ programming struggles
is complex due to the latent nature of learning difficulties,
which cannot be directly assessed. Nevertheless, these strug-
gles can manifest as logical errors in student code [1, 19].
Computing education research has identified several poten-
tial underlying causes for logical errors, including strategic
or algorithmic errors, misinterpretation of the problem de-
scription, carelessness, and foundational misconceptions [19,
55] with misconceptions noted as the most common source
of logical errors [19]. Thus, analyzing logical error patterns
over time can predict students’ learning outcomes. More
importantly, this analysis can shed light on potential mis-
conceptions held by students, enabling scalable approaches
for remediating through adaptive scaffolding [19].

Previous research has explored semi-automated methods for
identifying errors and misconceptions using association rules
in constrained domains [18, 23, 10]; however, these approaches
have proven inadequate for complex, general-purpose tasks,
such as programming [62]. More recent efforts have applied
Deep Learning (DL) models for automatic logical error iden-
tification. However, they require manual data labeling via
expert-designed rubrics and test cases and focus only on
conceptual errors associated with specific rubric items [62].
These approaches may not detect logical errors spanning
multiple rubric items or be applicable in scenarios where
rubrics or test cases are not readily available. Recent stud-
ies [21, 42] have explored using Large Language Models
(LLMs) to identify logical errors and misconceptions in stu-
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dent programs, but require expert supervision [35, 67]. Re-
gardless, DL-based approaches show promise in automating
logical error detection, providing timely feedback to teach-
ers [16] and students [57], even in large classrooms.

This paper proposes an automated framework for identify-
ing students’ logical errors within their programs using a
DL framework. In this work, we utilized a publicly avail-
able dataset collected from an introductory programming
course at a university in the United States [17]. Although
the programs in this dataset were automatically labeled as
correct or incorrect by executing the programs using test
cases, we do not utilize these test cases or any rubric to pin-
point logical errors in incorrect student code. Instead, our
framework utilizes a modified version of the state-of-the-
art explainable DL model, Subtree-based Attention Neu-
ral Network (SANN) [26], which captures students’ pro-
gramming patterns by embedding program vectors based
solely on program correctness information. We modify the
attention layer of SANN, which highlights important sub-
structures within program snippets, aiding in classifying code
as correct or incorrect. Evaluation results indicate that these
highlighted patterns closely correlate with logical errors in
student code, with our method effectively identifying logical
errors in students’ incorrect programs. We further engage
expert annotators to categorize identified logical errors as
one of the two essential categories identified in the litera-
ture: algorithmic error (strategic) and fundamental concep-
tual error (misconceptions) [19, 55], and a third category,
compilable syntactic error that we encountered during our
analysis (details in Section 2.1), to better understand the
relationship between logical errors and underlying students’
struggles. Literature has also referred to misinterpretation
and carelessness as other possible underlying causes for log-
ical errors. However, distinguishing between issues arising
from misinterpretation or carelessness rather than concep-
tual misunderstanding or strategic errors requires internal
knowledge about a student’s state of mind [1]. Therefore,
we excluded misinterpretation and carelessness as possible
underlying causes for logical errors in this paper.

Misconceptions have been identified as the most common
source of logical errors [19]. Simultaneously, research has
shown that incorporating misconception information can sig-
nificantly enhance student modeling results [45]. Thus, we
hypothesize that enriching code vectors with logical error in-
formation can shed light on students’ learning progress. To
verify this hypothesis, we embed the logical error informa-
tion in program vectors and utilize them in Long Short-Term
Memory-based Deep Knowledge Tracing (LSTM-DKT) mod-
els to predict students’ short-term (next problem attempt re-
sults) and long-term (final exam grades) performance. Our
results demonstrate improved predictive student modeling
and potential for advancing the modeling of student progress.
This framework can also assist in dynamically finding traces
of logical errors and potential misconceptions in students’
programming, supporting the investigation of their relation-
ship with students’ learning outcomes.

The main contributions of this work are as follows:

• Developing a novel, explainable deep learning frame-
work that identifies logical errors in student code with-

out relying on external rubrics or test cases.

• Validating the framework through expert annotation,
categorizing them into syntactic, strategic, and con-
ceptual errors to rigorously assess its effectiveness.

• Demonstrating improved predictive student modeling
by incorporating logical error information into code
embeddings.

We further discuss the framework’s potential to enhance stu-
dents’ learning by enabling scalable, dynamic, and adaptive
scaffolding for students while learning to program.

2. RELATED WORK
In this section, we discuss related work on logical errors in
student code within computer science education, methods
for identifying students’ logical errors, and predictive stu-
dent modeling for predicting student learning.

2.1 Logical Errors in CS Education
Various categorizations of programming errors have been
proposed in the literature [40, 1], with common classifica-
tions categorizing errors into syntactic, semantic (logical),
and runtime errors [32]. Logical errors are prevalent in stu-
dents’ programs and take the most time to identify and
resolve due to a lack of direct external feedback, such as
ones provided by compilers for syntactic errors [20, 3, 4].
Nevertheless, identifying logical errors can provide invalu-
able insights into students’ struggles with learning to pro-
gram, including their misconceptions about programming
concepts [19].

Prior research in CS education has identified various sources
for logical errors, including conceptual, strategic, misinter-
pretation, and carelessness [1, 19].

• Conceptual errors: A conceptual error is a logical
error involving a misunderstanding of how a program-
ming construct works, reflecting a fundamental flaw in
programming knowledge. An example of a conceptual
error is when a student assumes that a variable retains
its previous value after being reassigned.

• Strategic errors: A strategic error occurs when a
student’s underlying algorithm or problem-solving ap-
proach is flawed, even if their understanding of pro-
gramming constructs is sound. For example, failing to
correctly handle the base case in recursion.

• Misinterpretation errors: A misinterpretation error
occurs when a student interprets a programming task
or question differently than intended, leading to dis-
crepancies between the expected and actual program
output.

• Carelessness errors: A carelessness error is an unin-
tentional mistake resulting from oversight or inatten-
tiveness rather than a deeper misunderstanding. Com-
mon examples include missing punctuation (e.g., semi-
colons) or typographical errors (e.g., using = instead
of ==) that do not stem from conceptual issues.

In this paper, we focus on two categories of logical errors
from the literature: conceptual and strategic errors, since the
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other categories (misinterpretation and carelessness) cannot
be readily inferred from student code due to their inher-
ently latent nature and do not necessarily indicate a lack of
programming knowledge [1]. Although we did not include
identifying programming language-specific syntactic errors
from uncompilable student submissions in this work that
can be easily detected at compile time [19], we encountered
a third category identified in a small percentage of student
programs during our analysis, which we classify as compil-
able syntactic errors. For example, using & instead of && in
a conditional statement, which some compilers (e.g., Java)
take as a bitwise operation and compile the code. This type
of error can be language-specific and even stem from either
carelessness or conceptual errors.

2.2 Logical Error Detection
Misconceptions in CS education refer to incorrect interpreta-
tions of particular concepts, leading to logical errors in pro-
gramming [65, 19]. Despite the prevalence of logical errors
among novice learners, these misunderstandings often evade
detection by experts and instructors [64], a phenomenon
known as the “expert blind spot” [51]. Identifying and com-
prehending these logical errors increases instructors’ aware-
ness and provides essential material for modeling students’
learning over time to improve learning outcomes [44, 43].
Although previous research has explored automated meth-
ods for detecting student logical errors [23, 19, 62], many
of these approaches require expert labeling of training data,
presupposing familiarity with the specific logical errors be-
ing targeted.

In CS education, identifying logical errors and misconcep-
tions traditionally relies on labor-intensive manual analy-
sis of students’ programs [52] or interviews [37]. The man-
ual construction of “bug libraries” can also pose challenges
for experts due to its time-consuming nature [6, 15, 5].
Nonetheless, such manual analyses, particularly those con-
ducted on a series of program snapshots, have been shown to
offer deeper insights into students’ misconceptions. For in-
stance, Albrecht and Grabowski [1] manually inspected stu-
dents’ programming data and classified errors into six cat-
egories: syntactic, strategic, conceptual, carelessness, misin-
terpretation, and domain knowledge.

Other research has explored data-driven approaches to un-
covering logical errors. For example, Guzman et al. [23]
used association rule mining to identify misconceptions from
closed-ended multiple-choice questions. However, this method
relies on experts to label rules and does not target open-
ended programming problems. Ettles et al. [19] grouped
common logical errors from students’ incorrect programs
using expert-designed test cases. A recent study [62] em-
ployed DL models for automatic misconception identifica-
tion. Nonetheless, their methodology necessitated manual
data labeling using an expert-designed rubric. Additionally,
their approach targeted the detection of conceptual logic
errors on a per-rubric-item basis within student code, lack-
ing effectiveness in addressing logical errors that may ex-
tend across multiple rubric items or arise in scenarios where
rubric items and test cases are absent. In some recent stud-
ies, LLMs were used to identify logical errors and misconcep-
tions in students’ programs [21, 42]. However, using LLMs
without expert supervision and explainability might suffer

from hallucination, precision, and stakeholder safety [35, 67].

2.3 Student Modeling
Student modeling is crucial in understanding and tracking
students’ mastery of skills for specific tasks within the learn-
ing paradigm [38]. Additionally, predicting students’ per-
formance and success is pivotal in adaptive learning en-
vironments designed to provide adaptive scaffolding [24].
Prior studies have focused on various objectives of perfor-
mance prediction: short-term performance, such as next
problem success prediction by knowledge tracing [60], and
long-term performance, such as final exam grade prediction
from students’ programming submissions [68]. Research in-
dicates that incorporating misconceptions can enhance stu-
dent models [45], particularly given that misconceptions are
a common source of logical errors [19]. Thus, code vectors
enriched with such logical error information may offer deeper
insights into students’ learning trajectories and outcomes.

Knowledge tracing (KT) models student knowledge dynam-
ically as students engage with problems, enabling predic-
tions about future performance in students’ problem-solving
attempts. In KT, problems are typically associated with
required skills, and the relationship between problems and
skills can either be learned from data or derived directly from
problem IDs [60]. KT models can predict students’ success
in future attempts by keeping track of the mastery of the re-
quired skills. Bayesian Knowledge Tracing (BKT) [14] is one
of the most widely used KT models, and it has undergone
several enhancements over the years [7, 69]. A significant
advance was introduced by Piech et al. [54], who proposed
Deep Knowledge Tracing (DKT). This model utilizes recur-
rent neural networks (RNNs) to predict a student’s knowl-
edge of each skill after each problem attempt. Despite these
advancements, existing KT models have limitations when
applied to programming data, particularly when incorpo-
rating code-related information. Recent iterations of DKT
have attempted to address this gap by integrating code infor-
mation [60, 43, 36, 59, 66]. However, these approaches often
require experts to manually label errors/concepts, which can
be resource-intensive. Furthermore, they often lack the in-
terpretability to explain the failure prediction by mapping
it back to the logical errors of students.

To track students’ long-term learning progression and learn-
ing outcomes, researchers have predicted a range of out-
comes, such as predicting student performance in final ex-
ams [24], detecting failing students [34], and identifying early
dropouts [22]. A comprehensive review conducted by Shahiri
et al. [58] demonstrated the reliance of many studies on
grading-based features such as cumulative grade point av-
erages (CGPA) and intermediate assessment scores (e.g.,
quizzes, midterms) for predicting course performance. In
another study by Jamjoom et al., [34], decision tree and
SVM were utilized to categorize enrolled students into pass-
ing and failing categories based on features such as quiz and
midterm exam scores, with the aim of early intervention for
at-risk students. A recent study [25] utilized student pro-
gramming submission data to predict students’ final exam
grades in an explainable manner, aiming to explain the rela-
tionship between students’ submission data and final exam
grades. However, none of these studies incorporated di-
rect programming code information into the prediction task
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to integrate students’ programming knowledge information
for predicting students’ performance. In recent work, DL
frameworks have become increasingly prominent. In some
instances, AST-based and control flow graph-based embed-
ding models were employed to predict students’ final exam
grades from programming assignment data [68, 46].

Despite various efforts to detect logical errors in student
code, most prior approaches rely heavily on expert-generated
test cases and rubrics or lack explainability and face relia-
bility concerns. In contrast, our work introduces a frame-
work for automated, explainable, and scalable identification
of logical errors from students’ programs without the need
for external rubrics or test cases. We further show that these
program snippets embedded in code vectors, many of which
represent misconceptions in students’ programming knowl-
edge, can be used in different predictive modeling tasks.
We propose utilizing these program snippets directly to in-
form the provision of adaptive scaffolding based on vector
similarity measurements as a viable solution to address po-
tential misconceptions in students’ programming knowledge
and skills.

3. DATASET
We use a publicly available dataset1 that was sourced from
the CodeWorkout platform2 [17] used in an introductory
programming course at a public university in the United
States. This dataset consists of anonymized student pro-
gramming solutions in Java for 50 programming problems
from five assignments used in a CS1 course in the Spring
2019 semester, without any demographic information. The
submissions were evaluated on a [0, 1] scale based on the
number of passed test cases. We group the data into binary
classes of correct and incorrect (if any of the test cases fails)
solutions for model training. The dataset also consists of
students’ final exam grades normalized on a 0 to 1 scale.
Throughout the semester, 57, 670 student code submissions
were received from 368 students for 50 programming prob-
lems, comprising 18, 787 correct submissions and 38, 883 in-
correct submissions. In this study, we leverage the Abstract
Syntax Trees (ASTs) of programs to capture programming
patterns. Consequently, consistent with prior research [61,
62], 9, 906 incorrect uncompilable solutions that could not
be parsed into ASTs using our Java parser (javalang3) were
excluded from the dataset.

4. METHODOLOGY
This section describes our adaptations to SANN for effec-
tively identifying students’ logical errors and the evalua-
tion process we utilized. We then describe our processes
for predicting students’ short-term (next problem attempt)
and long-term (final exam grade) success.

4.1 Extracting Logical Errors with SANN
SANN [26] is known for its explainability and ability to en-
code programs into condensed vectors by extracting sub-
structures from ASTs. These vectors are versatile and have
been utilized in different prediction tasks in the literature
(i.e., program correctness prediction, algorithm detection,

1https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
2https://codeworkout.cs.vt.edu/
3https://github.com/c2nes/javalang

and LLM-generated code detection) [26, 28]. To identify log-
ical errors in students’ programs, we utilize SANN’s atten-
tion mechanism to identify the subtrees extracted from pro-
gram ASTs that are most influential in the prediction. Sub-
trees are embedded using a two-way embedding approach in
SANN, where each subtree and its nodes are separately em-
bedded. SANN merges the embeddings from the two-way
embedding approach into a single embedded vector. Sub-
sequently, the embedded vectors from both approaches are
concatenated and passed through a time-distributed, fully
connected layer to generate subtree vectors. Following this,
an Attention Neural Network condenses all subtree vectors
into a single source code vector. The attention mechanism
assigns scalar weights to each subtree vector, supporting the
aggregation of all subtree vectors into a weighted average.
These weights are determined through a normalized inner
product between each subtree vector and a global attention
vector, followed by a softmax function.

The original SANN model focuses primarily on only one
subtree with the most attention. Typically, this subtree in-
cludes an incorrectly implemented part (an error) of the pro-
gram while predicting it as incorrect. However, we want to
identify all logical errors present rather than only one error
per incorrect student submission. Figure 1 illustrates the
SANN model architecture. The original version of SANN
uses an optimization approach to identify the best strategy
for chunking an AST into its substructures for a prediction
task. We use a modified version of SANN, where all possi-
ble substructures are included in the embedding and training
process [29]. To do this, we extract all subtrees recursively
from an AST, as illustrated in Figure 2. This enables us
to capture logical errors of different granularities. Logical
errors can vary in size, and a single error might involve in-
terconnected parts of code working together. Some errors
might even form a hierarchical structure, with a larger error
encompassing a smaller one.

In addition to modifying the SANN subtree extraction pro-
cess, the attention mechanism has been enhanced to im-
prove its ability to focus on relevant subtrees. In the original
version, attention weights were calculated using a softmax
function to understand the importance of different subtrees
within the code. However, this approach could inadvertently
assign disproportionate attention to a single logical error,
thereby increasing the risk of failing to identify multiple log-
ical errors that may simultaneously contribute to the incor-
rectness of the code. In the modified version, we replaced
the softmax function with a sigmoid activation function to
compute the attention weights. Unlike softmax, sigmoid ac-
tivation allows each attention weight to be computed in-
dependently without normalizing across all subtrees. This
enables the model to assign high attention weights to mul-
tiple relevant subtrees and mitigates the risk of assigning
excessive attention to a single logical error when multiple
logical errors exist in incorrect code. However, based on our
initial experimental results, this modification can result in
higher false positive logical error predictions. To further re-
fine the focus of the attention mechanism, we introduced an
entropy regularization term to the model’s loss function to
selectively assign attention to fewer subtrees, reducing false
positive predictions [53].
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Figure 1: Model architecture of SANN.

Figure 2: Subtree extraction from an AST.

For each subtree vector svi, the attention weight ai is com-
puted as:

ai = σ(svTi · av)

where σ is the sigmoid activation function, and av is a global
attention vector learned by the model. The entropy regu-
larization term is computed as:

H(a) = −λ
n∑

i=1

ai log(ai + ϵ)

This entropy regularization loss is added to the overall loss
function, along with the prediction loss. Here, λ is a regu-
larization weight, ϵ is a small constant added for numerical
stability, and the negative sign ensures entropy is a posi-
tive value. By penalizing high entropy, this term encourages

the model to avoid distributing attention uniformly across
all subtrees, effectively guiding it to focus selectively on a
smaller subset of subtrees, thereby improving its ability to
identify the logical errors in incorrect code predictions.

This combined approach allows our modified attention mech-
anism to balance the focus on multiple logical errors, if
present, while avoiding assigning unnecessary attention to
subtrees that do not contribute meaningfully to the predic-
tion of an incorrect code. We hypothesize that the most
important subtrees in an incorrect student code will likely
encapsulate the logical errors therein. Leveraging our modi-
fied attention mechanism of the SANN model and extracting
these important subtrees, we attempt to identify logical er-
rors within an incorrect submission solely based on the pro-
gram’s correctness without requiring additional information,
such as rubrics or test cases utilized in prior studies.

4.2 Evaluation of Logical Error Identification
To evaluate the effectiveness of our framework in detect-
ing logical errors, two experts labeled all the incorrect sub-
missions from one problem called caughtSpeeding (1, 574
submissions: 617 correct, 957 incorrect) with their logical
errors. Figure 3 depicts an example of an incorrect stu-
dent solution to the caughtSpeeding problem with three
errors highlighted in orange boxes and their correspond-
ing corrected versions in white boxes. Later, we extended
the evaluation to 4 other problems: redTicket, countCode,
sum13, and canBalance and selected a subset of incorrect
submissions (200 incorrect solutions each) to demonstrate
the framework’s robustness.

For the first problem, each expert independently labeled 10%
of the dataset, identifying all existing logical errors in incor-
rect student submissions. Notably, if the student code con-
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Figure 3: Example incorrect solution for caughtSpeeding.

tained multiple logical errors and one expert labeled it with
fewer errors, it was deemed an incorrect labeling. The label-
ing process was iterative, with experts calculating Cohen’s
Kappa scores (κ) after each round. When the agreement was
below 0.8, they resolved disagreements and continued label-
ing new data [41]. The experts achieved κ = 0.78 in the
first round and κ = 0.94 in the second round. After reach-
ing sufficient agreement, they split the remaining 80% of the
data, each expert labeling 40%. They also labeled each log-
ical error with one of the three potential sources mentioned
in Section 2.1. This includes compilable syntactic, strate-
gic, and conceptual errors [9, 1, 19]. The kappa scores of
the two rounds for the three categories were Syntactic: 0.84
and 0.96, Strategic: 0.72 and 0.86, and Conceptual: 0.78
and 0.92. The same labeling procedure was followed for the
other problems. Figure 4 shows the distribution of different
logical error categories from each problem. Subsequently,
the experts then evaluated the effectiveness of the proposed
framework in identifying logical errors by comparing them
to their own identified logical errors.

Unlike prior work [42] that relied on accuracy for evaluation,
we found it insufficient for measuring the model’s ability to
detect all relevant errors while avoiding false positives where
the model incorrectly assigns higher attention to a subtree
as a logical error. Thus, to evaluate the performance of our
framework, we employed both recall and precision. Recall
measures the proportion of errors detected by the model
compared to the total number of errors identified by expert
evaluators. This metric highlights the model’s accuracy in
capturing the errors that experts considered relevant. On
the other hand, precision reflects the proportion of impor-
tant subtrees identified by the model that truly contain er-
rors, preventing an excess of false positives that could be
misleading. Focusing on these metrics provides a more nu-
anced understanding of the model’s ability to detect mean-

Figure 4: Distribution of logical error types across problems.

Figure 5: DKT with code vectors.

ingful patterns while ensuring that the substructures flagged
by the model are genuinely associated with logical errors.

4.3 Deep Knowledge Tracing
Deep knowledge tracing (DKT) predicts students’ short-
term performance (next attempt’s success), capturing their
mastery of skills [54]. It represents a sequence of student at-
tempts, S = {x1, x2, . . . , xT }, where each attempt xt corre-
sponds to a student’s interaction at time t within a sequence
of T total attempts. Each attempt involves a problem-
correctness pair {qt, at}, where qt denotes the problem iden-
tifier and at indicates whether the attempt was correct (1) or
incorrect (0). Given a total of M problems, each attempt xt
is one-hot encoded into a binary vector of size 2M . The ele-
ment corresponding to xqt+M(1−at) is set to 1, while all other
entries remain 0. For example, in the case of M = 2 prob-
lems, if a student correctly solves problem 1 (i.e., qt = 1 and
at = 1), the corresponding vector becomes x = {1, 0, 0, 0},
where x1+2(1−1) = 1. Conversely, if the student fails on
problem 1 (i.e., qt = 1 and at = 0), the vector is represented
as x = {0, 0, 1, 0}, where x1+2(1−0) = 1.

We extract code vectors from the modified SANN model,
which implicitly encodes logical error information. The ex-
plicit logical errors can be retrieved when necessary. In this
study, we concatenate code vectors (c1, c2, . . . , cT ) with the
original DKT [54] input structure to feed into an LSTM
model, as shown in Figure 5. The output yt is a vector of
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length equal to the total number of problems, where each
entry represents the predicted probability that the student
will correctly answer a specific problem. The model’s pre-
diction for the correctness of the next attempt, at+1, can
be inferred from the entry in yt corresponding to the next
problem qt+1.

4.4 Student Performance Prediction
We employ the vector representations derived from students’
programming submissions to all 50 problems (P1, P2, . . . , P50)
to forecast their final exam grades in the course. This pre-
dictive task offers insights into the embedding capability of
our approach, enabling the capture of student programming
learning information for student modeling purposes. To con-
duct this analysis, we adopt a methodology similar to a pre-
vious study [68], which utilized code embeddings from the
code2vec model to train an LSTM that predicts student per-
formance based on their programming submission sequence.
Figure 6 shows the architecture of the prediction process.

Figure 6: Student performance prediction architecture.

In our dataset, a student can have multiple submissions for
each problem. We use all the code vectors for these submis-
sions to predict students’ final exam grades and encode their
learning progression. We concatenate all student submis-
sions for a single problem into a vector (ci). Since there was
a variable number of submissions for each student-problem
pair, we truncated or padded all of the vectors for each sub-
mission to create a sequence of length 30. This length was
chosen because, for the training dataset, 99% of student-
assignment pairs had 30 or fewer submissions. The code
vectors were pre-padded with vectors of zeros for problem-
student pairs where students made fewer than 30 submis-
sions. For problem-student pairs where students exceeded
30 submissions, the last 30 were kept, assuming the latest
submissions were more useful.

We also incorporate additional features (fi) for each prob-
lem, such as the number of correct and incorrect submis-
sions, the total number of submissions, and the problem ID
for each student. These features are obtained by aggregating
a student’s attempts over all 50 assignments. We then aug-
ment students’ programs with information related to their
problem-solving behavior to predict their final exam grades.
We use an LSTM network to predict the final exam grades
based on the time series feature set containing student sub-
missions for the 50 problems and their problem-solving be-
havior. After the LSTM layer, we have a fully connected
layer with tanh activation function to incorporate the in-
formation from the LSTM layer and improve the model’s

Table 1: Performance comparison for program correctness
prediction.

Model Accuracy Precision Recall F1-score
SVM 0.74 0.75 0.63 0.63
KNN 0.75 0.75 0.66 0.70

XGBoost 0.78 0.76 0.77 0.76
code2Vec 0.81 0.84 0.83 0.83
ASTNN 0.83 0.82 0.78 0.80
SANN 0.87 0.86 0.88 0.87

expressiveness. Finally, we have a dense layer to predict the
final exam grade of a student based on the programming
submissions.

5. EXPERIMENTS AND RESULTS
In this section, we present the experts’ evaluation of our
framework to assess its effectiveness for identifying logical
errors. We further demonstrate our framework’s relative
effectiveness in picking the logical errors from different cate-
gories (i.e., compilable syntactic, strategic, and conceptual).
Lastly, we highlight the utility of the code vectors enriched
with logical error information in capturing students’ learn-
ing progressions by presenting the experimental results of
student models that predict students’ short-term and long-
term successes.

5.1 Logical Error Identification Effectiveness
Before extracting logical errors from students’ incorrect pro-
grams, we show the effectiveness of our modified SANN
model in predicting program correctness compared to base-
line models. We trained the modified SANN model based on
the correctness of the student submissions for the 50 prob-
lems (correct: 18, 787, incorrect: 28, 977), framing it as a
binary classification task. The dataset was split 80:10:10 for
training, validation, and testing in a stratified way due to the
imbalanced nature of the dataset. Key training parameters
included setting the embedding size of the code vectors to
128, training over 100 epochs with an early stopping of 20 to
avoid overfitting, and utilizing the Adamax optimizer (learn-
ing rate = 0.001) based on the validation data. The entropy
regularization weight was carefully tuned to a minimal value
(3.5× 10−5), ensuring that it did not dominate the primary
prediction loss and consequently degrade overall predictive
performance. To ensure our modified SANN model can suc-
cessfully analyze students’ code, we conducted comparative
evaluations against several existing models from the litera-
ture. These models include code2vec [2] and ASTNN [70],
both AST-based code representational models and a few tra-
ditional ML models. Table 1 shows that our modified SANN
model outperformed the other models with the highest ac-
curacy, precision, recall, and F1-score with values of 0.87,
0.86, 0.88, and 0.87, respectively. This demonstrates that
our modified SANN model can effectively analyze students’
programs.

To evaluate the effectiveness of our model on logical error
identification, we calculated recall for the caughtSpeeding

problem through expert evaluation. Our framework identi-
fied 96% of the logical errors from all the code (with an at-
tention threshold of 20%). Next, we calculated the ability of
our framework to identify multiple errors from an incorrect
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submission. In this evaluation, we marked the identification
of a program’s logical errors as incorrect if our framework
missed at least one of the logical errors present in the code.
This means that if there were multiple errors, for example,
three, and our framework identified only two of them, we
marked it as an incorrect identification. From the expert
labels, the maximum number of logical errors in an incor-
rect program was 10, and the minimum was 1. The average
number of logical errors was 2.6. The recall of identifying all
logical errors from incorrect solutions using this process was
86%. We also examined the logical errors from different cat-
egories labeled by the experts. Our model achieved recalls
of 100% in identifying compilable syntactic errors, 95% in
identifying strategic errors, and 94% in identifying concep-
tual errors from all the incorrect submissions. Using expert
evaluation, we also calculated the precision of the model,
which indicates the proportion of important subtrees identi-
fied by the model that contain errors. For the caughtSpeed-

ing problem, the precision of the model was calculated to be
90%, highlighting its ability to pinpoint the erroneous sub-
structures within the code effectively. This precision metric
further suggests the model’s effectiveness in identifying rel-
evant code segments contributing to logical errors.

To further evaluate the robustness of our framework, we ex-
panded the evaluation of our framework to four additional
problems: redTicket, countCode, sum13, and canBalance,
which cover topics of loops, strings, and arrays. These prob-
lems were selected to capture a range of logical errors within
the constraints of the dataset and of varied complexity. Due
to the time and resource limitations associated with expert
evaluation, we focused on 200 incorrect student submissions
per problem. As shown in Table 2, the framework achieved
high recall across the problems, ranging from 83% to 97%.
The precision of the model for the four new problems was
calculated in the range of 82% to 92%. These recall and pre-
cision values indicate that most errors are being accurately
identified. However, the model also highlights some subtrees
of incorrect submissions that do not contain errors. Prelim-
inary investigation suggests that these highlighted segments
sometimes relate to code optimization or efficiency improve-
ments. Additionally, some subtrees pertain to essential pro-
gramming constructs that are necessary for correctly solving
the given programming task. These observations point to
future research exploring the connection between the high-
lighted code segments and students’ knowledge state, offer-
ing deeper insights into the progression of students’ coding
abilities.

Baseline Comparison
Several tools have been designed to detect errors in student
code, but most either do not provide explainable outputs,
such as those based on LLMs, or rely on test cases or pre-
defined rubrics to determine programming errors. We focus
our comparisons on explainable approaches that do not re-
quire any test cases or rubrics. We developed a naive base-
line model that predicts the average number of errors per
problem for comparison. Using Root Mean Squared Er-
ror (RMSE) as the evaluation metric, the naive baseline
achieved 1.65, while our framework outperformed it with
an RMSE of 0.45. To compare the performance of our ap-
proach further, we considered another explainable model,
code2vec [2, 62], which splits ASTs into different code paths

using an attention network. A code2vec model was trained,
and the code paths were extracted for the incorrect solutions
to the caughtSpeeding problem. Due to the labor-intensive
nature of expert labeling, we utilized GPT-4o-mini, inspired
by recent literature using LLMs as evaluators [49, 12]. To
ensure a consistent baseline comparison, GPT-4o-mini was
used to evaluate the outputs of our model as well. We
employed few-shot prompting, providing the LLM with ex-
amples of human-labeled data to facilitate in-context learn-
ing [11]. Based on the evaluation, code2vec achieved a recall
of 43% and a precision of 37%. Our framework outperformed
code2vec with a recall of 97% and a precision of 85%.

5.2 Tracing Student Knowledge
We used code vectors extracted from the modified SANN
model to improve the original DKT model [54] for knowl-
edge tracing. We hypothesize that the extracted code vec-
tors’ implicit embedding of logical error information would
contribute to tracing student knowledge and be effective in
predicting future submission success. We implemented the
original DKT model with an LSTM network and incorpo-
rated code vectors with the DKT inputs. We used student
submissions for the 50 problems for the experiment. The
train-validation-test split was 80:10:100. The split was done
at the student level to avoid overlap between the different
splits. We used Keras-tuner4 to tune the model’s hyperpa-
rameters and set the number of neurons of the LSTM model
to 200, a dropout of 0.2, and a learning rate of 0.005.

We calculated the AUC score to measure the performance
of our modified DKT model with code vectors in predict-
ing students’ future success in upcoming attempts to solve
a problem. We compared the performance of the original
DKT model against our approach by training on all of the
problems. Our approach showed a higher AUC score of
72.45% than the original DKT model (65.87%). Table 3 also
shows assignment-wise AUC scores for the models, including
Code-DKT [60], which was trained for single assignments.
The experimental results suggest that our approach shows
significant potential in improving deep knowledge tracing,
with about 10% higher AUC score than the original DKT.
For perspective, our improvement over the original DKT
(10%) can be compared to Code-DKT’s 3-4% improvement
on CodeWorkout [60] or SAINT+’s 2.76% improvement on
EdNet [13].

5.3 Predicting Student Performance
We employed code embeddings from our model to predict
students’ final exam grades based on their programming
submissions across the 50 problems in the course curriculum.
Predicting a student’s final exam grade necessitates compre-
hensive information on their programming submissions. We
fed sequential code vectors to train an LSTM-based student
performance prediction model to forecast final exam grades.
This approach enables us to evaluate the effectiveness of the
generated code vectors in encapsulating sequential insights
regarding students’ programming proficiency and learning
trajectory. We included several baseline models to gauge
our method’s performance. These included a no-skill model
(predicting the average of the final exam grades), Linear
Regression, Lasso Regression, SVM, and Gaussian Process

4https://keras.io/keras tuner/
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Table 2: Recall (%) and precision (%) of the performance on different problems.

Problem All error (Recall) Syntactic (Recall) Strategic (Recall) Conceptual (Recall) Precision
caughtSpeeding 96 100 95 94 90
redTicket 90 100 85 96 88
countCode 97 100 85 96 82
sum13 83 100 93 76 90
canBalance 92 100 98 85 92

Table 3: Performance (AUC%) comparison for knowledge tracing. Significant improvements of SANN-DKT over DKT are
marked with *(p < 0.05), **(p < 0.01), and ***(p < 0.001).

Model A1 A2 A3 A4 A5 All assignments
DKT 71.24 73.09 76.84 69.16 75.14 65.87

Code-DKT 74.31 76.56 80.4 72.75 79.14 -
SANN-DKT 80*** 79.08** 79.8* 81.2*** 82.75** 72.45**

Table 4: Students’ final exam grade prediction.

Model RMSE (std) R2 (std)
no-skill 0.25 (0.02) -0.01 (0.02)
Linear 0.38 (0.3) -0.27 (0.30)
Lasso 0.19 (0.03) 0.19 (0.20)
SVM 0.18 (0.03) 0.35 (0.10)
GPR 0.21 (0.02) 0.07 (0.08)

LSTM-code2vec 0.23 (0.02) 0.09 (0.16)
Proposed model 0.17 (0.03) 0.50 (0.10)

Regression (GPR). For the non-sequential models, we flat-
tened the code features for all 50 problems for an indi-
vidual student to accommodate the inputs. Additionally,
we incorporated a baseline model (LSTM-code2vec) from
prior literature [68]. The hyper-parameters for the mod-
els were set as follows: for Lasso Regression, α was chosen
from {1e−10, 1e−8, 1e−6, 1e−4, 1e−2, 0.1, 1, 2, 5}; for SVM,
the regularization parameter C was selected as 1 from the
set {0.001, 0.1, 1, 10} and the kernel was set to “rbf” from
{“linear”, “poly”, “rbf”}; for GPR, the kernel was set to
“rbf”, with a length scale of 10 selected from {0.5, 1, 10}
and noise level of 5 from {0.5, 1, 5}. Additionally, we tuned
our model based on the cross-validation results. We set the
number of neurons in the LSTM model to 512 and the num-
ber of neurons in the fully connected layer to 128 based on
the model’s performance on the validation data.

To evaluate model performance, we measured RMSE to as-
sess the deviation between predicted and actual final exam
grades. RMSE is particularly suitable as it penalizes larger
errors more heavily, providing insights into model accuracy
[68]. Additionally, we reported the coefficient of determina-
tion (R2), which indicates how well the independent vari-
ables explain the variation in final exam grades. Together,
these metrics offer a comprehensive view of model perfor-
mance. The results of student performance prediction are
presented in Table 4. Our LSTM model outperformed other
models with the lowest RMSE of 0.17 and the highest R2

of 0.50, demonstrating its superior predictive capability for
student final exam grades. These findings suggest the po-
tential of our modified SANN-based code representations in
encoding not just the syntactic and semantic elements of

programming but also the effectiveness in capturing the la-
tent states of students’ learning, which can offer insights into
students’ learning progression during the semester.

6. DISCUSSION
Logical errors provide insight into students’ challenges when
learning and applying programming skills, including reveal-
ing potential underlying misconceptions. This insight can
guide automated adaptive support to identify and address
students’ struggles with learning, broadening access to ef-
fective instructional support for introductory programming
students. Novice programmers often struggle to identify
logical errors, in part due to limited debugging experience
and potential misconceptions in their programming knowl-
edge [20, 50]. Our approach for automated identification of
logical errors from students’ programming submissions uses
only program correctness information. This lays the foun-
dation for building a generalized, scalable model that can
reliably analyze students’ programs without significant hu-
man input, such as rubrics or designed test cases. An impor-
tant characteristic of our approach is its ability to explain its
decision-making process, contributing to the trustworthiness
of its decisions.

Misconceptions are the most common source of logical errors
[19]. Additionally, incorporating misconception information
can significantly improve student modeling [45]. We demon-
strated the relationship between embedded programming
code vectors implicitly encompassing students’ competen-
cies and logical errors, and students’ learning by integrating
students’ consecutive embedded problem-solving attempts
in an LSTM for short-term (next attempt) and long-term
(final exam grade) success. Predicting final exam scores and
predicting the next attempt success from behavioral data
has been challenging in the learning analytics field [39, 68,
60]. We hypothesize that this is because most data used
in such analysis are metadata (e.g., number of submissions,
time on task, detailed rubrics), dynamic assessment of stu-
dents’ programming, such as test-case results [19], or code
context without adequate competency and misconception in-
formation. Therefore, there is not enough resemblance be-
tween the data used for predicting students’ performance
and tracking students’ learning progression. On the other
hand, vectors that are directly trained on students’ pro-
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grams and in accordance with their correctness stand a bet-
ter chance of capturing similar information about students’
understanding of programming concepts and skills as tested
through programming questions on the final exam [45].

In this paper, we focused on identifying logical errors and
demonstrating how incorporating logical error information
enhances student modeling, specifically by improving pre-
dictive accuracy in knowledge tracing. This approach intro-
duces new possibilities for personalized learning and inter-
vention strategies. By leveraging information directly from
students’ programming submissions, these predictive models
can provide educators with valuable insights into students’
academic progress and performance. This information can
be used to identify students at risk of academic failure and
enable educators to provide targeted support and interven-
tions to help these students succeed [60].

While this work advances the automated identification of
logical errors in students’ programming submissions, it is
important to acknowledge several limitations of this study.
First, the dataset used in this study consisted of only Java
programs, which were comparatively short in length (on av-
erage, 10 − 20 statements). However, this is typical of CS1
programming skill development and practice tasks. Second,
we discarded uncompilable programs due to the need for
AST generation, consistent with the literature [61, 62], re-
sulting in the loss of a portion of our data. Third, we did
not consider logical errors stemming from misinterpretation
and carelessness due to the inherent difficulty in identifying
these latent constructs from behavioral data. Tracing stu-
dents’ learning progress across multiple solutions can shed
light on the underlying reasons behind their behavior. For
example, if a model traces students’ problem-solving behav-
ior across multiple problems and recognizes a high probabil-
ity of a student’s proficiency with regard to a programming
construct, a later mistake related to this construct can rep-
resent carelessness or misinterpretation. Finally, during our
evaluation, we identified a small subset (less than 1%) of
incomplete submissions, lacking one or more critical compo-
nents of the required functionality. This case can stem from
students’ carelessness or misinterpretation, or even from the
trait of writing a portion of the code, submitting it, and
checking whether it is correct or not. These submissions still
contained some correct segments and did not necessarily ex-
hibit logical errors in the existing code. Previous research
on logical error detection has often overlooked such cases.
Interestingly, our framework highlighted substructures in-
dicative of missing constructs, suggesting the potential to
extend our study. Specifically, we could integrate additional
contextual information regarding core functionalities of the
programming tasks rather than relying solely on dynamic
test cases. This extension would allow us to detect missing
components more effectively and provide personalized hints
and feedback, thereby addressing a broader range of student
difficulties.

7. DESIGN IMPLICATIONS
By encoding program snippets into latent vectors, the frame-
work we have introduced can efficiently compare student
submissions, identifying similar errors while ignoring super-
ficial differences. This can enable instructors to understand
the common error patterns in a large number of student sub-

missions [62]. This can also enable instructors to provide
targeted feedback at scale by designing feedback for a rep-
resentative sample of solutions with regard to their encom-
passing logical errors propagated for similar solutions [63].

Beyond immediate feedback, the framework can support
personalized learning by recommending targeted practice
problems and instructional materials based on students’ er-
rors. By linking incorrect submissions to a repository of
similar problems, students could receive recommendations
on exercises to reinforce concepts where they have strug-
gled the most. Worked examples, particularly beneficial
for novice programmers, can be suggested to highlight cor-
rect approaches and common pitfalls, further scaffolding stu-
dent learning [30, 8, 27]. Additionally, tracking students’
problem-solving patterns allows for intelligent student mod-
eling, enabling dynamic adjustments to learning pathways
and problem difficulty [33]. This personalized, data-driven
approach can promote deeper engagement, reduce unpro-
ductive struggles, and ensure continuous learning progres-
sion, making programming education more effective, reli-
able, and scalable.

8. CONCLUSION AND FUTURE WORK
Timely identification and intervention in students’ program-
ming struggles are crucial for enhancing engagement, learn-
ing, and, ultimately, retention. However, the persistent lack
of resources to provide students with individualized instruc-
tional support poses a significant challenge in providing stu-
dents with the crucial help they need while learning how
to program. Automated and explainable data-driven ap-
proaches can help fill this gap by providing struggling stu-
dents with adaptive support and assistance through reliable
frameworks that address their individual needs. Current
methods either rely heavily on manual effort to annotate
the data or use complex large language models to provide
support that lacks reliability and explainability. For effective
integration in the classroom, we need to have code analysis
methodologies that are reliable and explainable and require
minimal input from human experts while still providing ac-
tionable insights for instructors and students.

This paper presented a framework for automated, explain-
able, and scalable identification of logical errors, leverag-
ing their implicit presence in program embeddings to pre-
dict students’ performance in programming courses. We
accurately identified logical errors by training a modified
SANN model on student programming submissions. Fur-
thermore, we achieved promising results in predicting stu-
dents’ short-term (next problem attempts) success with 10%
improvement over the original DKT and long-term (final
exam grades) success in the course with 5% improvement
over the best-performing baseline. Our findings demonstrate
the potential of our framework in identifying student errors
from their programming submissions to capture intricate de-
tails on their programming learning progression. This capa-
bility offers promise for seamless integration into adaptive
instructional technologies, enabling automated and person-
alized scaffolding, including feedback and recommendations
to support student learning experiences and outcomes.

This work suggests several promising directions for future
work. First, it will be instructive to investigate how to au-
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tomatically map student logical errors to underlying miscon-
ceptions by analyzing program elements and understanding
the deficiencies in students’ incorrect submissions. Second,
exploring a misconception tracing approach that leverages
multiple occurrences of related logical errors across student
programs can enhance our understanding of students’ learn-
ing challenges and inform targeted interventions to effec-
tively address misconceptions. Third, integrating the frame-
work into adaptive learning environments to provide stu-
dents with personalized feedback and opportunities for mas-
tery learning can reveal how to most effectively improve stu-
dent learning experiences and outcomes in computer science
education.
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[38] M. Karlovčec, M. Córdova-Sánchez, and Z. A. Pardos.
Knowledge component suggestion for untagged
content in an intelligent tutoring system. In
Proceedings of the International Conference on
Intelligent Tutoring Systems, pages 195–200, 2012.

[39] G. Kennedy, C. Coffrin, P. De Barba, and L. Corrin.
Predicting success: how learners’ prior knowledge,
skills and activities predict mooc performance. In
Proceedings of the 5th International Conference on
Learning Analytics and Knowledge, pages 136–140,
New York, NY, USA, 2015. Association for
Computing Machinery.

[40] A. J. Ko and B. A. Myers. Development and
evaluation of a model of programming errors. In
Proceedings of the IEEE Symposium on Human
Centric Computing Languages and Environments,
pages 7–14. IEEE, IEEE, 2003.

[41] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. Biometrics,
33(1):159–174, 1977.

[42] Y. Lee, S. Jeong, and J. Kim. Improving llm
classification of logical errors by integrating error

101



relationship into prompts. In Proceedings of the
International Conference on Intelligent Tutoring
Systems, pages 91–103. Springer, 2024.

[43] Y. Liang, T. Peng, Y. Pu, and W. Wu. Help-dkt: an
interpretable cognitive model of how students learn
programming based on deep knowledge tracing.
Scientific Reports, 12(1):4012–4023, 2022.

[44] M.-h. Liu. Blending a class video blog to optimize
student learning outcomes in higher education. The
Internet and Higher Education, 30:44–53, 2016.

[45] R. Liu, R. Patel, and K. R. Koedinger. Modeling
common misconceptions in learning process data. In
Proceedings of the 6th International Conference on
Learning Analytics and Knowledge, pages 369–377,
New York, NY, USA, 2016. Association for
Computing Machinery.

[46] J. Marsden, S. Yoder, and B. Akram. Predicting
Student Performance with Control-flow Graph
Embeddings. In B. Akram, T. W. Price, Y. Shi,
P. Brusilovsky, and S. I. Han Hsiao, editors, 6th
Educational Data Mining in Computer Science
Education (CSEDM) Workshop, pages 32–40,
Durham, UK, 2022.
https://doi.org/10.5281/zenodo.6983402.

[47] A. C. Martin, K. M. Ying, F. J. Rodŕıguez, C. S.
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