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ABSTRACT

Educators evaluate student knowledge using knowledge com-
ponent (KC) models that map assessment questions to KCs.
Still, designing KC models for large question banks remains
an insurmountable challenge for instructors who need to an-
alyze each question by hand. The growing use of Generative
AT in education is expected only to aggravate this chronic
deficiency of expert-designed KC models, as course engineers
designing KCs struggle to keep up with the pace at which
questions are generated. In this work, we propose KCluster,
a novel KC discovery algorithm based on identifying clusters
of congruent questions according to a new similarity metric
induced by a large language model (LLM). We demonstrate
in three datasets that an LLM can create an effective met-
ric of question similarity, which a clustering algorithm can
use to create KC models from questions with minimal hu-
man effort. Combining the strengths of LLM and clustering,
KCluster generates descriptive KC labels and discovers KC
models that predict student performance better than the
best expert-designed models available. In anticipation of
future work, we illustrate how KCluster can reveal insights
into difficult KCs and suggest improvements to instruction.

Keywords
Knowledge Component, Large Language Model, Clustering

1. INTRODUCTION

Real knowledge is to know the extent of one’s ignorance—
as Confucius reflected on his epistemology. One way edu-
cators can evaluate student knowledge, according to the
Knowledge-Learning-Instruction (KLI) framework [23], is by
developing cognitive models that map assessment items (or
questions) to knowledge components. A knowledge compo-
nent (KC) is a unit of cognitive function or structure that a
student acquires through learning [23], representing specific
information, concepts, or skills that a student needs to solve
a task or a problem—a student must know how to “use guide
words” before determining whether “guess” can be found on
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a dictionary page marked with “garage” and “goose”. With
a well-designed cognitive model (or KC model), instructors
can divide a complex topic into simpler and more manage-
able milestones that help track student learning [9], identify
learning sub-goals with which students struggle [46], and or-
ganize instruction events to promote knowledge transfer [28].

Despite the numerous benefits of a well-designed KC model,
mapping assessment questions to KCs still remains an in-
surmountable challenge for instructors and instructional de-
signers who are overwhelmed by the sheer amount of ques-
tions that each need to be analyzed by hand. Cognitive
Task Analysis (CTA) [7], the de facto best manual approach
to KC discovery, incurs considerable labor and time costs
that prevent schools and teachers from gaining equitable ac-
cess; therefore, many datasets that naturally occur from stu-
dents interacting with educational technologies lack expert-
designed KC models. For example, nearly 60% of the 4,639
datasets available in DataShop [47]—the largest educational
data repository—do not contain more significant KC models
than the default Single-KC and Unique-step models that
are only intended to serve as benchmarks'. This absence of
expert-designed KCs limits the analytics that can be con-
ducted and the educational insights that such data can pro-
vide. Furthermore, we expect that the increasing adoption
of Generative Al (GenAl) in education can only exacerbate
this deficiency, as learning engineers developing KCs struggle
to keep up with the pace at which questions are produced by
GenAlI and become even less likely to provide quality KCs.

This chronic deficiency of expert-designed KCs in large ques-
tion banks, aggravated by the accelerating use of GenAl in
education, calls for a new effective KC discovery algorithm
that can automatically extract KCs from abundant question
content with minimal burden on instructors. A notable ap-
proach, SMART ([35], extracts KCs from instructional con-
tent based on the assumption that a cluster of linguistically
similar texts shares the same KC. SMART applies k-means
clustering to the TF-IDF embeddings of instructional texts
and obtains descriptive KC labels using a keyword extrac-
tion algorithm called TextRank [36]. Although shown in two
science datasets to create KC models that predict student
responses better than expert-designed models do, SMART
still requires a course engineer to specify the number of KCs
to discover—a hyperparameter that the authors reported
has a statistically significant impact on how well SMART

!Based on DataShop administrators’ response to our inquiry
in December 2024
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fits to the student data; moreover, identifying each KC with
short keywords, SMART tends to produce coarse labels that
result in identical labels for what experts believe should be
separate KCs. A more recent approach [37] uses a large lan-
guage model (LLM) to identify KCs for multiple-choice ques-
tions. The authors implemented two strategies—simulated
expert and simulated textbook—that encourage the LLM
to generate descriptive KC labels based on question con-
tent. Although in an evaluation study involving three par-
ticipants, the majority preferred the LLM-generated KC la-
bels to those crafted by experts for more than 60% of the
evaluated questions, this LLM-based approach, contrary to
SMART, produces slightly different labels for questions that
experts believe should belong to the same KC, as acknowl-
edged by the authors. The two current divergent approaches
to KC discovery beg the question: Will a hybrid of clustering
and LLM produce synergy in extracting KCs from questions?

In this work, we propose KCluster?, an unsupervised KC
discovery algorithm based on identifying clusters of congru-
ent questions according to a novel similarity metric induced
by an LLM. By extending word collocations to questions,
we developed a novel concept called question congruity that
quantifies the similarity of two questions by the likelihood of
their co-occurrence, and devised an algorithm that uses LLM
as a probability machine to compute the required text prob-
abilities without retraining or finetuning the LLM. Combin-
ing the strengths of LLM and clustering, KCluster uses Phi-
2 [20] (an LLM) to measure question congruity and generate
descriptive KC labels, and uses affinity propagation [14] (a
clustering algorithm) to identify clusters of congruent ques-
tions, each corresponding to a KC. We validated KCluster
on three datasets related to science and e-learning, two of
which contain student response data, giving affirmative an-
swers to our three research questions (RQs):

e RQ-1: Does KCluster align with expert-designed KC mo-
dels? (Section 5.1)

e RQ-2: Does KCluster enable accurate prediction of stu-
dent responses? (Section 5.2)

e RQ-3: Does KCluster reveal insights about problematic
KCs? (Section 5.3)

Through our comprehensive evaluation comparing KCluster
to three other competitive methods on large question banks
and student data, we demonstrate that an LLM can create
a new, effective measure of similarity between two arbitrary
questions, which a clustering algorithm can use to extract
KCs from questions automatically, without elaborate retrain-
ing, finetuning, or prompt engineering. The main contribu-
tions of our research include: 1) a novel measure of question
similarity, 2) an algorithm to compute the new similarity
metric using LLM, and 3) an effective approach to extract
descriptive KC labels from question content.

2. LITERATURE REVIEW

A comprehensive review of the literature on KC discovery is
necessary to show how KCluster connects to and builds on

2Pronounced the same as “cluster”, KCluster is freely avail-
able at https://github.com/weiyumou/KCluster.
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current approaches. We classify the approaches into three
categories based on the amount of manual work required and
review them in decreasing order of human involvement.

2.1 Manual Approaches

Manual approaches rely solely on the expertise of an instruc-
tional designer to identify KCs. Although a teacher could
review and label each question with a KC, a more system-
atic approach is through Cognitive Task Analysis (CTA) [7],
where instructional experts are asked to elucidate their men-
tal processes in solving problems during a think-aloud inter-
view. A notable CTA approach is Difficulty Factors Assess-
ment (DFA) [19, 26], based on the assumption that stu-
dents should perform similarly on questions concerning the
same KC—therefore, any performance discrepancy is due to
a hidden KC yet to be discovered. For example, using DFA,
researchers identified a new KC (about comprehending the
symbolic representation of quantitative relations) that ex-
plained why beginning algebra students performed worse on
algebra problems presented with mathematical symbols than
on problems embedded in a hypothetical story, illuminat-
ing the effect of problem presentation on learning that had
been overlooked [26]. Although CTA is known to improve
instruction [24], the outcome is highly sensitive to the CTA
methods used and the instructional context considered [49].
Moreover, CTA relies heavily on experts to make subjective
decisions and therefore incurs considerable labor and time
costs that prevent CTA from scaling to large question banks
readily available with GenAl. (Semi-)automated approaches,
however, alleviate the scalability problem by minimizing hu-
man involvement and learning KC models from data.

2.2 Semi-automated Approaches
Semi-automated approaches refine an expert-designed KC
model with data-driven methods. A notable approach [46]
extends DFA with a statistical model of student data to
identify problematic KCs worth improving; by analyzing
a difficult KC identified from data, researchers uncovered
three hidden KCs for geometry area learning and obtained
a better prediction of student performance. In a sequel [27],
researchers reaffirmed the efficacy of this data-driven DFA
approach by redesigning a cognitive tutor for teaching geo-
metry and showing improvements in student learning. An
alternate approach, Learning Factors Analysis (LFA) [2],
further automates DFA by using the A* algorithm [43] to
search for better KC models based on a list of difficult fac-
tors that experts think are absent from the current model.
In an evaluation study [25] researchers found LFA improve
KC models across ten datasets of various domains and closed
the development-test-redesign loop in a sequel [33] that re-
designed a tutoring system using LFA-generated insights.
Although semi-automated approaches are grounded on stu-
dent data, they rely on expert-designed KC models to pro-
duce descriptive KC labels, calling for more automated ap-
proaches that eliminate human input.

2.3 Automated Approaches

Automated approaches develop new KC models from scratch
and do not require human input beyond a few hyperparame-
ters. The Q-matrix method [1] and its sequels using matrix
factorization [11, 12, 29] search for a KC model that best
predicts student responses to questions. A closely related



class of approaches discovers KCs as part of a statistical
model learned from data—one method [32] creates KC mod-
els through a DINA model [10], while JAFM [39] and Spar-
FAE [38], both using neural networks, estimate Q-matrices
via an AFM [3] and an IRT model [18]; other similar ap-
proaches have explored Hidden Markov Model [16] and ex-
tended to identifying KCs in programming problems [45].
These automated approaches based on statistical learning,
although capable of identifying KCs without human inter-
vention, still require reference to an expert-designed KC
model to produce descriptive KC labels (otherwise, they
produce nominal labels such as “KC-15”, which provides no
instructional insights); therefore, they are better suited for
unsupervised KC' refinement than automatic KC discovery.

A unique class of automated approaches that can produce
descriptive KC labels without a reference model extracts
KCs from instructional content such as textbooks. For ex-
ample, SimStudent-based approach [30, 31] iteratively as-
sociates predefined skill labels with problem-solving demon-
strations and creates new KC labels if necessary; similarly,
researchers have explored a term-matching approach to ex-
tract concepts from student explanations for math prob-
lems [44]. Another approach, FACE [4], identifies concepts
from adaptive textbooks based on an extensive list of hand-
engineered features. All these approaches, however, require
a list of key skills or concepts specified by experts before-
hand. A notable approach that does not require human in-
put, SMART [35], extracts KCs from instructional texts and
questions by clustering similar texts encoded as TF-IDF vec-
tors. The k-means clustering algorithm was applied to both
the embedding vectors and their cosine similarity, although
no significant differences were observed; the researchers then
applied TextRank [36] to extract keywords from each of
the k clusters to use as KCs. Although SMART was val-
idated on two science datasets to create quality KC models,
it still required an expert to specify k, the number of KCs
to discover, and the keywords identified by TextRank were
so coarse that resulted in duplicate labels for what experts
believe should be distinct KCs. A more recent approach [37]
uses an LLM to identify KCs from multiple-choice questions
by asking the LLM to simulate instructional experts or text-
book authors. Although in a three-subject evaluation study,
the majority of the evaluators showed preference for LLM-
generated KC labels in more than 60% of the evaluated ques-
tions, this approach produces an excessive number of KCs
because, in contrast to TextRank, LLM is so capable that it
generates slightly different labels for questions that experts
believe should belong to the same KC. The two divergent
approaches suggest that clustering, capable of uncovering
latent question structures, and LLM, capable of generating
descriptive KC labels, can form synergy in KC discovery.

3. METHODS

We propose, evaluate, and compare three classes of auto-
mated KC extraction methods, each of which extends the
preceding method and builds upon a large language model
(LLM). The LLM we used in this work is Phi-2 [20] from
Microsoft, a lightweight open-source model trained on high-
quality textbook-like data [17] and potentially suited for ed-
ucational data mining. We used the Phi-2 distribution freely
available through HuggingFace [52] and used PyTorch [40]
for our custom implementation. Phi-2 was deployed to a
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Table 1: The prompt template used in Concept (left) and a
concrete prompt filled with an actual question (right).

Exercise 1: Exercise 1:

{question type}: Multiple Choice:
{stem} Which is the most flexible?
{ a) paper
choices b) ceramic tea cup
} c) clay tile

Answer: {answer} Answer: a) paper

Remark:

The above exercise is a
multiple-choice question
that tests whether the
student understands the
concept of [extracted KC]

Remark:

The above exercise is a
{question type} question
that tests whether the
student understands the
concept of [extracted KC]

computing cluster with access to NVIDIA A40 GPUs.

Although having fewer parameters (2.7B) than most main-
stream models, Phi-2 is ideal for building our KC discovery
algorithms and providing resource-constrained institutions
with equitable access to GenAl tools because it offers a good
balance between performance and affordability [20]. Our
choice of Phi-2 may seem unconventional, when “GPT” has
nearly become synonymous with LLMs. However, we be-
lieve that Phi-2 offers two distinct advantages that make it
a compelling choice for our research. First, Phi-2 is an open-
source model, which allows us to access its hidden states and
output log-probabilities essential for developing our KC ex-
traction methods; as shown in Section 3.3, KCluster requires
us to evaluate the log-probability of any token, whereas the
OpenAl API® only supports the top 20 most likely tokens
that it returns. Second, under modest hardware require-
ments, Phi-2 is overall the best LLM with <10B parame-
ters, outperforming Mistral 7B [21] and Llama-2 13B [50]
in math [8] and coding [5] tasks; smaller or earlier models
like BERT [13] would not have benefited from the extensive
pre-training on large textbook-like corpora that made Phi-
2 potentially suitable for educational tasks. Building our
three KC extraction methods with Phi-2 represents a lead-
ing effort to explore the potential of alternative LLMs for
educational applications, such as KC discovery.

3.1 Concept Extraction

A straightforward application of LLMs to KC discovery is
to extract concepts from questions. In line with previous
work using LLMs [37], we explicitly ask Phi-2 to identify the
key concept that a student must know to answer a question
correctly and treat each concept as a KC. Through exten-
sive prompt engineering, we discovered an effective prompt
template, which allowed us to obtain descriptive and accu-
rate concept labels without elaborate prompting strategies
as used in previous work [37]. Shown on the left of Ta-
ble 1, the prompt template includes special markers to which
Phi-2 is particularly responsive. For example, we discov-
ered that the marker “Exercise 1:” followed by {question
type} prompts Phi-2 to generate a new question in a for-
mat that we now adopt in the prompt template (namely,

3https://platform.openai.com/docs/api-reference/
chat/create#fchat-create-top_logprobs



Table 2: Code for obtaining question embeddings from Phi-2; speacial markers like Exercise 1 are passed to the text parameter
of the tokenizer and question texts to text_pair. Only embeddings of the question texts are obtained.

inputs =

tokenizer (text=["Exercise 1:..."], text_pair=["Which is the..."],

return_tensors="pt", return_token_type_ids=True, padding=True).to(device)
mask = inputs.pop("token_type_ids").bool() # useful for distinguishing markers from question content

torch.cumsum(mask.sum(-1), dim=-1).tolist() # the starting index of each question’s text
model (**inputs, output_hidden_states=True).hidden_states[-1] # a loaded Phi-2 model

indices =

last_states =

chunks = torch.vsplit(last_states[mask], indices)[:-1]

embeddings = torch.stack([torch.mean(c, dim=0) for c in chunks], dim=0)

stem, choices, and Answer:). Similarly, “Remark:” encour-
ages Phi-2 to write a comment starting with “The above
exercise...” about the preceding question; therefore, we ex-
panded the remark with more explicit instructions asking
Phi-2 to complete generation with the key concept. None of
these special markers are officially documented [20], but are
discovered from our extensive prompt engineering. On the
right of Table 1 shows a concrete prompt derived from the
template by replacing the variables in curly brackets with
specific values. We denote this method as Concept.

In generating the key concepts, we adopt a greedy decoding
strategy, in which Phi-2 always selects the most probable to-
ken at each generation step. Moreover, we use beam search
to maintain five candidate concepts during generation and
apply a length penalty [53] to encourage Phi-2 to generate
succinct concepts—for the example prompt shown in Ta-
ble 1, Phi-2 produced “flexibility”. Generation stops when a
period or comma appears, and we select the best candidate
with the highest probability. As shown in Section 5, using
concepts as KCs, Concept is a competitive baseline that pro-
duces KC labels in reasonable alignment with expert-crafted
ones; it is also used by other KC discovery algorithms de-
scribed hereinafter to create descriptive KC labels.

3.2 Semantic Embedding

A known limitation of Concept, as encountered in previous
work [37], is that the LLM can generate slightly different KC
labels for questions to which an instructional expert would
assign the same KC—the single and plural forms of the same
concept (gas vs. gases), among other trivialities, can result
in redundant labels that could have been merged. One ap-
proach to reducing such redundancy, as used in SMART [35],
is to group similar instructional items by applying a cluster-
ing algorithm to their semantic embeddings and assign each
group to a KC. Depending on which item we convert to em-
beddings, we introduce two embedding-based methods as
enhanced baselines.

e Concept embedding: A natural extension to Concept is
to encode the key concepts extracted by Phi-2 as vectors
and assign questions to KCs based on concept similarity.
Since each concept is a short phrase, we use a state-of-the-
art sentence embedding model, Sentence Transformer [41]
with “all-mpnet-base-v2” backend that offers the best
quality, to produce a vector of 768 dimensions for each
concept. We call this method Concept-emb.

e Question embedding: An alternative is to encode the ques-
tions, which contain more information than the concepts,
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and group the questions based on question similarity. We
present questions to Phi-2 using the same prompt tem-
plate shown on the left of Table 1 (without Remark), and
take the 2560-dimensional average vector of Phi-2’s last
hidden states before the language-modeling head as ques-
tion embeddings (a code snippet is listed in Table 2 for
reference). We call this method Question-emb.

Since the two methods produce embeddings of different sizes,
to ensure a fair comparison, we further reduce the embed-
dings to their similarities. As shown in SMART [35], using
similarity rather than embeddings does not affect the qual-
ity of the resulting KC models—if not more advantageous.
In particular, we use negative cosine distance*, defined as
cos(x,y) — 1 for two vectors x and y, to quantify the simi-
larity between two embeddings (the values range from -2 to
0, with identical vectors having the largest value of 0).

After we obtain the similarity matrix of the embeddings, we
use clustering to identify questions that share similar con-
cepts (as in Concept-emb) or content (as in Question-emb).
The clustering algorithm we used is affinity propagation [15],
which does not require the number or the size of the clusters
to be pre-specified; instead, it takes as input a matrix de-
scribing the affinity between input items and discovers item
clusters through optimization. Each cluster is uniquely iden-
tified by its central item called “exemplar”, and the user can
specify an initial preference for each input item to be an
exemplar. The algorithm is so named because it propagates
between items two kinds of messages derived from the affin-
ity matrix: at every iteration, an item 7 sends to another
item j a number (the message) reflecting the responsibility
for i to choose j as an exemplar over others, and receives
from j another number indicating j’s awvailability to be an
exemplar of ¢ with respect to other items that have chosen j
as an exemplar. In essence, affinity propagation stimulates
the items to compete for being an exemplar and halts when
the exemplars (and the clusters) stop changing. In addition
to not requiring the number of clusters be specified, affinity
propagation accepts affinity measures that are not necessa-
rily a mathematical metric, allowing the use of task-specific
measures that are expected to result in better performance.

We set a uniform preference (using the median affinity of all
pairs of input, by default) for each concept or question to be
an exemplar. At convergence, affinity propagation produces
a nominal cluster label for each input item and a one-to-one
mapping of exemplars to clusters. While questions within a

4Tt is equivalent to cosine similarity but more compatible
with other negative distances that future work may explore.



; iinputs = tokenizer (text=P, text pair=C,

mo [P1,P25 -+ 5Pl + [e1,. . iCh—1 Ck]
| |

%Output . | | log Pr(c1|P) | ‘ l |logPr(CkIC<k,7’)| |
N I'd

log Pr(C|P) = Zi log Pr(ci|C<i, P)

:i mask = torch.logical not (inputs.pop("token_ type ids"))
i labels =

return_tensors="pt", return_token_type_ids=True,§
padding=True) .to (device) ]

torch.masked fill (inputs["input_ids"], mask,

-100) i

cross_entropy(logits([..., :-1], labels[:, 1:],
reduction="none", ignore_index=-100)
= -torch.sum(loss, dim=-1

Figure 1: An illustration of the algorithm for computing log Pr(C|P), along with three code snippets for each key step

cluster are assigned the same KC, for both Concept-emb and
Question-emb, we label each question with the concept of
its exemplar that we obtained from Concept. In practice, we
always run Concept for all questions before running either
embedding-based method to ensure that every cluster has a
descriptive label, whichever questions become exemplars. If
two exemplars have identical concepts, two previously sepa-
rate KCs may be (unintentionally) merged, but practition-
ers can always choose whether or not to merge those KCs,
depending on whichever leads to better performance. As
shown in Section 5, using a classic similarity measure (neg-
ative cosine distance), Question-emb significantly outper-
forms Concept and produces less redundant KC labels.

3.3 KCluster

Using the classic cosine-based metric to measure concept
or question similarity misses an opportunity to fully exploit
an LLM’s capability—after all, producing question embed-
dings is perhaps not the best use of an LLM. In addition
to generating text as in Concept, a large language model is
also an exceptional “probability machine” that can evalu-
ate the probability of an arbitrary piece of text [22], even
without retraining or finetuning. Our main KC extraction
method, KCluster, retains the use of affinity propagation
to group similar questions, but extends Question-emb with
a new measure of question similarity based on text proba-
bilities. We introduce question congruity, a new similarity
metric derived from quantifying the likelihood of question
collocations, and describe an algorithm that uses Phi-2 to
compute the required probabilities.

3.3.1 Collocating questions are congruent

In a coherent speech, words are not uttered haphazardly but
join other congruent words to form collocations (e.g., “data
mining”); therefore, if one word makes the other more likely
to appear in a sentence than otherwise, the two words are
congruent. Since questions are made up of words, the notion
of congruity can be extended from words to questions. Based
on instructional design principles, we postulate that, as two
words collocate in a sentence to form a phrase, two questions
can co-occur (in a worksheet or an exam paper) if they belong
to the same unit, the same lesson, or better still, the same
KC'. To quantify the collocation of two questions, ¢s; and g,
we consider how much more likely the presence of ¢ makes
¢s to appear, by evaluating the change in log-probabilities
of ¢s with and without ¢;, and defining:

(1

A(gs, qt) = log Pr(gs|g:) — log Pr(gs)
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The underlying principle is similar to that for words: if one
question significantly increases the other question’s likeli-
hood of occurrence, in which case A(gs, ¢¢) is large positive,
the two questions must be highly congruent—they may use
a similar language, concern a single topic, or come from
the same textbook chapter, all alluding to a shared KC; on
the other hand, if A(gs,q:) is close to zero or negative, in
which case the presence of ¢; does not improve (or even
hurts) the likelihood of ¢s appearing, the two questions are
hardly congruent—they are unlikely to belong to the same
KC, since they do not even co-occur often.

Equation 1 only partially quantifies question congruity as it
assumes that ¢; precedes gs; however, two questions can also
co-occur (and be congruent) when, conversely, gs precedes
qt- Therefore, we take a step further to define question con-
gruity formally as a symmetric quantity that equally weighs
both cases of question collocation:

L (A @) + Alge, 00)]

; 2)

Although we have independently derived it from analyzing
question collocations, our notion of question congruity coin-
cides neatly with the established concept of pointwise mutual
information (PMI) between words [6], which has an equiva-
lent mathematical form; by developing KCluster, we extend
PMI to questions, which are more intricate than words.

Congruity(gs, ¢q:) :=

3.3.2 LLMs are exceptional probability machines
Computing the PMI between words requires counting collo-
cations; counting is, however, infeasible for calculating ques-
tion congruity as two questions rarely, if at all, co-occur more
than once in a collection of questions (e.g., a question almost
never repeats itself in a well-designed exam). Instead, given
a novel question pair, we need to extrapolate their colloca-
tion probabilities (in the form of log Pr(gs|¢:) and log Pr(gs))
from existing data. LLMSs, trained on massive corpora of di-
verse genres, are perfect for implementing question congruity
because of their native ability to evaluate sophisticated text
probabilities [22]. In this section, we describe an algorithm
that uses Phi-2 to compute question congruity.

As an LLM, not only can Phi-2 extend a prompt (as in Sec-
tion 3.1), but it can also evaluate the probability of alterna-
tive continuations to a given prompt. Let P := [p1,p2, ..., Dn]
denote a prompt comprising n tokens (p1,...,pn) and C :=
[c1,c2, ..., cx] denote a prompt continuation comprising k to-
kens (c1,...,ck). To compute log-probabilities of the form




Table 3: The prompt template used to evaluate log Pr(gs|q:)
with a concrete example on the right. The template begins
with ¢; (above the dashed line) as the conditioning prompt
P and ends with ¢; (below the dashed line) as the prompt
continuation C, whose probability is to be evaluated.

Table 4: The prompt template used to evaluate log Pr(gs)
with a concrete example on the right. The template uses the
special marker “Exercise 2:” as the conditioning prompt P
and the content of question ¢; (below the dashed line) as the
prompt continuation C, whose probability is to be evaluated.

Exercise 1: Exercise 1:

{question-type-1}: Multiple Choice:
{stem-1} Which is the most flexible?
{ a) bone
choices-1 b) glass jar
} c) rubber band

Answer: {answer-1} Answer: c) rubber band

Exercise 2: Exercise 2:

{question-type-23}: Multiple Choice:
{stem-2} Which is the most flexible?
{ a) paper

choices-2 b) ceramic tea cup

} c) clay tile
Answer: {answer-2} Answer: a) paper

log Pr(gs|qt), we consider ¢ as the prompt P and ¢s as a
prompt continuation C to P, and evaluate log Pr(C|P), the
log-probability that C continues P. The main algorithm is
illustrated in Figure 1, along with three code snippets for
executing each key step.

The input to Phi-2 is a concatenation of the prompt and
the continuation, P + C, producing an output of the same
length. At each output location, Phi-2 generates a vector
whose entries after a log-softmax normalization are the log-
probability that each token in the vocabulary is to become
the output token at that location, given the input tokens
that Phi-2 has seen so far—in particular, one entry in the
vector corresponds to the next token in the input that Phi-2
has not consumed. For example, Figure 1 shows that the
output vector corresponding to the last token p, in P con-
tains an entry equal to log Pr(ci1|P), the log-probability of
the first token ci in the continuation C conditioned on the en-
tire prompt P that has been consumed before ¢; is; similarly,
the output vector corresponding to the penultimate token
ck—1 in C contains an entry equal to log Pr(ck|C<k,P), the
log-probability of the last token ci, in C conditioned on P and
the partial continuation C<j up to the k-th token. By the
chain rule of probability, the target quantity log Pr(C|P) is
simply the sum of these “next-token” log-probabilities start-
ing from log Pr(c1|P), as shown at the bottom left of Fig-
ure 1, and can be calculated analogously to language mod-
eling with a masked cross-entropy loss.

To construct the input P + C to evaluate log Pr(gs|q:) for
two questions ¢s and ¢, we use the prompt template shown
on the left of Table 3. The template consists of two parts,
separated by a dashed line. The upper part represents P in
the algorithm, and sequentially contains the special marker
“Exercise 1:” for introducing ¢¢, the content of ¢;, and
another special marker “Exercise 2:” for introducing ¢s.
The content of ¢s, however, is contained in the lower part of
the template, representing C in the algorithm. This design
ensures that Phi-2 only evaluates the log-probability of g,
while maintaining ¢; as the context.
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Exercise 2: Exercise 2:

{question-type-2}: Multiple Choice:

{stem-2} Which is the most flexible?
{ a) paper
choices-2 b) ceramic tea cup

} c) clay tile
Answer: {answer-2} Answer: a) paper

Calculating question congruity also requires computing mar-
ginal log-probabilities of the form logPr(qs), for which we
use the same algorithm for computing log Pr(C|P) but keep
P minimal. Table 4 shows the prompt template for com-
puting the marginals, with a concrete example on the right.
Compared to the prompt template in Table 3, the new tem-
plate removes all traces of the conditioning question g¢: from
the upper part representing P, but retains the special marker
“Exercise 2:” for introducing ¢s in the lower part repre-
senting C. This design ensures the algorithm closely approxi-
mates the genuine marginal log-probability log Pr(gs) while
keeping log Pr(gs) compatible with log Pr(gs|g:) by only re-
moving information about ¢.

Defined in terms of differences (A(gs, ¢¢) and A(gs, gs)), ques-
tion congruity is invariant to the length of the questions, as
the effect of length in log Pr(gs|g:) offsets that in log Pr(gs),
making it a versatile measure for different types and lengths
of questions. Furthermore, question congruity captures more
than text similarity, but an abstract notion of congruence
(one question following another) that cosine-based metrics
do not convey. We show in Section 5 that question congruity
is more effective than negative cosine distance in measuring
similar questions for clustering-based KC discovery.

4. DATASETS

We evaluate the four KC extraction methods described so
far (Concept, Concept-emb, Question-emb, and KCluster)
on three datasets of multiple-choice questions (MCQs) that
vary in size and domain. All datasets include at least one
expert-designed KC model that we consider as the gold stan-
dard in our evaluation, and two datasets contain additional
data that allow us to validate each model on student trans-
actions recorded in an actual class.

4.1 ScienceQA

Based on various grade-school science curricula, ScienceQA
[34] is a multi-modal dataset that covers three subjects: so-
cial science, language science, and natural science. Each
question has two to four choices with one correct answer and
comes with a “skill” tag—such as “identify the experimental
question”—that we consider as a KC label designed by an
expert. To prepare the dataset for evaluation, we discarded
questions accompanied by an image or tagged with a skill
that appears less than ten times in all text-based questions,
creating an evaluation subset of 10,701 MCQs.



Table 5: KC alignment with Skill (99 KCs) assessed on ScienceQA

Adj. Rand Adj. MI FM Index Homogeneity Completeness V-measure
[_0'57 H (7007 1} [07 1} [Oa 1] [07 H [07 1]
Concept (549 KCs) 0.6454 0.8177 0.6603 0.9135 0.7925 0.8487
Question-emb (188 KCs) 0.6940 0.8437 0.7036 0.9001 0.8308 0.8641
KCluster (198 KCs) 0.6617 0.8513 0.6759 0.9157 0.8310 0.8713

4.2 E-learning 2022

Publicly available in DataShop [47], the E-learning 2022 data
set® contains questions and student activity data collected in
a graduate e-learning design course taught between August
and December 2022—a small subset of 80 MCQs were used
in previous KC extraction work [37]. We parsed the course
content in HTML documents and extracted 630 MCQs cor-
responding to 42,176 problem-solving attempts made by 39
students. In addition to the two default KC models, Single-
KC, where all steps are labeled with a single KC, and Unique-
step, where each step is labeled with a unique KC, this
dataset includes two expert-designed KC models based on
learning objectives (LOs): LOs and its improved version,
LOs-new. In contrast to previous work [37], we did not at-
tempt to balance the number of MCQs per KC by curating
a special subset of the MCQs, but retained the original map-
ping of MCQs to KCs in the expert-designed KC models for
a more faithful evaluation of all methods.

4.3 E-learning 2023

The E-learning 2023 dataset® is derived from the same e-
learning course taught by a different instructor in a differ-
ent semester (from August 2023 to December 2023). Unlike
E-learning 2022, there was no course content available to ex-
tract questions from, so we chose 497 MCQs that are present
in both years as the evaluation subset, which corresponds
to 44,065 problem-solving attempts made by 41 students.
This dataset also includes two expert-designed KC models:
vi-prompt-CTAmultimedia (abbreviated as v1-CTA) and v2-
combined, in addition to the two default KC models.

S. RESULTS AND DISCUSSION

We use data to evaluate KCluster against three competing
methods and answer our three RQs introduced earlier.

5.1 Does KCluster align with expert-designed
KC models? (RQ-1)
Although one can argue that no instructional expert could
develop a flawless KC model and that expert opinions could
diverge, alignment with expert-designed KC models provides
quality assurance for automated KC extraction methods, as
better alignment with human labels indicates more potential
to be useful. In line with previous work [35], we quantify the
alignment of two KC models by comparing how they assign
questions to KCs rather than counting text matches in KC
labels—therefore, two models are perfectly aligned if both
group the questions the same way, even if every group has
a different label. Allowing different labels for the same KC

Shttps://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=5426
Shttps://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=5843
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reflects the multiple ways in which different experts can de-
scribe a KC and accounts for the nuances in different labeling
approaches. Since a KC label indicates group membership
analogously to a cluster label, regardless of whether a clus-
tering algorithm is used, we use standard metrics for cluster-
ing performance” to assess how better KCluster aligns with
expert-designed KC models than the other methods.

The following three metrics emphasize label agreement: how
well the predicted labels agree with the ground-truth classes.
All methods are adjusted for chance, so that a random clus-
ter assignment results in a score close to 0, whereas a perfect
agreement has a score of 1:

e Adjusted Rand Index (Adj. Rand) [48]: a count-based
measure popular in the literature;

o Adjusted Mutual Information (Adj. MI) [51]: an informa-
tion-theoretic measure adjusted for chance;

e Fowlkes-Mallows Index (FM Index) [14]: a measure based

on pairwise precision and recall.

The following three metrics highlight cluster quality: how
well each predicted cluster corresponds to the original classes.
Low-quality assignments have a score close to 0 and perfect
clusters have a score of 1, although a random assignment
with a large number of clusters can have a specious, non-
zero score (these three metrics are not adjusted for chance).

e Homogeneity [42]: a cluster assignment is homogeneous if
every cluster contains only elements from the same ground-
truth class;

e Completeness [42]: a cluster assignment is complete if ele-
ments of the same ground-truth class are always assigned
to the same cluster;

e V-measure [42]: the harmonic mean of homogeneity and
completeness that balances both measures.

Because no study has shown that one metric is more decisive
than the others in assessing the alignment of KC models, we
report all six metrics to give a more faithful evaluation of the
four KC extraction methods. For all metrics, we use expert-
designed KC labels as the gold standard, and if there is more
than one expert-designed KC model, we choose the one that
best fits student data as described in Section 5.2. As no
significant randomness is involved, we report the result of
one execution of each method.

"https://scikit-learn.org/stable/modules/
clustering.html#clustering-performance-evaluation



Table 6: KC alignment with LOs-new (101 KCs) assessed on E-learning 2022

Adj. Rand Adj. MI FM Index Homogeneity Completeness V-measure
[_0'57 H (7007 1} [07 1} [Oa 1] [07 H [07 1]
Concept (371 KCs) 0.2815 0.6337 0.3450 0.9328 0.7188 0.8119
Concept-emb (101 KCs) 0.3090 0.6019 0.3220 0.7350 0.7240 0.7295
Question-emb (91 KCs) 0.3533 0.6188 0.3668 0.7218 0.7439 0.7326
KCluster (114 KCs) 0.4553 0.6939 0.4680 0.8139 0.7807 0.7970

Table 7: KC alignment with v1-CTA (75 KCs) assessed on E-learning 2023

Adj. Rand Adj. MI FM Index Homogeneity Completeness V-measure
[_0'57 H (7007 1} [07 1} [Oa 1] [07 H [07 1]
Concept (298 KCs) 0.2888 0.6318 0.3511 0.9377 0.7092 0.8076
Concept-emb (81 KCs) 0.3212 0.6091 0.3357 0.7384 0.7200 0.7291
Question-emb (78 KCs) 0.3468 0.6385 0.3608 0.7535 0.7410 0.7472
KCluster (92 KCs) 0.4361 0.7077 0.4529 0.8320 0.7776 0.8039

5.1.1 ScienceQA

Table 5 shows the results obtained from the Science@QA data-
set, where the “skill” tag of each MCQ serves as ground-truth
labels. With far fewer KCs (198 vs. 549), KCluster consis-
tently outperforms Concept, the method based on extracting
concepts from questions, in all six measures, showing closer
alignment with the gold standard Skill model. Question-
emb, based on question embeddings, also surpasses Con-
cept in all metrics except homogeneity, running closely after
KCluster. We excluded Concept-emb, the method based on
concept embeddings, because it did not converge after 200
iterations of affinity propagation.

The results on ScienceQA highlight that Concept, the most
straightforward KC discovery method based on concept ex-
traction using LLM, does not align with expert opinions bet-
ter than the two clustering-based approaches, KCluster and
Question-emb. Furthermore, Concept produces 4.5 times
more KC labels than what is in the Skill model (549 vs. 99),
which reaffirms the known limitation of this approach that it
tends to produce excessive labels with word nuances. KClus-
ter, however, generates an intermediate number of KCs and
achieves the best score in four of the six metrics.

5.1.2  E-learning 2022

Table 6 shows the results obtained from the E-learning 2022
dataset, where LOs-new, the best expert-designed KC model
according to Section 5.2.1, serves as the gold standard. With
an intermediate number of KCs, KCluster leads the other
three methods on almost every metric, except that Concept
has better homogeneity and V-measure scores. A high ho-
mogeneity score indicates that Concept has many KCs con-
taining questions that belong to the same KC in the LOs-new
model, but does not take into account whether questions be-
longing to the same KC in LOs-new are always assigned to
the same KC in Concept—in fact, for questions belonging
to the KC “compare and contrast DFA and CTA skill” in
the LOs-new model, Concept created five KCs, two of which
read “a difficulty factors assessment” and “Difficulty Factors
Assessment”. While Concept produced redundant labels as
discussed previously, it also created the least complete KC
assignment where questions from the same ground-truth KC
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are scattered in multiple predicted KCs. In contrast, KClus—
ter achieves the best completeness while maintaining the
second-best homogeneity, despite marginally behind on the
default V-measure that weighs both aspects equally.

5.1.3 E-learning 2023

Table 7 shows the results obtained from the E-learning 2023
dataset with v1-CTA as the gold standard. Since E-learning
2023 contains a subset of the questions in E-learning 2022,
the results are consistent: KCluster outperforms all three
other methods except that Concept has the best score in
homogeneity and V-measure. Concept still created redun-
dant KC labels and the least complete KC assignment—for a
KC in v1-CTA about describing the redundancy principle in
instructional design, Concept generated four KCs, three of
which read “redundancy”, “redundancy principle”, and “the
redundancy principle”. To avoid redundant exposition, we
conclude this section by highlighting that with its lead on
majority of the metrics, KCluster attained the best align-
ment with expert-designed KC models in all three datasets.

5.2 Does KCluster enable accurate prediction

of student responses? (RQ-2)

While KCluster’s close alignment with expert-designed KC
models suggests that KCluster is a promising approach, fit
to student performance data provides a more reliable bench-
mark. An effective KC extraction method should produce an
informative KC model (in the form of a binary Q-matrix [1])
that an instructional expert can use with a statistical model
to accurately predict student responses to questions. Our
RQ-2 explores whether KCluster enables accurate student
modeling, and if so, whether it outperforms the other meth-
ods. Using the student activity data from the E-learning
2022 and 2023 datasets, we train an Additive Factors Model
(AFM) [3] with the generated Q-matrices to evaluate the
predictive power of each KC extraction method and report
the standard metrics of model fit used by DataShop.

AFM [3] is a logistic regression model that explains a student
1’s correct (1) or incorrect (0) response to a question j using
the student’s proficiency 6; along with the KC difficulty S,



Table 8: AFM performance on E-learning 22 (50 CV runs)

Table 9: AFM performance on E-learning 23 (50 CV runs)

AIC BIC Item-RMSE (Std.) AIC BIC Ttem-RMSE (Std.)
Single-KC (1KC) 46227.9805 46582.6144  0.4264 (0.0002) Single-KC (1KC) 46210.3867 46566.8170  0.4141 (0.0001)
Unique-step (1,865 KCs) 43323.0595 759234268  0.4273 (0.0002) Unique-step (1,308 KOs) 42183.6830 66829.5327  0.4156 (0.0001)
LOs (87 KCs) 43972.6766 45815.0429 0.4244 (0.0010) v1-CTA (75 KCs)  43434.4955 45077.5521 0.4088 (0.0021)
LOs-new (101 KCs) 43353.2793  45437.8345 0.4236 (0.0016) v2-combined (72 KCs) 43471.4342  45062.3302 0.4088 (0.0024)
Concept (371 KCs)  41994.9029  48750.2457 0.4295 (0.0017) Concept (298 KCs)  41655.2518  47175.5742 0.4111 (0.0021)
Concept-emb (101 KCs) 44537.1400 46621.6952 0.4292 (0.0011) Concept-emb (81 KCs) 44366.9480 46114.3256 0.4151 (0.0014)
Question-emb (91 KCs) 43880.7030 45792.2660  0.4232 (0.0010) Question-emb (78 KCs)  43946.2607 45641.4778 0.4108 (0.0011)
KCluster (114 KCs) 43424.5571 45734.0021 0.4227 (0.0013) KCluster (92 KCs)  42999.9064 44938.5393 0.4071 (0.0009)

the KC learning rate ¢, and the number of student practices
T for the relevant KCs as defined by a binary Q-matrix
whose entry ¢;i indicates if question j is associated with
KC k. If Yi; denotes a student i’s response to a question
j, AFM computes the log-odds of the student giving correct
response (Y;; = 1) as a linear combination of these factors:

Pr(Y;; =1)

8 (v = 0)

=0, + Z qikBr + qirveTik (3)
k

Different KC extraction approaches tend to produce a differ-
ent Q-matrix and thus instantiate a distinct AFM (via gj),
for which the maximum likelihood estimation converges to
different parameter estimates for 6;, Sr, and ~y, allowing
us to compare different approaches. Following the standard
practice in DataShop®, we report the Akaike information
criterion (AIC) and Bayesian information criterion (BIC),
which describe how well an AFM fits the current data; more-
over, we perform a cross-validation (CV) procedure that ran-
domly divides questions (or items) into three folds and re-
peat it with 50 different random seeds to report the average
item-stratified root mean square error (item-RMSE), which
predicts how well an AFM generalizes to unseen data. Strat-
ifying the data by questions allows us to predict a student’s
responses to novel questions in the validation fold based on
their responses to questions in the training folds, which is
more relevant to our RQ-2. For all metrics, a lower value
indicates a better prediction of student responses.

5.2.1 E-learning 2022

Table 8 summarizes the results on the E-learning 2022 data-
set. In addition to fitting an AFM with the Q-matrix gen-
erated by each automated KC extraction method, we also
fit an AFM with the Q-matrix obtained from the two de-
fault KC models (Single-KC and Unique-step) and the two
expert-designed models (LOs and LOs-new) for comparison.

‘We observe that, although we did not use elaborate prompt-
ing strategies in our prompt template (Table 1), Concept is
still a strong baseline with the best AIC among all models.
The embedding-based approach, Concept-emb, managed to
reduce the 371 KCs produced by Concept to 101 KCs via
concept embedding and clustering, and consequently im-
proved BIC, which favors models with fewer parameters.
The other embedding-based approach Question-emb, how-
ever, outperforms Concept-emb in all metrics and achieves
an item-RMSE comparable (£(98) = —1.4738, p = .1437) to
that achieved by LOs-new, which has the best item-RMSE
among expert KC models. This reinforces our initial predic-

8https://pslcdatashop.web.cmu.edu/help?page=
modelValues#values
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Table 10: Improvements to the KC “11.1 apply_evidence” in
E-learning 22 (50 CV runs)

AIC BIC Item-RMSE (Std.)
LOs-new 43353.2716  45437.8268  0.4230 (0.0012)
Concept (4+5 KCs)  43265.7209 45419.4730  0.4223 (0.0012)
Question-emb (+3 KCs) 43284.1397 45403.2933  0.4225 (0.0012)
KCluster (+4 KCs) 43262.7614  45399.2143 0.4221 (0.0013)

tion that encoding questions as embeddings should yield a
better model than encoding concepts does, since questions
contain more information than concepts do.

Using the novel question congruity to measure question simi-
larity, KCluster outperforms all other automated KC ex-
traction methods except for having a higher AIC than Con-
cept. In particular, KCluster significantly exceeds the best
expert-designed KC model, LOs-new, in item-RMSE (¢(98)
—2.9963, p = .0035) at a = .05. Compared to Question-
emb, which measures similar questions using the traditional
negative cosine distance, KCluster fits to the student data
better as evidenced by better AIC and BIC scores, and is
likely to predict unseen data more accurately as evidenced
by a better item-RMSE (¢(98) = —2.1145, p = .0370). To-
gether, these results suggest that it is advantageous to iden-
tify clusters of similar questions and assign KCs to clusters
(as done by KCluster) rather than to individual questions
(as done by Concept), and that question congruity is more
effective than negative cosine distance for measuring similar
questions in clustering-based KC discovery.

5.2.2  E-learning 2023

Table 9 shows the results obtained from the E-learning 2023
dataset, where we also trained an AFM for the two expert
models, v1-CTA and v2-combined. Although all questions
in E-learning 2023 are also present in E-learning 2022, the
activity data come from a different student cohort, allow-
ing us to assess whether each method is robust against dif-
ferent students. Consistent with what is observed in E-
learning 2022, KCluster leads all three other automated
methods in almost every metric, only slightly behind Con-
cept on AIC; it has the best BIC score among all mod-
els, manual or automated, indicating that KCluster fits the
current data the best. The two expert models have com-
parable scores on all measures, but KCluster outperforms
both models in AIC and BIC, and significantly so in item-
RMSE ((98) = —5.0956, p < .001). In addition, KClus-
ter significantly outperforms Question-emb in item-RMSE
(t(98) = —18.1487, p < .001), reaffirming our conclusion
from E-learning 2022 that question congruity is superior to
negative cosine distance in measuring question similarity.



KC: 11.1 apply_evidence
100 PPly_

KC: e-learning cases

KC: gen. and extra. processing

100

80 | 80

100

80

3 607 3 607 g 607
© © ©
24 24 24
S 40 S 40 S 40
£ £ £
w w w
20 A 20 A 20 4
0 r T 0= v 0
2 4 6 8 10 1 3 4

Practice Opportunity

Practice Opportunity

—— Actual

Practice Opportunity

---- Predicted

Figure 2: The learning curves for the original expert KC (left) and two new KCs discovered by KCluster (middle and right)

5.3 Does KCluster reveal insights about prob-
lematic KCs? (RQ-3)
By generating an alternate KC model, KCluster suggested
how questions could have been organized by KCs so that an
instructor can better predict student responses, but it did
not explain, for example, why learning was difficult for some
problematic KCs in the original expert KC model. A KC is
problematic (and worth investigating) if it is neither too dif-
ficult nor too easy to learn, yet the students did not show
any learning [46]. Previous work using data-driven DFA [46]
manually analyzed and divided a problematic KC into three
hidden KCs, which improved the prediction of student re-
sponses when reinserted into the original model. Our RQ-3
explores how KCluster can automatically reveal similar in-
sights about and suggest improvements to problematic KCs.

From the E-learning 2022 dataset, we first identified 14 prob-
lematic KCs in the LOs-new model that an AFM estimated
to have a learning rate v, < 0.001 (students were not learn-
ing) and an initial success probability (equal to sigmoid(Sx))
between 0.2 and 0.8 (the KC was neither too difficult nor too
easy to learn). Following previous work [46], we then applied
Concept, Question-emb, and KCluster to the questions as-
sociated with each problematic KC and discovered new KCs
that constitute the original. We searched for improvement,
where an AFM achieves a lower item-RMSE, in each new
KC model that had a problematic KC replaced, and found
that Concept and KCluster significantly improved the KC
“11.1 apply_evidence”, which has a zero learning rate and an
initial success probability of 0.65.

Table 10 quantifies the improvements. Compared to LOs-
new, all methods divide the original KC into multiple new
KCs, suggesting that the expert KC is too coarse to re-
flect a single skill. KCluster breaks the generic “11.1 ap-
ply_evidence” KC into four different KCs, three of which con-
cern specific sources of evidence (“generative and extraneous
processing”, “the practice or testing effect”, and “e-learning
cases”), with a fourth “evidence” KC for problems that con-
trast evidence and ask students to decide which situation
would yield better learning. When reinserted into the origi-
nal LOs-new model, the four new KCs discovered by KClus-
ter brought the greatest improvements in all three metrics
and significantly in item-RMSE (#(98) = —3.4379, p < .001).
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This automated DFA not only discovers more specific and
potentially more meaningful KCs, but also captures student
learning better. Figure 2 contrasts the learning curve of
the original “11.1 apply_evidence” KC with that of two new
KCs (“e-learning cases” and “generative and extraneous pro-
cessing”) created by KCluster. While the original learn-
ing curve remains flat after ten learning opportunities, the
error rates depicted in the new learning curves quickly ap-
proach zero after four opportunities, showing clear evidence
of learning. An instructor, after reviewing the new learn-
ing curves, will be able to make informed adjustments to
instruction and improve student learning specifically in the
other two aspects of “applying evidence”, with which stu-
dents were struggling (namely, “the practice or testing ef-
fect” and “evidence”). This shows that KCluster is not only
capable of predicting student responses in foresight, but it can
also illuminate improvements to instruction in retrospect.

6. GENERAL DISCUSSION

Our comprehensive evaluation reveals three critical insights
about KCluster that we will discuss in this section.

Clustering-based approaches outperform concept extraction.
Using the text generation ability of Phi-2, Concept is a natu-
ral LLM-based method to extract KCs from questions. Yet,
using the same LLM, KCluster shows that closer alignment
with expert models (Section 5.1), better prediction of stu-
dent responses (Section 5.2), and greater improvement to
problematic KCs (Section 5.3) can be achieved by coupling
Phi-2’s native ability to evaluate text probabilities with clus-
tering. That we chose Phi-2 over more advanced LLMs for
Phi-2’s balanced performance and affordability does not ac-
count for this performance discrepancy, as both methods use
the same LLM. In fact, using a more advanced LLM and a
curated set of 80 MCQs from the E-learning 2022 dataset,
previous work [37] only managed to produce the exact KC
for 28 MCQs (35%). A possible reason for this low KC match
rate is that the powerful LLM generated redundant labels
with undesired word nuances. Clustering-based approaches
like KCluster, on the other hand, reduce the redundancy by
propagating the labels of the cluster exemplars. As a rising
tide will lift all boats, we expect future work using a more
advanced LLM to improve both classes of methods, but Phi-
2 is free and therefore more readily available to instructors.



Question congruity is more effective than negative cosine dis-
tance in measuring similar questions for clustering-based KC
discovery. Both KCluster and Question-emb use affinity
propagation [15] to identify clusters of similar questions and
label all questions in a cluster with a KC equivalent to the
concept label of the cluster exemplar. KCluster, however,
outperforms Question-emb in aligning with expert-designed
KC models, predicting student responses, and improving
problematic KCs, by using the novel question congruity de-
scribed in Section 3.3 (rather than the traditional negative
cosine distance) to measure question similarity. These posi-
tive results have strengthened our belief that future work
will prove question congruity a strong measure of question
similarity in more domains than KC discovery.

Automated approaches can outperform manual approaches.
Combining the strengths of LLM and clustering, KCluster
enables instructors to predict student responses better than
the best expert model does in the two e-learning datasets
(Section 5.2). While we expect future work to extend KClus-
ter to more datasets and more question types, our evalua-
tion offers strong evidence that KCluster, an automated ap-
proach, can surpass manual approaches in modeling student
learning. Furthermore, KCluster has demonstrated initial
success in automated DFA (Section 5.3), inspiring future
work that closes the loop by implementing and validating
new instructional designs informed by KCluster.

7. CONCLUSION

We proposed question congruity, a novel measure of question
similarity based on question collocations, and described an
algorithm that uses Phi-2 to compute the required probabil-
ities. The two contributions underlie KCluster, a novel KC
discovery approach that combines LLM and clustering. Our
comprehensive evaluation shows that KCluster not only out-
performs the other three competing methods and the best
expert KC model, but can also offer insights into problem-
atic KCs that potentially inspire new instructional designs.
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