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ABSTRACT

Deep learning models for text classification have been in-
creasingly used in intelligent tutoring systems and educa-
tional writing assistants. However, the scarcity of data in
many educational settings, as well as certain imbalances in
counts among the annotated labels of educational datasets,
limits the generalizability and expressiveness of classifica-
tion models. Recent research positions LLMs as promis-
ing solutions to mitigate the data scarcity issues in edu-
cation. In this paper, we provide a systematic literature
review of recent approaches based on LLMs for generat-
ing textual data and augmenting training datasets in the
broad areas of natural language processing and educational
technology research. We analyze how prior works have ap-
proached data augmentation and generation across multiple
steps of the model training process, and present a taxon-
omy consisting of a five-stage pipeline. Each stage covers
a set of possible options representing decisions in the data
augmentation process. We then apply a subset of the iden-
tified methods to three educational datasets across different
domains and source languages to measure the effectiveness
of the suggested augmentation approaches in educational
contexts, finding improvements in overall balanced accuracy
across all three datasets. Based on our findings, we propose
our pipeline as a conceptual framework for future researchers
aiming to augment educational datasets for improving clas-
sification accuracy'.

Keywords

!The open-source code of our experiments, as well as the
prompts used for the LLM and the detailed results of our
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1. INTRODUCTION

During recent years, there has been a surge in the use of
artificial intelligence (AI)-based models, such as deep learn-
ing models, within educational technology, particularly in
intelligent tutoring systems (ITS) and interactive writing
assistants designed to support students in their learning pro-
cesses [26, 18, 42, 27].

In many of these systems, text classification, defined as the
ability to categorize the input text, plays a central role.
Prior works have explored embedding text classification mod-
els in educational tools to support students by determining
the proficiency levels of their essays [25], mining compo-
nents of argumentative and legal texts [63, 60], and also de-
tecting non-content-driven traits in texts such as sentiment
[39]. A key enabler of such capabilities lies in deep learning
models trained or fine-tuned for text classification, where
transformer-based architectures (including BERT [12], Dis-
tiIBERT [51], or RoBERTa [35]) have achieved unprece-
dented results on a set of benchmarks regarding model accu-
racy while staying efficient enough to run on modern hard-
ware.

However, a major limitation of using text classification mod-
els in educational settings arises when considering the datasets
on which the models should be trained. When collecting
and labeling data in real-world educational contexts, privacy
concerns regarding data collection [48] or domain-specific
challenges such as the difficulty of the annotation task and
the potential need for annotation experts can severely limit
the amount of available data. Moreover, researchers de-
veloping educational technology tools also have to address
the issue of class imbalance, in which certain annotation
classes are found more abundantly than the rest in the input
dataset [56], shown to be the case across numerous educa-
tional datasets [41, 63, 59, 11]. The class imbalance issue can
prevent the classification models from reasonably capturing
minority classes and might lead to suboptimal generalization
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and reduced accuracy in real-world educational settings.

The literature on natural language processing (NLP) has
traditionally sought to address the issues mentioned above
through classical data augmentation methods (e.g., synonym
replacement and back-translation) to introduce linguistic
variability into existing datasets [10, 34]. While researchers
have shown improvement in model accuracies after applying
such traditional methods, their relatively simplistic manip-
ulations of the input data can lead to repetitive or almost-
repetitive data samples, limiting the model from being able
to learn from new data properly.

Recent large language models (LLMs) such as GPT-4o [19]
or Llama [15] have shown strong contextual understand-
ing and generation capabilities. Thus, they can generate
semantically coherent data entries in a data augmentation
pipeline. LLMs also enable zero-, one-, and few-shot learning
approaches, where the model can be applied to a new task
with a minimal amount of new training data [64], which is
particularly interesting in an educational context with lim-
ited data. As a result, there is a growing interest in explor-
ing LLM-driven data augmentation methods to increase the
quantity of the training datasets and to address the class im-
balance issues. Furthermore, there has been an increase in
research on distilling the knowledge of LLMs into smaller,
more efficient, and task-specific classifiers that can be de-
ployed at scale in ITS [32, 33, 13].

Motivated by these recent advancements, in this paper, we
conduct a comprehensive and systematic review of the re-
cent research on LLM-driven data augmentation across the
domains of NLP and educational technologies. More specifi-
cally, we aim to answer the following two research questions:

RQ1: What are the recent LLM-driven data augmentation
approaches in the NLP literature, and how can they be
categorized?

RQ2: How do recent LLLM-based approaches of data aug-
mentation and generation apply across different educa-
tional datasets in terms of improving classification accu-
racy?

To answer these research questions, we first perform a sys-
tematic literature review and propose a taxonomy of data
augmentation methods. Our taxonomy comes in the form of
a pipeline capturing the main components of the data aug-
mentation process discussed in prior literature. We present
our pipeline as a conceptual framework that can be used and
adapted by researchers and practitioners, including those
working on models trained on educational datasets.

In the second step, we select a subset of methods from
our pipeline and apply them to three distinct educational
datasets covering different task definitions (reflective writ-
ing and persuasive writing) and languages (English and Ger-
man), enabling us to assess the effectiveness of state-of-the-
art data augmentation methods on educational data.

Our results provide insights into the potential trade-offs and
best practices of LLM-driven data augmentation for text
classification in educational settings. We offer our pipeline
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Figure 1: Overview of our literature review process, including
automated and manual searching (Step 1), filtering based on
relevance criteria (Step 2), and coding (Step 3).

as a recommendation for future researchers looking to uti-
lize the knowledge encoded in domain-independent LLMs to
improve the classification accuracy of task-specific models,
mitigate the issues of data scarcity and imbalance, and en-
hance the performance of Al-enabled educational systems.

2. DATA AUGMENTATION - A TAXONOMY

We conducted a systematic literature review following the
recommendations of [22] as well as the prior literature re-
views in the domain of education [54, 40, 24] as a basis for
creating a taxonomy of data augmentation methods.

2.1 Literature Review

The structure of our literature review is illustrated in Fig. 1.
It consisted of three main steps: searching, filtering, and
coding.

2.1.1 Searching

For the automated search, we searched among the content of
the relevant scholarly articles in the ACL Anthology database.
We used the Google Advanced Search functionality to search
among the pages belonging to the “https://aclanthology.org”
URL domain. Particularly, we used the following queries:
(“synthetic data” OR “data generation” OR “augmentation”
OR “distillation”) AND “large language models” AND “clas-
sification” AND “transformers”. We only included papers
from December 2022 to December 2024. The search was con-
ducted in December 2024 and January 2025. Our automated
search retrieved 1860 entries, from which we discarded re-
dundant pages or pages not referring to a published paper.
In addition to the automated search, we performed a man-
ual search in the journals and conferences of NLP and Al in
education research communities (e.g., EDM and AIED) to
retrieve papers focusing on educational datasets, as well as
to find potentially relevant posters or workshop papers.

2.1.2 Filtering



We evaluated each retrieved paper to determine its relevance
to the current work. Our criteria for relevance included:

e Data Generation: The paper either focuses on data gen-
eration, or uses approaches (e.g., data augmentation or
distilling LLM knowledge into smaller models), which gen-
erate data as part of their process.

e LLM-based: The paper uses LLMs for the augmentation
or generation task.

e Downstream Task: The paper either addresses the task of
text classification, or the presented approaches are suit-
able for text classification.

e Application: The paper follows the direction of experi-
mentally evaluating the introduced approach, rather than
merely introducing new theory underpinnings or architec-
tures.

e Research Papers: We only included research papers in
our criteria for relevance; i.e., we excluded non-research
papers, literature reviews, and research reports.

e Language: We only included papers written in English.

After the filtering process, we included 78 papers in our
literature review.

2.1.3 Coding

We first coded each paper based on the NLP task (Clas-
sification or Generation) that it addressed. Furthermore,
to answer our first research question, i.e., to categorize the
recent LLM-based approaches for data augmentation, we de-
veloped a data augmentation pipeline consisting of five main
stages and coded each paper according to the stages covered,
as well as the methods applied within each stage. We cre-
ated the pipeline using a bottom-up approach from the data
by reading the filtered papers from our literature review pro-
cess. Then, the coding of the papers across each stage, as
well as the adaptation of the stages, was conducted by first
choosing 5 papers at random and having two coders catego-
rize them across all of the defined stages. We achieved an
inter-rater agreement of x = 0.67, indicating a substantial
agreement [37]. One of the two coders then annotated the
remaining papers. For each stage, if relevant, we allowed
the value of Other as well, to be able to include papers not
discussing a certain part of the pipeline, or using unique
approaches for a certain stage. We also allowed selecting
multiple values for each stage, if meaningful.

2.2 Resulting Categorization (RQ1)

Figure 2 illustrates the resulting taxonomy of LLM-based
approaches to data augmentation (RQ1), including the num-
ber of papers within each category. A complete list of all
papers with their respective coding can be found on our
GitHub.

2.2.1 Purpose

Stage 0 in Fig. 2 refers to the addressed downstream task.
We found that 53% of the analyzed papers (e.g., [8, 74, 46])
focus on Text Classification, with the aim to leverage data
augmentation to improve the performance of a text classi-
fication model. For example, [31] explored synthetic data
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generation as a means to improve classification accuracy.
Another work [7] demonstrated that their method outper-
forms few-shot LLM-based text classification.

On the other hand, 46% of the papers focus on Genera-
tion, aiming to improve models generating text (e.g., infor-
mation extraction, question-answering, solving math word
problems, commonsense reasoning, etc.) [32, 1, 71]. For
example, [2] have explored fallacy recognition as a question-
answering-style task and [20] have focused on the task of
event extraction.

2.2.2 Pipeline Stages

Our review of the papers led to the extraction of five com-
mon stages in our data augmentation pipeline: 1) Initial
Augmentation and Generation, 2) Example Selection, 3)
Augmentation based on Examples, 4) Adaptation, and 5)
Iterative Loop.

1) Initial Augmentation and Generation. 76% of all papers
perform an initial set of data generation and augmentation,
before training the model with any data. Within this stage,
four main methods are commonly used:

e Zero- or one-shot: 29 papers apply zero- or one-shot prompt-
ing to generate data, merely describing the desired type
of output, or directly applying a transformation on one
input data point without in-context learning from several
examples (e.g., paraphrasing a sentence)2. For example,
[6] used a zero-shot prompt for generating a dataset for
the task of sentiment classification, [78] explored zero-shot
learning for mitigating distribution bias, and [29] aug-
mented data for stance detection using a zero-shot-based
approach.

e Few-shot: 19 papers in this stage apply few-shot prompt-
ing to generate data, providing a set of input data points
to the LLM to generate new data points by looking at
the overall set of provided shots at each step. For exam-
ple, [52] used few-shot prompting on five state-of-the-art
LLMs to generate high-quality educational questions be-
longing to different cognitive levels, while [49] used few-
shot prompts for generating math explanations.

e Chain-of-Thought (CoT): Following the initial idea pro-
vided by [65], 6 papers in the first stage include a prompt
asking the LLM to think first and then respond, or to
identify a list of steps that the LLM should follow be-
fore providing the answer in the output. [5], for example,
used the CoT outputs of a model to distill knowledge into
a conversational agent. [16] introduced a unified frame-
work based on CoT distillation to mitigate the challenge
of treating tokens of different significance in the same way.

e Fine-tuning a model: Finally, 14 papers in this stage fine-
tune an LLM on the training set, and use approaches such
as controlled text generation to generate sentences from
the desired classes on the fly from the fine-tuned LLM. [4],
for instance, fine-tuned a pre-trained generation model on

2While certain approaches, such as paraphrasing a sentence,
are considered one-shot, we grouped them together with
zero-shot as opposed to few-shot, because no in-context
learning or data mixture from several examples was con-
ducted.



—t Wrong Predictions (5) ’

Criteria for

’ v _ Cilteriaf
E) resuts 1 () Select 1 o T
1
1 Examples l. | _§ Scoring or Influence
[y "
ML Model for Prediction . L Functions (9)
vS‘,eq
P -
Text Classification (41) o B 1 . Zero- and one-shot (29) —{ Difficulty Measures (3)
; (7) I;ItéaelnAUQ s ( ) jemm—e-- .,\ < )
( ) PP
. . "' Few-shot (19) : &J Aug/Gen lI
......... - L, Diversity or Similarity
y ' Based on ' Metrics (11)
Generation (QA solving, Chain-of- ' Examples ,
MWP, commonsense thought (6) : 1
, 1
reasoning, etc.) (36) 1 & 1
Fine-tuning (14) : N s
N / ,
~ - -amemem - - b
 emEmmmemmesmesm——a——- -
. .
. ) '
(5] ' (@ Adapt the Results ' '
Added back  Yes Iterative or - '
to the — Looped D —— Method '
training data (17) 1 1
- Approach . ©  Filtering (24) Relabeling (4) H
5
1 ga 1
HE A () -
] % fuy (]
—_ 1 (<] [}
- (=] 1 B
elz L0 :
1 7 '
[ & ]
[ ’
End - .

Figure 2: Our five-stage pipeline for data augmentation, extracted from our systematic literature review. The process includes
task selection, initial augmentation and generation, example selection, augmentation or generation based on examples, result
adaptation, and an optional iterative approach. The count of papers for each stage is indicated in blue.

the available training data to generate synthetic examples
for offensive language detection. Others [62] fine-tuned a
sequence-to-sequence TH model using a dataset with lim-
ited samples in order to generate new samples for their
low-resource scenarios.

After the initial data augmentation or generation process,
many prior works train an early version of the final classifier
on the augmented or generated data.

2) Select Examples. This stage refers to the strategy behind
smartly selecting training data points at each round as a ba-
sis for further data augmentation. The approaches discussed
in prior papers for this stage consist of:

o Wrong Predictions: 5 papers in this stage use the incor-
rect predictions of the model, when evaluating it on the
dataset, as a basis for further augmentation. [32] con-
sidered the wrong predictions as the weak points of the
student model in their knowledge distillation process for
solving math word problems and [33] analyzed the student
model’s weaknesses, and then synthesized labeled samples
based on an analysis across a set of NLP tasks including
classification and named entity recognition.

e Scoring or Influence Functions: 9 papers in this stage use
a certain set of model-specific metrics to find the influence
of data points on the outcomes of the prediction, and then
use the outcomes as a heuristic for choosing which sam-
ples to pick as the basis for further augmentation. For

example, [70] quantified contribution to the loss for each
training point using an influence function, while [69] con-
ducted filtering using an influence function (which consid-
ers an example as detrimental if using it in the training
data leads to a higher generalization error).

e Difficulty Measures: 3 papers in this stage used content-
based text measures (e.g., difficulty levels of different data
samples) as a heuristic for strategic selection of data points.
For example, [77] proposed a self-evolution learning method
that considers the learning difficulty of samples for aug-
mentation.

e Diversity or Similarity Metrics: 11 papers in this stage
used certain measures, such as the cosine similarity of em-
beddings, to maximize the diversity of the generated data
or choose close or far data samples to the wrong predic-
tions, as a basis for choosing which samples to augment
from. [7], for instance, use logit suppression and tempera-
ture sampling to diversify text generation, while [75] used
the original instances as queries to extract instances in the
data with the most query-related degree, with the aim to
generate more discriminating samples.

3) Augmentation or Generation Based on Examples. This
stage refers to the methods performed on the chosen exam-
ples selected by the strategy outlined in the second stage,
in order to generate new data points. This step enables the
model to learn from its mistakes or shortcomings by mitigat-
ing the weaknesses of the model (e.g., on wrong predictions)
depending on the strategy selected in the second stage. Prior
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works (37% of the papers in our literature review) have ex-
plored prompting strategies (e.g., zero-shot and few-shot)
for this stage [32, 70].

4) Adapt the Results. Due to the chance of generating data
points from the wrong class, wrong format, or from low va-
lidity measures, prior works (35% of the papers in our liter-
ature review) have considered either filtering (i.e., removing
data points not matching their label) [47, 67] or relabeling
(i-e., changing the label of data points to the presumably
correct label) [7, 50] approaches, as described in 24 and 4
papers, respectively. To find the correct labels for filtering
or relabeling, prior works used a variety of methods, includ-
ing basic computations, training task-specific models, and
human-in-the-loop approaches (e.g., active learning-based
methods) [72], or using pre-trained models (e.g., prompt-
ing LLMs to find the correct label for a data point) [6, 14],
as observed in 20 and 8 papers, respectively.

5) Iterative or Looped Approach. While many works in the
literature (78% of the papers) conduct the augmentation
pipeline once and then train a final model on the augmented
data [72, 73], some works (22% of the papers) have also
explored running the augmentation pipeline multiple times,
each time adding the newly-generated data back into the
training set or continuing model training on the new data.
This process aims to enable the model to iteratively learn
from its mistakes over time and increase its accuracy on the
test set [32, 33].

3. CASE STUDY: APPLICATION ON EDU-
CATIONAL DATA

We used the taxonomy derived in Section 2.2 as a basis
for our case study on applying state-of-the-art data aug-
mentation methods to educational datasets to improve per-
formance in text classification tasks. We employed a step-
by-step experimental design, increasingly adding additional
phases (see Fig. 2) to the data augmentation process, and
evaluated the performance of the resulting classifier on three
different educational datasets.

3.1 Experimental Design

Our experiments focused on multi-class text classification.
Before describing them in detail, we first formalize the prob-
lem. We consider T to be the set of texts ¢ € T in our
datasets. Each text is split into a set of sentences s € S,
where each sentence is assigned a label [. This label comes
from a set of labels L = {l1,l2,l3, -}, which describe the
category (or class) of the sentence (e.g., for a reflective text:
Description, Feelings, Evaluation, Analysis, Conclusion, and
Action Plan). We aim to train a sentence-based multi-class
classifier C that, given a sentence s, outputs C(s) as a pre-
diction of the correct label [ of sentence s.

We conducted a set of step-by-step data augmentation ex-
periments, following the phases of our developed taxonomy.
In each step, we selected the best approach for that phase
and then employed it for all the following steps. In all experi-
ments, we fine-tuned BERT text classification models [12] as
the underlying classifiers. We used BERT, due to its training
efficiency, relatively low memory requirements, and its com-
mon usage in educational tools [55, 30, 21, 58]. The BERT
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models were fine-tuned from the base model in three epochs
and with the default learning rate of the simpletransform-
ers library. We used 5-fold cross-validation to split the data
into training and testing subsets for each experiment. We
used GPT-40 (the 2024-08-06 checkpoint) for data genera-
tion®. The experiments were conducted over the course of
three weeks, on two machines, one with an NVIDIA V100
GPU with 32 GB of memory, and another with an Apple
M4 Pro system-on-a-chip with 48 GB of memory.

We evaluated five different experimental settings in total:

In the Baseline experiment, no data augmentation was con-
ducted.

In the Step-1 experiment, we performed only an initial aug-
mentation, in which we augmented the data by generat-
ing examples from the minority classes until the dataset is
balanced, experimenting with four different approaches (see
Fig. 2):

e One-shot: We prompted the LLM with a randomly se-
lected example sentence from a given class label | € L
and then asked the LLM to come up with a sentence ad-
dressing the same topic. Specifically, we asked the LLM to
use different names, words, and terminologies in its out-
put, but keep the overall meaning and content the same.
We also included a description of the different labels I € L
in our system prompt4.

e Few-shot: We prompted the LLM with five example sen-
tences of each label I € L selected at random, and asked it
to come up with a new sentence from the same label [. We
continued this process until the dataset became balanced.
We included the same system prompt as in the one-shot
setting.

e Chain-of-thought: Following the idea provided in [65] to
utilize the chain-of-thought capabilities of LLMs, we pro-
vided a similar prompt as in the one-shot approach, but
asked the LLM to first think step-by-step, and then, in the
last line of its response (after putting a line break), write
the generated sentence with the required label [ € L.

e [Fine-tuning: We fine-tuned GPT-40 following the SFT
method using the API provided by OpenAl to be able to
generate sentences of any specific class label [, given the
natural language name of the class label.

In our next experimental setting, Steps-1-3, we performed
an initial augmentation, selected examples, and augmented
based on the selected examples®. We experimented with
two approaches for the example selection part (step 2 of the
pipeline):

3 All prompts used for GPT-40 can be found in our GitHub
repository.

4We did not use a pure zero-shot prompt in our experiment,
as our initial exploration revealed that the LLM can not
reliably produce correct sentences of the given classes in a
zero-shot setting.

5Steps 2 and 3 had to be added together to the list of step-
by-step experiments, as none can be conducted without the
other.



Table 1: Components of the Gibbs reflective cycle from [44], with the number of respective sentences in our German (GRD)
and English (ERD) reflective writing datasets.

Class

Description

# sentences GRD

# sentences ERD

Description

This section includes a presentation of the event the
learner is reflecting on.

771 (58.9%)

375 (44.9%)

Feelings

This section includes any feelings the learners had be-
fore, at the time of, and after the event, as well as their
thoughts when they were in the situation.

163 (12.4%)

121 (14.5%)

FEvaluation

This section includes an honest opinion on the positive
or negative points of the response the learner provided at
the time of the event.

109 (8.3%)

92 (11.0%)

Analysis

This section includes possible reasons for the points men-
tioned in the Evaluation section. Learners may refer to
references supporting the provided causes and include
them in their writing in this section.

64 (4.9%)

51 (6.10%)

Conclusion

This section aims to summarize what happened and what
the learner had gained from the event.

122 (9.3%)

127 (15.2%)

Action Plan

This section includes opinions on what the learner would
do differently the next time they are faced with a similar

81 (6.2%)

70 (8.4%)

situation.

e Wrong Predictions: We evaluated the fine-tuned model
on the training data and identified the entries that the
model had predicted incorrectly as the basis for further
augmentation. The wrong predictions were added as in-
context learning examples (in the case of few-shot prompts
in step 3) or as a basis for paraphrasing (in the case of
one-shot or chain-of-thought prompts in step 3).

o Similarity Metrics: We calculated the cosine similarity
between embeddings of the wrongly predicted text entries
and the entries of the training set, identifying the most
similar and least similar data points. We then considered
the most and least similar data points (as in-context ex-
amples or basis for paraphrasing, depending on the type
of prompt used in step 3). We followed this approach, as
adding the most similar data points can help the model
learn better from a set of examples similar to the incor-
rect prediction, while adding the least similar data points
can improve the diversity of the model inputs and training
data.

For the third stage of the pipeline (augmentation or gen-
eration based on examples), we used the best-performing
method (among one-shot, few-shot, and chain-of-thought)
from the Step-1 experiment. However, different from step 1
of the pipeline, we did not include fine-tuning in our exper-
iments for step 3, because in our datasets, the training data
at each iteration (i.e., the small number of selected exam-
ples) would have become too small for effective fine-tuning.

In the Steps-1-4 experimental setting, we performed an ini-
tial augmentation, selected examples, augmented based on
the selected examples, and adapted the results. We experi-
mented with two approaches for adapting the results:
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e Filtering using a pre-trained model (referring to part C
of step 4 in Fig. 2): We prompted the LLM to specify
the class label | € L that each input sentence belonged
to. The model was instructed to first think step-by-step,
and then write the name of the identified component, and
nothing else, in the last line of its response. We filtered
out any LLM-generated data point for which the label
used for generation was different than the label identified
by the LLM at this stage.

e Relabeling using a pre-trained model (referring to part D
of step 4 in Fig. 2): We used the same prompt as for
filtering, but instead of remowving the sentences with the
mismatching labels, we updated their labels.

In a final experiment, we included Steps-1-5 of the pipeline.
We selected the best-performing strategies from the prior
steps and continued running the loop for five iterations to
see the effects of the continuous error correction of the model
on the text classification accuracy. After each iteration, we
added the recently generated data back into the training
dataset, trained a BERT model on the updated dataset, and
continued running our pipeline from step 2.

3.2 Educational Datasets

We performed experiments on three different educational
datasets, covering different educational tasks and languages.
All three datasets consist of student writings (reflective writ-
ing, persuasive essays), contain sentence-based ground truth
labels (e.g., claim, counterclaim, etc., for persuasive essays),
enabling multi-class classification, and are imbalanced.

3.2.1 Reflective Writing
Reflective writing (i.e., journaling) refers to the process in
which people write about their experiences, emotions, be-



liefs, and insights related to events that have happened in
their studies or workplaces [66]. Previous works have shown
the positive role of reflective writing in helping to improve
the metacognitive skills of students and enhance their learn-
ing gains [45, 9]. Prior researchers in learning sciences have
explored different reflective writing frameworks to systemat-
ically guide learners in reflecting on their experiences. One
example of such frameworks is the Gibbs reflective cycle [17],
which classifies a reflective text into six components in a cy-
cle (see Table 1).

In our experiments, we used two datasets of reflective writ-
ings with sentences annotated using the Gibbs reflective cy-
cle:

German Texts (GRD). This dataset of reflective writings [44]
was collected from 60 vocational students® (53 identified as
females, 6 as males, and 1 as non-binary, average age
23.62, SD = 6.68), doing their apprenticeship in the domain
of nursing and caring. The students used an educational
writing assistant to learn reflective writing by following the
steps of the Gibbs reflective cycle [17] and were then in-
structed to write a reflective writing essay about a past expe-
rience, focusing on a particular experience they encountered
while caring for patients at their nursing center during their
practice sessions. All students gave informed consent to par-
ticipate in the experiment, and the study was approved by
the university’s ethics review board (Nr. HREC000572 and
HREC 013-2021). To annotate the data using the Gibbs re-
flective cycle, two researchers annotated 15 reflective writ-
ings, resulting in an inter-rater agreement of £ = 0.61, in-
dicating a substantial agreement [37]. After resolving the
disagreements collaboratively, the researchers then indepen-
dently annotated the remaining texts.

English Texts (ERD). This dataset of reflective writings [43]
was collected from 100 users (70 identified as females, 29 as
males, and 1 as others, average age = 25.08, SD = 2.67)
from Prolific among users having a degree in health and
welfare (e.g., medicine or nursing), and having a high school
diploma or above. Again, all participants gave informed
consent by participating in our study on Prolific, and the
study was approved by the university’s ethics board review
(Nr. HREC000572 and HREC 013-2021). The users were
instructed to use an English-language reflective writing as-
sistant”, which helped them learn how to write reflective
texts by following the Gibbs reflective cycle. The users were
asked to reflect on a situation in the workplace when things
did not go as planned, and write the corresponding reflec-
tive diary. Similar to the German reflective dataset, each
sentence was annotated with one of the six Gibbs reflective
cycle classes by one of our trained annotators.

3.2.2  Persuasive Essays

Argumentative and persuasive writing is considered a cru-
cial part of daily communication and decision-making [23,
53]. However, learners often lack personalized feedback on

5Five students were excluded, as they did not correctly com-
plete the field study, failing to answer the survey questions
or submit their writing.

TAll students followed the instructions of the system and
wrote their texts in English, except one student who pro-
vided a text in Portuguese.
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their argumentation learning process in large-scale lectures
[60]. As a result, the field of argumentation mining (AM)
has emerged, identifying components of an argumentative
document that play a role in forming the overall argumen-
tation chain [59].

Building upon the importance of considering argumentation
mining datasets in implementing tools for persuasive writing
support, in this work, we used a public dataset of persuasive
essays (PED) to measure the generalizability of our findings
in a different educational task and provide replicability of
our results. We used the dataset of essays® obtained from
[11], containing 325’347 sentences from a set of essays an-
notated for discourse elements. Due to the large size of
the dataset and to be able to measure the usefulness of our
pipeline and models in low-resourced settings, we only used
a subset of the data to train our models. We picked 100 full
texts randomly from the dataset and kept those with more
than two sentences from the minority counterclaim and re-
buttal classes. The classification labels of this dataset are
listed in Table 2.

3.3 Experimental Evaluation (RQ?2)

With our experiments, we aimed to evaluate the suitabil-
ity of the state-of-the-art data augmentation approaches for
educational contexts (RQ2).

3.3.1 German Reflective Writing Data

Figure 3 illustrates the balanced accuracies (BAC) for our
experiments on the German Reflective Writing Dataset. We
observed an overall increase in BAC from 0.55 to 0.61 by
following the different stages of our pipeline. The per-class
performance (in terms of F1 score for each class) can be
found on our GitHub repository.

For experiment Step-1, we observe that all approaches ex-
cept fine-tuning (BAC: 0.59) lead to balanced accuracy scores
less than the baseline (BAC: 0.55, One-Shot BAC: 0.50, Few-
Shot BAC: 0.55, CoT BAC: 0.49). When investigating the
per-class accuracies, we found that the improved BAC is
mainly due to an improved classifier performance on the mi-
nority class Analysis (Baseline F1: 0.11, Fine-Tuning F1:
0.20).

For the Steps-1-3 experiment, we found very limited differ-
ences between using wrong predictions (BAC: 0.60) and us-
ing similarity metrics (BAC: 0.59) for example selection.

In the Steps-1-4 experiment, we found slightly higher effec-
tiveness of filtering data (BAC: 0.61) compared to relabeling
(BAC: 0.58), which was especially pronounced in the class-
specific F1 scores for a subset of classes (Feelings: F1 Fil-
tering = 0.72, F1 Relabeling = 0.65; Analysis: F1 Filtering
= 0.26, F1 Relabeling = 0.18).

Finally, when running the data augmentation pipeline iter-
atively (Steps-1-5 experiment), we received scores very sim-
ilar to the previous experiment with no iterations (second
iteration BAC: 0.604, third iteration BAC: 0.603, fourth it-
eration BAC: 0.596, fifth iteration BAC: 0.601). However,

Shttps://www.kaggle.com/competitions/feedback-prize-
2021/data



Table 2: Description of class labels along with sentence counts per label for the persuasive essays dataset (PED) [11].

Class Description ## sentences PED

Lead This component includes an opening that uses a statistic, quo- 263 (8.2%)
tation, description, or another technique to grab the attention
of the readers and introduce the main idea.

Position This component includes expressing an opinion or conclusion on 123 (3.8%)
the central question.

Claim This component includes a claim that supports the position. 421 (13.1%)

Counterclaim This component includes a claim that opposes the position or 402 (12.5%)
refutes another claim.

Rebuttal This component includes a claim that counters or disproves a 425 (13.2%)
counterclaim.

FEvidence This component includes ideas or examples used to back up 1213 (37.6%)

claims, counterclaims, rebuttals, or the position.

Concluding Statement
and the position.

This component includes a statement that restates the claims

378 (11.7%)
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Figure 3: Balanced accuracies (with standard errors) for each experiment on the GRD.

it is important to acknowledge the noticeable increase in the
accuracy metrics over the original baseline (BAC: 0.55).

3.3.2 English Reflective Writing Data

Figure 4 illustrates the balanced accuracies (BAC) for our
experiments on the English Reflective Writing Dataset. We
observed an overall increase in BAC from 0.73 to 0.77 by
following the different stages of our pipeline. Again, the
per-class performance (in terms of F1 score for each class)
can be found on our GitHub repository.

We found slight increases in overall BAC for all of the initial
data augmentation approaches (Step-1 experiment) compared
to the baseline (BAC: 0.73), with the effect being most pro-
nounced for chain-of-thought prompting (BAC: 0.77) and
fine-tuning (BAC: 0.77), and least pronounced for one-shot
prompting (BAC: 0.73).

Interestingly, in our Steps-1-3 experiment, we found that in-

troducing the example selection and augmentation process
(steps 2 and 3) was harmful to the model performance (BAC
Wrong Predictions: 0.73, BAC Similarity Metrics: 0.74),
which was especially reflected in lower F1 on specific classes
(Analysis: F1 CoT = 0.56, F1 Wrong Predictions = 0.52, F1
Similarity Metrics = 0.52; Action Plan: F1 CoT = 0.92, F1
Wrong Predictions = 0.88, F1 Similarity Metrics = 0.89).
These results contrast with our findings on the German Re-
flective Writing Dataset, where steps 2-3 led to slight im-
provements.

For the next step in the pipeline (Steps-1-4 experiment),
we observed similar accuracies for filtering (BAC: 0.74) and
re-labeling (BAC: 0.75). At a per-class view, relabeling
achieved better F1 scores for Feelings (F1 Filtering: 0.87,
F1 Relabeling: 0.89) and Evaluation (F1 Filtering: 0.46, F1
Relabeling: 0.49), while the opposite is true for Analysis
(F1 Filtering: 0.53, F1 Relabeling: 0.51), and Conclusion
(F1 Filtering: 0.80, F1 Relabeling: 0.78).
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Figure 4: Balanced accuracies (with standard errors) for each experiment on the ERD.

Finally, using an iterative approach demonstrated perfor-
mance increases, where using two iterations (BAC: 0.77)
achieved the overall best results across all experiments on
the dataset. However, the further iterations did not con-
sistently improve the overall balanced accuracy (BAC third
iteration: 0.76, BAC fourth iteration: 0.77, BAC fifth itera-
tion: 0.74).

3.3.3  Persuasive Essays Dataset

The balanced accuracies (including standard errors) achieved
in the experiments on the Persuasive Essay Dataset are illus-
trated in Fig. 5). We observed an overall increase in BAC
from 0.44 to 0.48 by following the different stages of our
pipeline. We again report the full per-class results on our
GitHub repository.

‘We observed that all initial data augmentation approaches
(Steps-1 experiment) achieved a higher BAC than the base-
line (BAC: 0.44), but that one-shot (BAC: 0.47), few-shot
(BAC: 0.47), CoT prompting (BAC: 0.47), and fine-tuning
(BAC: 0.47) achieved similar results.

Similar to the English Reflective Writing Dataset, we ob-
served that introducing example selection and example-based
data augmentation (Steps-1-3 experiment) led to lower model
performance (BAC Wrong Predictions: 0.45, BAC Similar-
ity Metrics: 0.45) than merely using initial data augmenta-
tion.

For our Steps-1-4 experiment, we found slightly higher effec-
tiveness of filtering data (BAC: 0.48) compared to relabeling
(BAC: 0.45), especially pronounced in the F1 scores for spe-
cific classes, including Claim (F1 Filtering: 0.48, F1 Rela-
beling: 0.44), Lead (F1 Filtering: 0.40, F1 Relabeling: 0.34),
and Position (F1 Filtering: 0.44, F1 Relabeling: 0.39). This
result is in line with the findings for the same experiment
on the German Reflective Writing Dataset.

Finally, when employing an iterative approach (Steps-1-5 ex-
periment), we found that while the BAC increased with ev-
ery subsequent iteration (BAC second iteration; 0.46, BAC
third iteration: 0.47, BAC fourth iteration: 0.47, BAC fifth
iteration: 0.48), it remained relatively lower than the BAC
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achieved with filtering in the Steps-1-4 experiment.

4. DISCUSSION

Using intelligent and interactive systems, which include NLP
models in their backbone, has been shown to be beneficial in
supporting students in the context of ITS and educational
writing assistants. However, NLP models, e.g., transformer-
based classifiers, need an extensive amount of balanced or
near-balanced data for optimal performance, a character-
istic commonly lacking in many educational datasets. To
move in the direction of addressing this issue, in this paper,
we first conducted a systematic literature review on recent
LLM-based approaches to data augmentation, resulting in
a taxonomy reflecting the data augmentation pipeline. We
found certain stages of our pipeline to be covered in more
detail among prior works; for example, zero- or one-shot
prompting (29 papers, 37% of all), few-shot prompting (19
papers, 24% of all), and fine-tuning models to generate new
data points (14 papers, 18% of all) were used extensively
in the data augmentation and generation literature. More-
over, a notable number of papers (24 papers, 31% of all)
consider filtering the generated entries to ensure a high va-
lidity and expressiveness of the training data. However, cer-
tain approaches in the pipeline were less explored in the
literature, necessitating further investigation. For example,
we found only a limited number of papers that used CoT
prompts (6 papers, 8% of all), even though research shows
the added benefits of chain-of-thought prompting on model
performance [65]. Moreover, certain methods for selecting
examples, e.g., using difficulty measures (3 papers, 4% of
all), were only scarcely covered in the papers from our lit-
erature review. Finally, only a few papers conducted a re-
labeling process (4 papers, 5% of all) after generating new
data points. This suggests the need for future work on best
practices of relabeling data points using pre-trained or task-
specific language models.

Our pipeline serves as a conceptual framework for future
researchers focusing on data augmentation and generation
methods, by allowing them to systematically follow the com-
mon steps and strategies used for data augmentation and
generation, and extracting the underexplored approaches
in each stage that could potentially turn out to be use-
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Figure 5: Balanced accuracies (with standard errors) for each experiment on the PED.

ful for certain downstream tasks. We applied the stages
of our pipeline sequentially to three imbalanced educational
datasets of reflective and persuasive writings. Particularly,
regarding the reflective writing datasets, collecting and an-
notating our own datasets in a rigorous process ensured that
any issue in the generalization of models (e.g., low perfor-
mance in certain classes after multiple training epochs) did
not likely stem from a low annotation quality, but from the
nature of the data itself. Generally, we found that applying
data augmentation along the five stages led to final improve-
ments in overall balanced accuracy, as well as increases in
F1 scores of certain underrepresented classes (e.g., Analysis
for the reflective writing datasets, and Lead or Position for
the persuasive essays dataset), confirming the general appli-
cability of LLM-driven data augmentation methods across a
set of educational datasets. However, we observed that not
all augmentation approaches led to an improved accuracy
when individually considered. For example, using similar-
ity metrics in stage 2 was harmful to the overall balanced
accuracy for the English reflective writings and persuasive
essays datasets. Moreover, continuing the iterative augmen-
tation approach for more iterations was not helpful in terms
of overall balanced accuracy on the reflective datasets and
did not lead to consistent improvements in minority classes.

We believe that the differences between our results and those
of prior works considering each stage of our pipeline indi-
vidually could either come from the differences in tasks and
data or the adaptations that we had to undertake in order to
use a similar method for our text classification task. Never-
theless, the overall gains in balanced accuracy and per-class
F1 scores of minority classes indicate the usefulness of our
pipeline for improving classification accuracy on educational
datasets. All in all, our results suggest that the state-of-
the-art approaches to data augmentation can be useful for
improving classification accuracy. This is signified by our
provided pipeline, which provides a systematic way of ap-
proaching the task of data augmentation or generation for a
variety of downstream tasks.

Our work comes with several limitations. First, we only
explored the applicability of a subset of methods from our
pipeline on three educational datasets. Future work should
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therefore apply the methods to more tasks, datasets, and
models (e.g., ROBERTa, DeBERTa, etc.) to ensure gen-
eralizability. Second, there is a possibility that any differ-
ence in the implementation of the stages of our pipeline,
e.g., the prompts we used for the LLM-driven approaches,
the configuration of our fine-tuned models, or the details of
calculating similarity metrics, can lead to a variety of re-
sults with possibly different interpretations on a variety of
datasets. Third, we only employed one LLM, namely GPT-
4o, as part of our augmentation pipeline. While GPT-40 has
shown promising performance across a variety of educational
[38, 68] and non-educational [28, 76] tasks, it remains a pro-
prietary model. We performed initial experiments with the
small open-source Llama 3.1 8B model, resulting in subpar
performance compared to GPT-40 (e.g., a mean balanced
accuracy of 0.55 after fine-tuning the model using LoRA on
the German reflective writing dataset, almost the same as
the baseline performance of 0.55 without any augmentation,
versus a mean balanced accuracy of 0.59 obtained by fine-
tuning GPT-40). Nevertheless, future work should continue
experimenting with open-source models.

S. CONCLUSION

In this paper, we presented a systematic literature review on
LLM-driven data augmentation for text classification, with
the goal of improving the classification accuracy of the mod-
els trained on educational datasets. We proposed a five-stage
pipeline based on the insights extracted from our literature
review. Our empirical experiments on three educational
datasets, including different tasks and languages, demon-
strated the effectiveness of LLM-driven augmentation tech-
niques in addressing class imbalance and improving classifier
performance. Our findings highlight the promise of LLMs
in enhancing the classification accuracy of models trained
on educational data, while also emphasizing the need for
further research on optimizing augmentation strategies for
domain-specific educational contexts.

Ethical Considerations

Our study on LLM-driven data augmentation for text classi-
fication on educational datasets naturally necessitates care-
ful attention to ethical considerations, particularly regarding



data privacy, bias mitigation, and the responsible use of syn-
thetic data. Since we leveraged real student-generated texts
for augmentation, we ensured following a data anonymiza-
tion process to protect student identities and prevent un-
intended exposure of sensitive information [48]. However,
given that LLMs may propagate biases present in their train-
ing data, we suggest future work to critically evaluate the
generated texts quantitatively and qualitatively, in order to
minimize skewed representations that could disproportion-
ately affect certain student groups [36, 61], as well as to mit-
igate the possible risks of using LLMs in educational settings
[3, 57]. Finally, as GPT-40, the LLM we used, is a propri-
etary model, we documented our methods and dataset op-
erations to enhance transparency and reproducibility. This
highlights the need for future researchers to assess and refine
LLM-driven augmentation strategies for educational appli-
cations by experimenting with open-source models.
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