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ABSTRACT
Digital textbooks are widely used in various educational con-
texts, such as university courses and online lectures. Such
textbooks yield learning log data that have been used in
numerous educational data mining (EDM) studies for stu-
dent behavior analysis and performance prediction. However,
these studies have faced challenges in integrating confidential
data, such as academic records and learning logs, across
schools due to privacy concerns. Consequently, analyses are
often conducted with data limited to a single school, which
makes developing high-performing and generalizable models
difficult. This study proposes a method that combines feder-
ated learning and differential features to address these issues.
Federated learning enables model training without central-
izing data, thereby preserving student privacy. Differential
features, which utilize relative values instead of absolute
values, enhance model performance and generalizability. To
evaluate the proposed method, a model for predicting at-risk
students was trained using data from 1,136 students across
12 courses conducted over 4 years, and validated on hold-
out test data from 5 other courses. Experimental results
demonstrated that the proposed method addresses privacy
concerns while achieving performance comparable to that
of models trained via centralized learning in terms of Top-n
precision, nDCG, and PR-AUC. Furthermore, using differ-
ential features improved prediction performance across all
evaluation datasets compared to non-differential approaches.
The trained models were also applicable for early prediction,
achieving high performance in detecting at-risk students in
earlier stages of the semester within the validation datasets.

Keywords
grade prediction, early prediction, risk ranking, privacy pro-
tection, generalizability, educational data mining

1. INTRODUCTION
Digital textbooks are widely used due to their capability to
not only allow students to access learning materials on per-
sonal devices but also collect records of their interactions as
learning logs. These digital textbooks are now implemented
in many educational institutions [43, 13, 8, 7], leading to the
accumulation of vast amounts of learning logs.

This development has motivated research on students’ learn-
ing behavior and the prediction of academic performance
using learning logs [24, 51, 50]. For example, studies have
developed systems that provide instructors with real-time
visualizations of students’ learning progress, such as the per-
centage of students keeping pace with the lecture or those
remaining on a previous page [42]. Other studies have utilized
learning log data to predict final exam scores and classify
students into higher- and lower-performing [9].

However, these studies have faced major difficulties in inte-
grating academic performance data and learning logs across
schools, which introduces privacy concerns [5, 4, 25]. Conse-
quently, creating generalizable and high-performance models
is challenging due to the limited availability of data [1, 44].
Thus, developing methods for performance prediction without
directly integrating data is crucial to advance EDM research
and strengthen learning support in educational practice.

In conventional machine learning (ML), data stored in sepa-
rate locations must be centralized on a single server for model
training, which raises concerns about privacy – an important
topic within the EDM community [5, 4, 25]. Prior work
has focused on this issue from the perspective of privacy-
preserving EDM infrastructures, such as MORF [19], which
allow to train ML models without direct access to the data.
Federated learning, which has gained attention as a privacy
preserving ML approach in non-EDM contexts [29, 37, 22,
32], supports privacy from a different perspective. It is based
on distributing model parameters to data owners (hereinafter,
referred to as “clients”), who train the model locally on their
data. The locally trained parameters are then aggregated on
a central server, enabling training without transferring raw
data. Compared to approaches like MORF, the advantage
of federated learning is that it supports privacy without the
need to establish a centrally managed infrastructure. Since
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data can be processed in a decentralized manner, no man-
agement cost applies, and security measures associated with
centralized data management are also eliminated.

However, when applying federated learning, discrepancies
in the feature distributions among clients can arise due to
differences in context, such as e-book usage frequencies or
course schedules. These differences can bias model training
and degrade the model performance [21, 52, 30]. Prior stud-
ies have explored methods focused on improving aggregation
to prevent these differences from degrading the models per-
formance [31, 15]. Our study proposes an approach that
addresses these discrepancies through data preprocessing
using differential features [46, 6]. By utilizing relative fea-
ture values instead of absolute ones, this approach mitigates
disparities in feature distributions among clients. As a result,
it improves both generalizability and model performance –
two key aspects of many EDM studies [39, 2, 48, 10].

In summary, federated learning with differential features
has shown promise for preserving privacy and enhancing ML
model properties in non-EDM contexts. However, to the best
of our knowledge, this approach has not been validated in the
context of EDM research. Therefore, our study aims to evalu-
ate ML models for at-risk student prediction using the unique
approaches of federated learning with differential features.
Furthermore, we investigate whether accurate predictions
can be achieved in the early stages of a course—specifically,
using learning log data collected up to the halfway point
of the lecture sessions—as timely identification of at-risk
students is essential for practical interventions in real-world
educational settings.

Our study makes the following contributions:

• We enable accurate prediction of students’ academic
performance using learning log data, with a particular
focus on identifying at-risk students, while preserving
privacy through federated learning.

• We enhance model generalizability and performance by
utilizing differential features, which capture relative dif-
ferences in students’ learning behaviors and academic
performance instead of absolute values, thereby miti-
gating distributional disparities across datasets.

• We demonstrate the applicability of our approach to
early prediction, showing that at-risk students can be
accurately identified in the early stages of a course
based on partial learning log data.

2. RELATED WORK
We aim to develop a generalized, high-performance ML model
for predicting grades while preserving privacy using federated
learning with differential features. Therefore, this section
reviews prior studies related to this research across two
themes: grade prediction and federated learning.

2.1 Prediction of Students’ Grades
Predicting grades is a crucial area of EDM research aimed at
supporting learning activities and enabling personalized edu-
cational interventions. Various methods have been proposed,
including classification models that categorize students based

on their predicted performance [33, 41, 12] and regression
models that estimate continuous grade values [18, 28].

For example, Chen et al. [9] constructed a model to classify
university students into “higher-score students” or “lower-
score students”by leveraging various features, including learn-
ing behaviors within digital textbooks (e.g., turning pages,
adding/deleting markers, and editing/removing memos). Ong
et al. [38] examined whether incorporating“instructor-related
features” improves the performance of students’ grade predic-
tion using both regression and classification. Altabrawee et
al. [3] developed a model to predict academic performance in
computer science courses at a university. Their model used
features such as frequency of using the internet for studying,
time spent on social media, and previous semester grades to
classify students as either “Good” or “Weak”.

Overall, research on grade prediction encompasses a wide
range of approaches, with each study employing different
features and methods. However, many studies have focused
on predicting grades for specific courses, which limits their
applicability. The impact of data changes throughout a
single course [27] as well as across various courses. Yet, the
models’ generalizability to different course contents has not
been sufficiently investigated. Therefore, this study aims
to develop and evaluate a model capable of generalizing
across courses to detect students with poor final grades.
To achieve this, federated learning was utilized to address
privacy concerns, and differential features were introduced
to improve the model’s generalizability and performance.

2.2 Federated Learning
Federated learning has gained considerable attention in re-
cent years for enabling privacy-preserving model training
across various fields outside EDM [29]. Oldenhof et al. [37]
demonstrating federated learning in the medical drug dis-
covery process. Federated learning was employed to train
predictive models collaboratively across multiple pharma-
ceutical companies without centralizing sensitive data. This
approach yielded a shared predictive model while maintaining
data confidentiality. Kanamori et al. [22] applied federated
learning in detecting fraudulent financial transactions. They
developed a model in collaboration with five banks, enabling
data analysis without centralizing confidential information.
The federated learning system outperformed models trained
solely on individual bank data, achieving higher performance
in detecting fraudulent transactions. This system enabled
the detection of fraudulent accounts before actual monetary
losses occurred. Liu et al. [32] proposed a federated learning
approach for traffic flow prediction, allowing multiple orga-
nizations to collaboratively build predictive models without
sharing raw data. By leveraging information collected locally,
organizations could develop more accurate traffic prediction
models while preserving data privacy. Each organization
used its own traffic data to train models and shared only the
resulting parameters, ensuring the protection of confidential
information. Experiments using real-world traffic data de-
monstrated that this method achieved superior predictive
performance compared to traditional approaches.

As demonstrated in the aforementioned studies, federated
learning shows strong promise in other fields, enabling multi-
ple organizations to collaboratively train ML models while
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preserving data privacy. Moreover, this approach increases
the amount of data available for training, thereby potentially
also enhancing predictive performance. However, federated
learning remains underexplored in educational contexts. No
publication at the EDM conference in the past five years
(2020–2024) has focused on federated learning (based on ex-
amining the titles in the proceedings). Since the effectiveness
of federated learning has not been thoroughly validated –
particularly in addressing challenges posed by heterogeneous
data distributions – our study is unique because it focuses
on these aspects.

To the best of our knowledge, only one recent paper has em-
ployed federated learning in education. In 2024, Haastrecht
et al. [47] investigated federated learning for educational
analytics by comparing different approaches across multiple
prediction tasks. While their study demonstrated the fea-
sibility of federated learning, it did not address the impact
of feature distribution discrepancies across clients, which
can substantially affect model performance. By mitigating
the issues caused by feature distribution discrepancies us-
ing differential features, our study explores the potential of
federated learning in EDM and validates its effectiveness.

3. THE PROPOSED MODELING METHOD
This section explains our method for creating a model that
preserves privacy through federated learning and leverages
differential features. The overall framework is illustrated in
Figure 1. The following subsections focus on federated learn-
ing and differential features, detailing how these approaches
are used to conduct learning and prediction.

Client 2

・・・

Aggregation and integration of 
model parameters

Model

Client 3 Client K

Learning

Feature representations 
of learning activities

Scoring grade 
information

Client 1

Learning log dataGrade information

Conversion to 
Differential Features

Model Training

Learning

Learning Learning

Figure 1: The overall framework of our proposed method

3.1 Federated Learning
Figure 2 illustrates the learning and prediction processes
of federated learning utilized in this study. This approach
enables model training and prediction without the need to
aggregate data on server, ensuring data privacy.

In the learning phase, server distributes model parameters
to each client. Each client trains the model using its locally
held data. Subsequently, the trained model parameters and

number of data samples held by clients are sent back to the
server, where the model parameters are aggregated. This
process is repeated multiple times to train the model on the
server.

For the prediction phase, the trained model parameters are
distributed to client requiring predictions. The client applies
the model to its locally held data to perform predictions.

Server Client 1 Client 2 Client K• • •
Prediction

Client

①Distribution of model parameters

②Learning ②Learning ②Learning

③Return model parameters and the 
number of client data to server

④Integration of 
model parameters

Repeat this operation 
a specified number of 

times

Learning

Predction ①Distribution of learned model parameters

② Predict and Detect 
At-Risk Students

Figure 2: The sequence diagram of learning and prediction in
federated learning

3.1.1 Parameter Integration Method
This study employs FedAvg [34] as the method for integrating
model parameters. FedAvg performs weighted averaging of
model parameters trained by each client, where the weights
are determined by the number of data samples held by each
client.

Specifically, let ωt
k denote the model parameters trained

by client k at epoch t and nk represent the number of data
samples held by that client. The integrated model parameters
ωt after applying FedAvg are expressed as follows:

ωt =

K∑

k=1

nk

N
ωt
k (1)

N is the total number of data samples across all clients.

As shown in Figure 2, the integrated model parameters ωt

from epoch t are distributed to all clients at the beginning of
epoch t+ 1. Each client then uses these parameters to train
the model locally during the next epoch.

3.1.2 Overview of Client-Side Learning
Figure 3 illustrates the part of the proposed method focused
on client-side learning, which is extracted from the overall
framework shown in Figure 1. Here, we briefly explain the
client-side learning process.

First, learning log data are transformed into feature repre-
sentations, while academic performance data are converted
into scores. Subsequently, differential features are applied
to these datasets to create relative data. Training on these
relative data allows to obtain a generalized model.

The following sections provide a detailed explanation of each
aspect.
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Figure 3: Overview of client-side learning

3.1.3 Learning Log Data in Digital Textbooks
Digital textbook systems are educational platforms that al-
low learners to access and interact with learning materials
through personal devices. While viewing the materials, learn-
ers can perform various actions, such as navigating forward
or backward through pages, adding notes, or using markers.
These interactions are recorded as learning log data and
stored in a database.

3.1.4 Feature Representation of Learning Activities
Learning activities cannot be directly used to train ML mod-
els; thus, preprocessing the activities of each student into
feature representations is necessary. To create feature rep-
resentations, we adopted the distributed representation of
learning material operations, E2Vec [35]. Figure 4 shows an
overview of the feature representation creation process.

・・・

t

Learning material operations

Creation of 100-dimensional 
feature representationsNm Nm NmNm ⋯ OsNsNmNmNs ⋯

Figure 4: Feature representation creation using E2Vec

This method generates feature representations of learners
by creating a sequence of symbols from learning logs while
preserving the temporal order and time intervals between
learning actions. E2Vec defines primitives, units, and actions
corresponding to characters, words, and sentences in natu-
ral language processing. Learner’s log data are expressed
as multiple actions with their distributed representations.
These representations of actions are then aggregated using a
method inspired by Bag of Visual Words [11], resulting in
100-dimensional feature representations for each learner.

In the original EDM study by Miyazaki et al. [35], the
feature representations of each student were L2-normalized.
However, in this study, normalization was omitted to account
for the number of actions generated, enabling the features
to be directly used for training.

3.1.5 Scoring of Student Grades
As described further in Section 3.1.6, this study employs a re-
gression model for at-risk students’ prediction. Students’ aca-

demic performance is represented by standard letter grades
as points on a five-level scale: F, D, C, B, and A. To make
these data compatible with the regression model, the grade
points must be converted into numerical scores.

For each grade, let x1, x2, x3, x4, and x5 denote the number
of students with grades F, D, C, B, and A, respectively, and
let X represent the total number of students in the client.
The converted grade value Gm for grade m is defined as:

Gm = MaxScore×
∑m

j=1 xj

X
(m = 1, 2, 3, 4, 5) (2)

Additionally, considering the general criterion that students
with total scores between 90% and 100% are assigned grade
A, we adopt 0.95 as the value for MaxScore in this study.

3.1.6 Ranking-Based Prediction Using Regression
This study employs a regression model to detect at-risk
students. The feature representations are input into the
regression model to obtain predicted academic performance
values for each student. These prediction values are then
sorted in ascending order to identify high-risk students in a
ranking format, referred to as a “risk ranking” hereinafter.

An example of the ranking creation using the regression
model is shown in Figure 5. The prediction values in the
figure are hypothetical and used for illustrative purposes.

U1
U2 U3

U4

Prediction
U1

U2 U3

U4

Predction values
0.64 0.38 0.35 0.71

Sort students in 
ascending order based 
on prediction values

U1
U2

U4

U3

risk
high low

Figure 5: Ranking creation method using a regression model

The risk-ranking-based prediction using a regression model
was adopted for the following three key reasons:

1. Compatibility with Differential Features
As described further in Section 3.2, the use of differ-
ential features enables to establish higher/lower rela-
tionships between students’ grades. By employing a
regression model, the extent of these differences can be
explicitly learned, allowing the model to capture and
utilize them.

2. Limitations of Classification Models
Classification models divide students into at-risk and
no-risk groups. However, this complicates identifying
no-risk students who are close to being at-risk or at-risk
students who are closer to no-risk. This limitation has
been observed in previous EDM studies [49]. In con-
trast, this study utilizes a regression model to estimate
predicted performance values. Ranking students based
on these prediction values enables to better identify
students near the boundary between the two groups.

3. Improved Generalization of the Predictions
The proposed method enables to create highly general-
izable models for prediction. For example, consider a
scenario where a course consists of 16 lecture sessions,
and the goal is to detect at-risk students based on the
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data available until the 6th lecture for early prediction.
If a model trained on data from all 16 lecture sessions
is applied to early prediction data, classification mod-
els may struggle because of shifts in data distribution.
Since classification relies on decision boundaries, the
limited availability of data in early stages can lead to
decreased confidence scores and increased misclassifi-
cation rates. In contrast, a regression model applied
in a ranking format mitigates this issue. While the
absolute prediction values may fluctuate when trained
on full-course data but applied to partial-course data,
if this fluctuation occurs uniformly, the ranking order
among students remains unaffected. This ensures that
high-risk students can still be accurately identified. By
leveraging a ranking-based approach with regression
models, the proposed method eliminates the need to
build separate models for early prediction, allowing
models trained on complete data to be directly applied
for detecting at-risk students at any stage of the course.

3.2 Differential Features
This study employs differential features to enhance the model’s
performance and generalizability. Such features are created
by calculating the differences between feature representations
and grade information of two students within the data held
by a client. This approach generates data that represent the
relative differences between students.

As an example, Figure 6 illustrates the application of differ-
ential features to a client that holds data for five students.
The combinations shown in the figure represent only a subset
of possible combinations for illustrative purposes and do not
cover all potential pairings.

Client 

U1
U2 U3

U4
U5 U3 U5

・・・

U1
U2

U1-U2 U1-U4

U1-U3 U1-U5

U1
U3

U1
U5

U4U1 U1
U2

U2

U2

U4

U2

U2-U3 U2-U5

U2-U1 U2-U4
Differential Featurization

Figure 6: Example of differential feature creation

Specifically, let the set of students in a client be denoted S,
the feature representation of student i (i ∈ S) be vi, and the
grade of student i after scoring based on Equation 2 be gi.
Then, the feature representation dij and grade information
eij after applying differential features are expressed as:

dij = vi − vj (i ̸= j, i, j ∈ S) (3)

eij = gi − gj (i ̸= j, i, j ∈ S) (4)

3.2.1 Advantages of Differential Features
Differential features have two main benefits:

1. Increase in Training Data
If a client holds data for n students, the use of differ-
ential features expands the number of data points to

n(n− 1). This expansion helps mitigate overfitting and
bias when training the local model on clients with lim-
ited data because the increased data volume provides
a richer dataset for training.

2. Improved Generalization by Utilizing Relative Values
Figure 7 illustrates that introducing differential fea-
tures enables the use of relative values. Without dif-
ferential features, absolute feature values are used for
training. This can bias the server model because of
differences in feature distributions among clients. For
instance, clients with different course structures (e.g.,
semester-based vs. quarter-based lectures) may exhibit
substaintial differences in the features’ absolute values
due to varying interactions with learning materials.

Instead, differential features use relative values, re-
ducing the impact of such discrepancies and enabling
the construction of a more generalized model. This
approach improves the model’s robustness and adapt-
ability across clients with varying feature distributions.

Client 2Client 1 Client 3 Client K

・・・

high

low

Utilization of Relative 
Values through 
Differential Features

Utilization of Relative 
Values through 
Differential Features

Utilization of Relative 
Values through 
Differential Features Utilization of Relative 

Values through 
Differential Features

Features

Figure 7: Use of relative values in differential features (the
graphs represent the distribution of feature values across
different clients)

3.2.2 At-Risk Student Predction Using Differential
Features

As described in Section 3.1.6, this study employs a regression
model to rank students in terms of their risk level (in order
from the highest to the lowest risk). However, with differen-
tial features, the regression model no longer outputs individ-
ual predictions for students but instead provides prediction
values for the differences between two students (hereinafter,
referred to as “pairwise difference scores”). Therefore, the
method for obtaining individual prediction values when using
differential features is described below.

Let S be the set of students in a client. Using the feature
representation with differential features, dij , in the regres-
sion model yields a prediction value pij . However, since pij
represents the prediction value for the difference between
two students, it cannot directly be used for at-risk detection.
The individual prediction value qi for a student i (i ∈ S) is
derived as follows:

qi =
∑

j∈S,j ̸=i

pij (i ∈ S) (5)

An example of calculating the individual prediction value
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for a specific student in a client with data for five students
is illustrated in Figure 8. (The values are synthetic for
illustrative purposes.)

U1
U2 ・・・

U1
U3

U4U1 U1
U5

Prediction value
0.24873 0.15432 -0.14312 0.34324

U1

Prediction value of U1＝ 0.24873 + 0.15432 + (-0.1432) + 0.34324 

U1-U2 U1-U3 U1-U4 U1-U5

U1
U2

U2-U1

-0.42129

Figure 8: Example of deriving individual prediction values for
a student U1 from differential-feature-based predictions

After calculating the individual prediction values for all stu-
dents, as described in Section 3.1.6, the students are sorted in
ascending order of their individual prediction values qi. This
creates a risk ranking, which can then be used to identify
at-risk students based on their relative ranks.

It is important to note that the pairwise difference scores ob-
tained from the regression model are used solely for internal
model computation and are not provided to users (instruc-
tors and/or students, depending on the specific application).
Instead, the output available to users is limited to a risk rank-
ing of individual students. Therefore, users are not required
to interpret the pairwise scores themselves, and the use of
differential features does not hinder the interpretability of
the system from the users’ perspective.

4. EXPERIMENTAL EVALUATION
This section presents the comparison between the proposed
method and baseline methods (defaults without the exper-
imental condition). Additionally, it discusses the proposed
method’s early prediction capabilities and examines the cor-
responding results.

4.1 Experimental Setup
4.1.1 Learning Log Data in the E-book Platform

BookRoll [36, 14] is a widely used system that allows students
to access learning materials registered by instructors through
their individual devices. When learners view the materials,
control buttons are displayed alongside the content of the
opened pages. These buttons have various functions, such as
moving between pages and adding notes or markers. All these
actions are recorded as log data and stored in a database.
An example of the recorded log is shown in Figure 9.

The log data include the following information: IDs to iden-
tify the learner performing the operation and the material
being accessed, the type of operation performed (denoted
as “operation name”), and the timestamp of performing the
operation (denoted as “event time”). Our study uses these
learning log data for model training and prediction.

4.1.2 Data and Clients in Federated Learning

eventtime・・・operationnamecontentsiduserid
2019-06-09 15:12:11Prevc1u1
2019-06-10 02:56:28Nextc1u1
2019-05-21 21:34:47Openc2u1
2019-05-21 22:03:13Openc1u2
2019-06-09 15:12:10Nextc2u2
2019-05-20 09:35:05Prevc1u3
2019-05-20 09:47:47Prevc1u3

Figure 9: Format of the learning logs in the BookRoll system

We collected and used a substantial dataset from four years
(eight semesters) of undergraduate courses at Kyushu Univer-
sity. A total of seven courses were utilized for training and
prediction, labeled from A to G. These courses span a diverse
range of topics, learning formats, and academic terms, as de-
tailed in Table 1. In this study, data collection was conducted
with the informed consent of the students. To ensure privacy
protection, all collected data were anonymized and handled
to prevent individual identification. Additionally, this study
was approved by the institutional ethics committee.

Table 1: Details of courses used for training and prediction

Course Topic Format Academic term
A Scheme Lecture+Exercise Quarter
B Security Lecture Quarter
C Information and Communication Lecture Semester
D Signal Processing Lecture Semester
E Programming Exercise Semester
F Artificial Intelligence Technology Lecture Semester
G Fortran Lecture+Exercise Semester

The grade distribution of the training data used in this study
is shown in Table 2. This table presents the number of
students receiving each grade (A, B, C, D, F) across different
courses, along with the total number of students and the
number of lecture weeks for each course. The training dataset
includes 1,136 students, covering a wide range of courses and
academic terms. In the“Course”column, the letter represents
the course name, while the following number indicates the
academic year in which the course was conducted.

Similarly, Table 3 shows the grade distribution for the hold-
out test data used for prediction evaluation. In addition to
student grades, this table includes the number of students
classified as“At-risk”and“No-risk”based on their final grades.
In this study, students are classified as at-risk if their grade
is less than or equal to the grade of the student ranked
15th1 from the bottom in their actual final grads, while the
remaining students are classified as no-risk. This boundary is
set arbitrarily for evaluation and is not used to differentiate
between at-risk and no-risk during model training.

Finally, we note that the number of no-risk students (264) is
more than twice that of at-risk students (127), resulting in a
slightly imbalanced dataset. Nevertheless, this distribution

1The threshold of 15 was chosen to ensure that the number
of at-risk students is sufficient for evaluating Top-n precision
(n = 15), see the next section.
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Table 2: Grade distribution and the number of lecture weeks
in the training data

Course A B C D F Students Lectures
A-2019 15 9 6 10 12 52 8
A-2020 22 23 5 3 7 60 7
A-2021 9 11 10 18 6 54 8
B-2019 30 103 28 1 1 163 8
C-2021-1 9 53 32 7 6 107 15
C-2021-2 15 88 37 26 9 175 15
D-2020 61 7 1 2 34 105 14
D-2021 60 3 6 4 33 106 15
E-2020-1 17 23 12 8 13 73 14
E-2020-2 0 2 8 21 25 56 15
F-2021 71 13 4 3 3 150 14
G-2021 26 3 3 0 3 35 16
Total 335 338 152 103 152 1136

Table 3: Grade distribution and the number of lecture weeks
in the separate hold-out test data for prediction evaluation

Course A B C D F No-risk At-risk Lectures
A-2022 17 6 5 22 2 28 24 8
B-2020 37 38 12 2 4 75 18 7
C-2022-1 17 37 34 4 4 54 42 15
D-2022 50 10 8 8 17 76 17 16
E-2021 3 16 8 4 26 31 26 16
Total 124 107 67 40 53 264 127

is expected, since we assume to have more students who are
not at risk.

In this study, the data in each row of Table 2 (except the
summary row “Total”) were treated as a client, resulting in
12 clients for training. Subsequently, the trained model was
applied to the 5 courses serving as hold-out test data (shown
in Table 3) to perform at-risk student prediction.

4.1.3 Evaluation Metrics
We utilize a ranking-based approach where students are or-
dered in ascending order of their prediction values to create a
risk ranking. To evaluate the propose method’s performance,
we use three ranking-specific evaluation metrics: Top-n pre-
cision, nDCG, and PR-AUC:

1. Top-n Precision
Top-n precision indicates the proportion of students
who are actually at-risk among the top-n students pre-
dicted to incur the highest risk. In this study, we
evaluate Top-n precision with four different settings:
n = {5, 10, 15, At-risk}. Here, the “At-risk” refers to
the actual number of students classified as at-risk in
the test data.

2. Normalized Discounted Cumulated Gain (nDCG)
As described in the reference paper [20], nDCG is a
ranking-specific metric used to compare the predicted
ranking order based on prediction values with the ac-
tual ranking order based on the students’ grades. To

compute nDCG, each student must be assigned a value.
Since higher-risk students are ranked higher in this
study, the values assigned to students must increase as
their risk level increases. Therefore, we utilize the score
Gm derived from Equation 2 and assign each student a
value of 1−Gm (m = 1, 2, 3, 4, 5) to calculate nDCG.

3. Area Under the Precision-Recall Curve (PR-AUC)
The Precision-Recall (PR) curve is commonly used in
EDM research [17, 26] to evaluate predictive model
performance. It plots Top-n precision (vertical axis)
against Top-n recall (horizontal axis) as n varies, illus-
trating their relationship. The area under this curve
(i.e., PR-AUC) quantifies model performance, with
higher values indicating better balance between preci-
sion and recall.

For a robust evaluation, a single evaluation result from one
model would be insufficient. Therefore, we conducted train-
ing 10 times and calculated the average of the evaluation
metrics obtained from the models. This approach provides a
more reliable assessment of the model’s performance.

4.1.4 Regression Model
A neural network was employed as the regression model
during training. This neural network consists of two hidden
layers: the first layer comprises 50 nodes and the second
layer 10 nodes. To prevent overfitting, we applied dropout
between the hidden layers, with a dropout rate of 20%. The
activation function in each hidden layer is ReLU, commonly
used in similar EDM contexts [48, 45].

4.1.5 Comparisons of Experimental and Baseline Con-
ditions

We conducted two types of comparative experiments:

1. Performance comparison between “Federated Learning”
and “Centralized Machine Learning”
Centralized ML is the baseline method in which the
data from all clients are collected in a single location,
with potential privacy concerns. The model is trained
using the aggregated data.

2. Performance comparison between “With Differential
Features” and “Without Differential Features”
Without differential features, applying the regression
model to the feature representations yields individual
prediction values for each student. As described in
Section 3.1.6, students can be easily ranked in order
of risk by sorting them in ascending order of their
individual prediction values.

4.2 Experimental Results
4.2.1 Federated vs. Centralized Learning

First, we compared “Federated Learning” and “Centralized
Machine Learning”. To ensure stable and uniform conditions
for comparison, all evaluations used differential features. The
comparison results are shown in Table 4.

These results demonstrate that the Proposed Method (using
federated learning) achieves almost the same performance
as Baseline Method 1 (using centralized machine learning)
across all test data. Specifically, in terms of nDCG, the
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Table 4: Proposed Method (using Federated Learning) vs. Baseline Method 1 (using Centralized ML)

Test Data Method
Top-n precision

nDCG PR-AUC
n = 5 n = 10 n = 15 n = At-risk

A-2022
Proposed Method 0.96 0.83 0.80 0.63 0.83 0.75
Baseline Method 1 1.00 0.85 0.81 0.63 0.84 0.75

B-2020
Proposed Method 0.72 0.56 0.43 0.41 0.72 0.46
Baseline Method 1 0.64 0.53 0.41 0.37 0.69 0.43

C-2022-1
Proposed Method 1.00 0.93 0.79 0.72 0.87 0.78
Baseline Method 1 1.00 0.95 0.79 0.70 0.85 0.78

D-2022
Proposed Method 0.80 0.90 0.84 0.79 0.95 0.83
Baseline Method 1 0.80 0.90 0.83 0.79 0.95 0.83

E-2021
Proposed Method 1.00 0.97 0.83 0.64 0.86 0.78
Baseline Method 1 0.98 0.96 0.83 0.63 0.85 0.77

Table 5: Proposed Method (With Differential Features) vs. Baseline Method 2 (Without Differential Features)

Test Data Method
Top-n precision

nDCG PR-AUC
n = 5 n = 10 n = 15 n = At-risk

A-2022
Proposed Method 0.96 0.83 0.80 0.63 0.83 0.75
Baseline Method 2 0.88 0.83 0.73 0.61 0.80 0.70

B-2020
Proposed Method 0.72 0.56 0.43 0.41 0.72 0.46
Baseline Method 2 0.58 0.47 0.35 0.31 0.62 0.37

C-2022-1
Proposed Method 1.00 0.93 0.79 0.72 0.87 0.78
Baseline Method 2 0.96 0.92 0.85 0.65 0.82 0.75

D-2022
Proposed Method 0.80 0.90 0.84 0.79 0.95 0.83
Baseline Method 2 0.86 0.85 0.79 0.76 0.93 0.82

E-2021
Proposed Method 1.00 0.97 0.83 0.64 0.86 0.78
Baseline Method 2 0.92 0.80 0.71 0.60 0.81 0.68

performance degradation of the Proposed Method is at most
0.01 in A-2022, while maintaining comparable or superior
performance in other test data. Furthermore, for PR-AUC
and Top-n precision (n = At-risk), the Proposed Method
consistently demonstrates performance that is equal to or
better than Baseline Method 1 across all test data.

Therefore, federated learning enables at-risk student pre-
diction with performance comparable to that of centralized
machine learning, with the added benefit of more strongly
preserved privacy.

4.2.2 With vs. Without Differential Features
Next, we compared “With Differential Features” and “With-
out Differential Features”. To ensure stable and uniform
conditions for comparison, all evaluations used federated
learning. The comparison results are presented in Table 5.

The Proposed Method (with differential features) consis-
tently outperformed Baseline Method 2 (without differential
features) across all test data in terms of both nDCG and
PR-AUC metrics. This indicates that introducing differential
features enables more accurate detection of at-risk students,
at least in the context of e-book log data.

This improvement is primarily due to two key advantages of
differential features: (1) data augmentation, which increases
the amount of training data per client and stabilizes learn-
ing, reducing overfitting; and (2) relative value utilization,
which mitigates differences in feature distributions across

clients, improving generalization. These benefits allow the
model to maintain stable performance even in heterogeneous
educational environments. However, while differential fea-
tures substantially contribute to these improvements, other
potential factors might have also influenced the results.

The findings suggest that introducing differential features
enhances not only the performance but also the generaliz-
ability of the prediction model, enabling it to achieve stable
performance across various test data.

4.2.3 Application to Early Prediction
In the previous sections, predictions were conducted using
data collected after the completion of all lecture sessions.
However, in practice, the early prediction of at-risk students
is crucial [27]. Therefore, we investigated the prediction
performance when using learning logs obtained from lecture
sessions up to a certain point. The results are shown in
Figures 10 to 14.

In these figures, the horizontal axis represents the number of
completed lecture sessions, while the vertical axis indicates
the PR-AUC evaluation score. The figures illustrate how the
prediction performance improves as the number of lecture
sessions used in the prediction increases. The blue points
represent the results obtained using the proposed method;
the yellow points represent the results of Baseline Method 1;
the green points represent the results of Baseline Method 2,
and the red points represent the results obtained by arranging
the students in a random order.
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Figure 10: Relationship between lecture
sessions and PR-AUC in course A-2022
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Figure 11: Relationship between lecture
sessions and PR-AUC in course B-2020
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Figure 12: Relationship between lecture
sessions and PR-AUC in course C-2022-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Lecture

0.0

0.2

0.4

0.6

0.8

1.0

PR
-A

UC

Proposed method
Centralized + Difference Features
Federated + No Difference Features
Random

Figure 13: Relationship between lecture
sessions and PR-AUC in course D-2022
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Figure 14: Relationship between lecture
sessions and PR-AUC in course E-2021

Table 6: Evaluation of Risk Ranking in Early Prediction

Test Data Method
Top-n precision

nDCG PR-AUC
n = 5 n = 10 n = 15 n = At-risk

A-2022

Proposed Method

1.00 0.82 0.77 0.71 0.81 0.78
B-2020 0.64 0.48 0.41 0.37 0.68 0.40

C-2022-1 1.00 0.97 0.92 0.73 0.84 0.79
D-2022 0.78 0.82 0.73 0.69 0.87 0.67
E-2021 0.90 0.80 0.71 0.58 0.80 0.68

The results show that for the quarter-based lectures, A-2022
and B-2020, predictions at the end of the 4th lecture achieved
performance almost equivalent to that of predictions made
after the final lecture. For semester-based lectures, C-2022-1
achieved comparable performance to the final prediction at
the end of the 8th lecture, while D-2022 showed continuous
improvement in prediction performance as lecture sessions
used for prediction increased. For E-2021, while performance
temporarily declined, it improved as lecture sessions used in
the prediction increased.

In summary, for A-2022, B-2020, and C-2022-1, detection
performance after half of the total lectures was comparable to
performance after all lectures. Therefore, for early prediction,
the evaluation was conducted using data up to the 4th lecture
for A-2022 and B-2020 and up to the 8th lecture for C-
2022-1, D-2022, and E-2021. The results are summarized
in Table 6. These results indicate that high performance in
at-risk prediction can still be achieved in early prediction
scenarios.

For all test data except B-2020, Top-n precision (n = 15)
exceeded 0.7. Thus, when extracting the top 15 high-risk
students from the risk ranking, at least 10 of them were accu-
rately classified as at-risk in their final grades. These findings
demonstrate the effectiveness of the proposed method for

early prediction and its ability to accurately identify high-risk
students early in the lecture series.

4.2.4 Risk Rankings in Early Prediction
The visualized risk rankings in early prediction using the
proposed method are shown in Figures 15 to 19.

In these figures, the horizontal axis represents the students’
grades (F, D, C, B, A), while the vertical axis represents
their ranks in the risk ranking. The dots are color-coded:
students identified as at-risk (corresponding to the number
of at-risk students in Section 4.1.2) are marked red, while all
other students are marked blue. This color coding enables an
intuitive understanding of the relationship between students’
grades and their ranks in the risk ranking.

In most test data, students with lower grades tend to be
represented by red dots, which indicates a higher proportion
of at-risk students among those with poor academic per-
formance. These results suggest that the proposed method
effectively captures the relationship between academic perfor-
mance and risk, consistently identifying students with lower
grades as high-risk. This demonstrates that the generated
risk rankings align well with the expected academic trends,
reinforcing the validity of the model’s predictions.
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Figure 15: Relationship of grades and
rankings in early prediction for A-2022
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Figure 16: Relationship of grades and
rankings in early prediction for B-2020
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Figure 17: Relationship of grades and
rankings in early prediction for C-2022-1
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Figure 18: Relationship of grades and
rankings in early prediction for D-2022
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Figure 19: Relationship of grades and
rankings in early prediction for E-2021

4.3 Discussion and Limitations
4.3.1 Data Source and Generalizability

Although the proposed approach has been evaluated with
learning logs only from BookRoll, our method is applicable in
other learning management systems. We publicly provide our
modeling code (see Section 5) for others to adopt or extend to
other types of learning logs. As a result, further research may
adapt our methods to other systems and datasets. However,
since all data in this study originates from a single institution
and platform, the generalizability of the proposed method
to different institutional contexts remains an open question.

4.3.2 Communication and Computational Constraints
Regarding federated learning, this study did not consider
the network communication overhead or the client devices’
computational constraints. However, federated learning in-
herently introduces challenges related to network commu-
nication costs and device capabilities. These limitations
must be considered for real-world deployment, and future
work should explore lightweight models and communication-
efficient strategies.

4.3.3 Model Interpretability
While our results show that federated learning achieves pre-
diction performance comparable to that of centralized learn-
ing (Section 4.2.1), the interpretability of the resulting model
has not been fully explored in this study. In particular, it
remains unclear which specific input features contribute the
most to the risk predictions. Investigating the influence of
individual features within the differential features will be an
important direction for future work, especially for improving
the model’s transparency in practical educational settings.

4.3.4 Robustness to Non-IID Data
An important factor to consider in federated learning is
whether the model can perform well under non-independent
and identically distributed (non-IID) data. This study intro-
duced differential features to address discrepancies and skew
in feature distributions across clients—one aspect of non-
IID data in federated learning. Notably, differential features
transform both the input features and student outcome labels
(i.e., grade information) into pairwise differences between
students. While our method was not originally designed to
address label distribution skew—another important aspect
of non-IID data—it may incidentally help mitigate this issue.
Although we did not evaluate this effect, we recognize it as a
potential secondary benefit of using differential features and
consider it an important direction for future work.

4.3.5 Assumptions Behind Differential Features
While our results show improved performance with differen-
tial features, we implicitly assume that these features mitigate
discrepancies in feature distributions across clients. However,
this assumption has not yet been explicitly validated for
a general setting, and further investigation in other educa-
tional contexts is needed to confirm whether the observed
improvements are indeed attributable to reduced inter-client
variability in feature distributions.

4.4 Implications for Educational Practice
Our approach offers practical value for both instructors and
students. From the instructor’s perspective, the risk rank-
ings can inform individualized support strategies, such as
prioritizing interventions for high-risk students or organizing
differentiated instruction. From the students’ perspective,
understanding their relative risk status may help them reflect
on their learning behavior and take proactive steps toward
improvement.
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5. CONCLUSION AND FUTURE WORK
This study proposed a method that (1) applies federated
learning in EDM to enable privacy-preserving prediction
modeling and (2) leverages differential features to use rela-
tive values between clients, resulting in a generalizable and
high-performing model. Additionally, to effectively utilize dif-
ferential features, we proposed a method that scores grades,
employs regression, and calculates individual prediction val-
ues from pairwise difference scores to generate risk rankings.

The evaluation of the proposed method demonstrated the
following novel contributions:

• Federated learning achieves at-risk student prediction
performance comparable to that of centralized ML,
while benefiting from increased privacy protection.

• Introducing differential features improves the perfor-
mance of at-risk student prediction compared to the
baseline without differential features.

• Even when using data from only half of the lecture ses-
sions, the proposed method achieves high performance
in at-risk student prediction, which demonstrates its
applicability to early prediction scenarios.

5.1 Open Research Challenges
As a result of this novel study, there are several open research
challenges in exploring federated learning and differential fea-
tures in EDM. Specifically, the following topics are identified
as areas for future work:

1. Developing a More Generalizable Model
As discussed in Section 4.3.1, the proposed approach is
currently designed for learning log data from BookRoll.
To develop a more generalizable and robust model, fur-
ther work could investigate its applicability to different
types of learning logs and educational datasets, explor-
ing methods for adapting the model to diverse data
sources and system architectures.

2. Alternative Integration Methods in Federated Learning
This study employed the commonly used method called
FedAvg for federated parameter integration. While
FedAvg is a widely adopted baseline, other integration
methods such as FedOpt [40] and SCAFFOLD [23]
may offer advantages in terms of convergence speed,
stability, or model performance. Future work could
explore the impact of these alternative methods on the
effectiveness of the proposed approach.

3. Identifying Actions Influencing Risk Levels
Since the risk rankings are generated based on the learn-
ing logs, further investigation is required to identify
which specific student actions contribute to lower or
higher risk, as discussed in Section 4.3.3.

5.2 Availability of Research Code
To support the replicability of the findings—an aspect valued
by the EDM community [16]—we have made the code used
to produce the results in this paper publicly available at:

https://github.com/limu-research/2025-EDM-FL.
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evaluation of ir techniques. ACM Transactions on
Information Systems (TOIS), 20(4):422–446, 10 2002.
https://doi.org/10.1145/582415.582418.

[21] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet,
M. Bennis, A. Nitin Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, R. G. L. D’Oliveira,
H. Eichner, S. El Rouayheb, D. Evans, J. Gardner,
Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons,
M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo,
B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi,
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