An Efficient Linearized Optimization Framework for
Designing Balanced and Efficient Degree Plans

Ahmad Slim
University of New Mexico
ahslim@unm.edu

Michael Hickman
University of New Mexico

mhickman@unm.edu

ABSTRACT

Designing balanced and optimized degree plans is a funda-
mental challenge in higher education, directly impacting stu-
dent success, graduation rates, and institutional efficiency.
This paper presents an innovative framework that addresses
this challenge through a two-stage optimization approach.
The first stage focuses on selecting a set of courses that max-
imizes requirement satisfaction while minimizing curriculum
complexity, characterized by course cruciality values derived
from blocking and delay factors. The second stage utilizes an
efficient linearized solution to design semester-level degree
plans that balance credit loads and difficulty while respect-
ing hierarchical, prerequisite, and corequisite constraints.
Unlike traditional methods, which often struggle with com-
putational inefficiency due to quadratic or absolute-value
objectives, our approach employs linearization techniques
to reformulate these objectives into scalable, solvable lin-
ear forms. The proposed methodology is implemented in a
practical application, with visualizations demonstrating its
usability and effectiveness. Detailed experiments and time
complexity analysis validate the framework’s scalability and
computational efficiency, even for large academic programs.
This work provides an essential tool for educators, advisors,
and institutions to generate personalized, real-time degree
plans, ultimately enhancing student outcomes and institu-
tional planning capabilities.

Keywords
Student success, graduation rate, curricular complexity, bal-
ancing degree plan, mixed-integer linear programming

1. INTRODUCTION

Designing efficient degree plans is a critical challenge in
higher education. Students must navigate complex prereq-
uisite structures, institutional constraints, and course avail-
ability while ensuring timely degree completion. A well-
structured degree plan directly impacts student success, grad-

Ahmad Slim, Chaouki Abdallah, and Ameer Slim. An Efficient Lin-
earized Optimization Framework for Designing Balanced and Efficient
Degree Plans. In Caitlin Mills, Giora Alexandron, Davide Taibi, Gio-
su¢ Lo Bosco, and Luc Paquette (eds.) Proceedings of the 18th In-
ternational Conference on Educational Data Mining, Palermo, Italy,
July, 2025, pp. 55—65. International Educational Data Mining Soci-
ety (2025).

© 2025 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.15870189

Chaouki Abdallah

Lebanese American University
president@lau.edu.lb

55

Elisha Allen
University of New Mexico
elisha@unm.edu

Ameer Slim
University of New Mexico

ahs1993@unm.edu

uation rates, and institutional efficiency [1, 7]. However, bal-
ancing requirement satisfaction, curricular complexity, and
workload distribution presents a multi-objective optimiza-
tion problem. Existing research in curricular analytics pri-
marily focuses on descriptive methods to identify inefficien-
cies in course networks, offering insights but lacking pre-
scriptive solutions for degree planning [10, 5, 19, 20]. Tradi-
tional optimization techniques, including mixed-integer pro-
gramming, struggle to accommodate the hierarchical and
logical constraints inherent in curricula [8]. Additionally,
non-linearities, such as absolute-value and quadratic terms,
increase computational complexity, limiting real-time ap-
plicability [4]. To address these challenges, this paper in-
troduces an optimization framework that transforms non-
linear objectives into solvable mixed-integer linear programs
(MILPs). By integrating advanced linearization techniques,
the framework enhances computational efficiency, enabling
real-time degree plan generation for interactive applications
[3]. Unlike conventional degree audit systems that verify re-
quirement completion, this approach proactively optimizes
course selection to maximize credit applicability while min-
imizing curricular complexity. It accommodates diverse re-
quirement structures, including nested sub-requirements,
shared and separate course allocations, and “m-out-of-n”
constraints. This paper is structured as follows: Section 2
reviews curricular analytics concepts and related work. Sec-
tion 3 formalizes key challenges and optimization objectives.
Section 4 presents the mathematical formulation, incorpo-
rating constraints for requirement satisfaction, complexity
minimization, and balanced semester planning. Section 5
analyzes computational scalability, highlighting the benefits
of linearization. Section 6 demonstrates the framework’s
integration into a decision-support tool. Section 7 evalu-
ates experimental results and discusses institutional impli-
cations. Finally, Section 8 summarizes contributions and fu-
ture directions. By bridging the gap between descriptive cur-
ricular analytics and prescriptive degree optimization, this
work provides a structured, scalable, and computationally
efficient framework for academic planning. The proposed
methodology aims to minimize delays, reduce complexity,
and ensure equitable workload distribution, ultimately im-
proving student success.

2. BACKGROUND AND RELATED WORK

The process of academic planning is inherently complex, in-
volving the satisfaction of diverse requirements, prerequi-

https://doi.org/10.5281/zenodo.15870189

sites, and resource constraints. The field of curricular ana-
lytics has emerged to address these challenges by analyzing
the structural and functional properties of academic pro-
grams [19, 2, 21, 18, 12, 15, 13, 14, 11, 16]. This section
provides an overview of key concepts in curricular analytics
and a review of related work in degree plan optimization.

2.1 Curricular Analytics and Complexity Met-
rics
Curricular analytics focuses on understanding and improv-
ing the design of academic curricula by leveraging data-
driven approaches. Central to this field is the concept of cur-
ricular complexity, which quantifies the difficulty associated
with completing an academic program [19]. The complexity
of a curriculum is influenced by the structural relationships
between courses, which are represented as a directed graph
G. = (V, E), where V denotes the set of courses and E repre-
sents prerequisite dependencies between courses. This graph
representation enables a systematic evaluation of curriculum
structure and helps identify critical bottlenecks that can hin-
der student progression [23]. Several metrics have been pro-
posed to assess curricular complexity, including cruciality
value, which measures the importance of a course within
the curriculum [19]. The cruciality value is computed as the
sum of two key factors: the blocking factor, which quantifies
how many downstream courses depend on a given course,
and the delay factor, which captures the extent to which a
course, if not completed on time, can postpone a student’s
graduation [20, 5]. Formally, for a course v;, the blocking

factor b(v;) is defined as:
Z I(’Ui — Uj),

b(vi)
v; EV

where I(v; — vj;) is an indicator function that equals 1 if
there exists a path from v; to v;, and 0 otherwise. High
blocking factors indicate that a course is a gateway to many
subsequent courses, making it essential for timely comple-
tion [19]. Similarly, the delay factor d(vk) is computed as
the number of vertices in the longest path in G. that passes
through vy:

max
pEP(vg)

d(vr) #(p),

where P(vr) represents all paths passing through v, and
#(p) denotes the number of vertices in path p. Courses with
high delay factors are integral to long prerequisite chains,
meaning any delay in their completion could significantly
impact a student’s academic trajectory [19]. Empirical stud-
ies have demonstrated that high curricular complexity cor-
relates strongly with lower graduation rates and increased
student attrition [19, 5, 12]. Reducing curricular complexity
by optimizing course selection and scheduling can improve
student retention and shorten time-to-degree. Given these
findings, optimizing degree plans must explicitly consider
such complexity measures [2].

2.2 Structure of Academic Requirements

Academic programs are inherently hierarchical, comprising
multiple levels of requirements that must be satisfied for
degree completion. At the highest level, these requirements
are typically categorized into core courses, electives, and spe-
cialization tracks, each serving distinct academic purposes.

56

These categories are further subdivided into thematic or
functional areas that contain specific sub-requirements. At
the lowest level, courses serve as leaf nodes in the require-
ment hierarchy, forming the fundamental building blocks of
a degree plan. The structure of academic requirements in-
cludes the following key features:

e Nested Requirements: Requirements often depend on
other sub-requirements, creating multi-level hierarchies.
For example, a general education requirement may in-
clude multiple subcategories such as humanities, social
sciences, and natural sciences, each of which contains
its own set of sub-requirements or courses.

e Leaf and Non-Leaf Requirements: A clear distinction
exists between leaf requirements, which correspond to
individual courses, and non-leaf requirements, which
represent higher-level groupings. This hierarchical struc-
ture ensures that constraints are applied appropriately
at each level.

e m-out-of-n Logic: Some requirements allow students to
select any m out of n courses or sub-requirements to
fulfill a parent requirement. For instance, a breadth
requirement may allow students to choose three out of
five available courses within a thematic area.

e AND/OR Conditions: Requirements may be satisfied
through a variety of logical relationships:

— AND Conditions: All sub-requirements or courses
must be satisfied to fulfill the parent requirement.
For example, a "Software Engineering Capstone”
requirement may require students to complete both
”Software Design Patterns” and ”Software Project
Management” before enrollment.

— OR Conditions: Any one of several subrequire-
ments or courses can fulfill the parent require-
ment. For instance, a science requirement may
allow students to choose between physics, chem-
istry, or biology.

— m-out-of-n Conditions: A more general form of
OR conditions where m out of n sub-requirements
or courses must be satisfied. For example, a stu-
dent might be required to complete any two out
of four electives in a given specialization.

e Shared and Separate Requirements: Courses may con-
tribute to multiple requirements (shared) or be re-
stricted to a single requirement (separate). For exam-
ple, a course in statistics might satisfy both a general
education requirement and a program-specific require-
ment.

The hierarchical and logical structure of academic require-
ments necessitates an optimization approach that can ac-
curately model dependencies while ensuring flexibility in
course selection. Failure to account for these complexities
may lead to inefficient degree plans that either overload stu-
dents or delay their progress due to prerequisite violations.

2.3 Comparison with Existing Degree Plan Op-
timization Methods

A variety of methods have been proposed for optimizing

degree plans, ranging from heuristic-based approaches to

more sophisticated optimization techniques [24]. Table 1

presents a comparison of existing approaches with the pro-
posed framework. The proposed optimization framework
stands out by explicitly modeling hierarchical constraints,
minimizing curricular complexity through cruciality-based
selection, and leveraging linearization techniques to improve
scalability [24]. Unlike traditional heuristic methods, which
may produce suboptimal results, or constraint programming,
which suffers from exponential growth in complexity, the
proposed approach balances computational efficiency with
optimal degree planning.

3. PROBLEM STATEMENT

Designing an optimal degree plan is a complex challenge in
higher education, requiring the careful allocation of courses
across semesters while ensuring compliance with institutional
requirements, student preferences, and academic constraints.
A well-structured degree plan directly impacts student suc-
cess by facilitating timely graduation, balancing workload,
and minimizing curricular complexity [19, 5, 17]. The opti-
mization framework aims to achieve three key objectives: (1)
maximizing requirement satisfaction across credit-based re-
quirements (leaf requirements that specify a minimum num-
ber of credits), course-based requirements (leaf requirements
that mandate a certain number of courses), and hierarchical
constraints, (2) minimizing curricular complexity by reduc-
ing course cruciality, blocking, and delay factors [19, 2], and
(3) balancing workload across semesters to prevent excessive
course loads or difficulty levels [24]. The problem is formu-
lated as assigning each course ¢ € C' to a semester s € S, en-
suring prerequisite and corequisite constraints are met while
preserving the logical structure of degree requirements, in-
cluding AND/OR relationships and m-out-of-n conditions.
To ensure feasibility, the model assumes that all relevant
input data—including course credits, pass rates, cruciality
values, and requirement hierarchies—are accurately defined.
It also operates under a fixed time horizon, meaning the
degree plan is designed for completion within a predeter-
mined number of semesters. Additionally, it presumes that
program requirements are inherently feasible, ensuring at
least one valid course assignment satisfies all constraints.
This framework is validated using real course offerings, pass
rates, and curricular complexity metrics from the Univer-
sity of New Mexico, ensuring its applicability to real-world
academic planning scenarios.

4. MATHEMATICAL FORMULATION

The degree plan optimization problem is formulated as a
Mixed-Integer Linear Program (MILP) and structured into
two sequential stages [8, 3]. The first stage maximizes re-
quirement satisfaction while minimizing curricular complex-
ity, ensuring students can progress efficiently toward degree
completion. Complexity is quantified using cruciality-based
measures such as blocking and delay factors [19]. Once
course selection is finalized, the second stage focuses on
semester-wise course allocation, balancing workload and dif-
ficulty while adhering to prerequisite, corequisite, and insti-
tutional constraints. These stages are solved using a lex-
icographic optimization approach, prioritizing requirement
satisfaction before minimizing complexity and then opti-
mizing workload distribution. The interdependence between
the two stages ensures that course selection directly informs
semester scheduling while preserving prerequisite and coreq-
uisite relationships. By structuring the problem this way,

57

the framework provides a scalable and computationally effi-
cient solution for degree planning.

4.1 First Optimization Problem: Satisfaction
Maximization and Complexity Minimiza-
tion

The first optimization problem seeks to maximize require-
ment satisfaction while minimizing curricular complexity.
This formulation captures the hierarchical nature of degree
requirements, logical dependencies, and credit constraints,
ensuring that the selected set of courses is both comprehen-
sive and minimally complex. The following subsections de-
fine the sets, parameters, decision variables, and constraints
used in this formulation.

4.1.1 Sets

The optimization model operates on a structured represen-
tation of courses, requirements, and dependencies.

C: The set of all courses, e.g., C = {C1,Ca,...,Cx }.
R: The set of all requirements, e.g.,R = {R1, Rz, ...,
Ra, }.

e S.: The set of sub-requirements associated with a re-
quirement r € R. Elements of S, can belong to R,
where they may be either non-leaf requirements (which
contain further sub-requirements) or leaf requirements
(which consist of a list of courses belonging to C).

e (G: The set of wildcard requirements, defined by a
set of rules, and their corresponding dynamically gen-
erated courses. Certain degree requirements specify
course categories rather than fixed course lists. The
model dynamically expands wildcard requirements by
mapping them to eligible courses based on subject codes
and course number ranges. For example, a requirement
may specify that students must complete any MATH
course numbered between 300 and 400. The set of
courses satisfying a wildcard requirement G is defined
as:

G = {c € C | subject[c] = rule.subjectA

number|c| € [rule.min, rule.max]}.

This allows for dynamic curriculum adjustments and
ensures students have flexible pathways to fulfill their
degree requirements.

e P(c): The set of prerequisite courses for course ¢ € C.

e (Q(c): The set of corequisite courses for course ¢ € C.

e Groups(c): The set of prerequisite groups for course c,
where each group k € Groups(c) refers to one prereq-
uisite course set P(c). Any complex prerequisite logic
expression for a course, such as:

prereq(c) = ((c1 OR ¢2) AND (c3 OR ¢4)) OR cs,
can be converted into a set of disjunctive expressions:

[(017 c3), (c1,ca), (2, ¢3), (c2, ca), (05)]’

Each expression within this disjunctive form is de-
fined as an individual prerequisite set P(c). The set
Groups(c) organizes these prerequisite sets into groups,
ensuring that at least one valid combination is satisfied
before a student can enroll in course c.

Table 1: Comparison of Degree Plan Optimization Methods

A h Handles Considers Scalability Optimization
pproac Hierarchical Constraints | Curricular Complexity (Linearization) Technique
Heuristic-Based - High i
Scheduling Limited No (fast but suboptimal) Rule-Based
Constraint Low i .
Programming Yes No (complexity increases exponentially) Integer Programming
Greedy . 9 .
Algorithms No No High Greedy Selection
MILP without Low Mixed-Integer
. I Yes Yes
Linearization (computationally expensive) Linear Programming
High MILP
Proposed Framework Yes Yes (via Linearization) with Advanced Linearization

4.1.2 Parameters
Each course has specific attributes that impact degree pro-
gression.

e credits[c]: The number of credits for course ¢ € C.

e cruciality[c]: The cruciality value for course ¢ € C,
computed by first constructing a course network that
includes all courses in a university or institution. In
this network, nodes represent courses, and edges repre-
sent prerequisite relationships. The cruciality of each
course is then determined by summing its respective
blocking and delay factors, which quantify its impact
on student progression and degree completion.

e pass_rate[c]: Pass rate for course ¢ € C.

e m,: The minimum number of sub-requirements (i.e.,
non-leaf requirements) or courses that must be satis-
fied within a course-based requirement to fulfill » € R.

e cry: The minimum number of credits required to sat-
isfy a credit-based requirement r € R.

e type(r): Specifies whether r is a shared or separate
requirement.

4.1.3 Decision Variables

To model course selection and requirement satisfaction, the
following binary and continuous decision variables are de-
fined:

e zlc,r] € {0,1}: Binary variable indicating whether
course c is assigned to requirement 7.

® Zunique[c] € {0, 1}: Binary variable indicating whether
course c is selected at least once across all requirements
(used to minimize the total number of unique courses
taken).

e y. € R>o: Satisfaction level of requirement r € R.

® 2., € R>o: Contribution of sub-requirement or course
s € S, to requirement r € R.

e ;. € {0,1}: Binary variable indicating whether sub-
requirement or course s € S, is selected for r € R.

e gcr € {0,1}: Binary variable indicating whether pre-
requisite group k € Groups(c) is selected for course
c.

4.1.4 Objective Function

The first stage of the optimization framework is governed by
two primary objectives: maximizing satisfaction across re-
quirements and minimizing curricular complexity. The first
objective ensures that students take courses that satisfy the
highest possible number of degree requirements while min-
imizing credit shortfalls. The second objective prioritizes
course selection that reduces overall complexity by avoiding
courses with high blocking and delay factors.

Maximize satisfaction across requirements while mini-
mizing unique course selections:

Maximize Z Yr - Z Tunique|[c]-

rTeER ceC

The first term ensures that as many requirements as possible
are satisfied. The second term, — ZCEC Zunique|C], serves as
a regularization component to penalize the total number of
distinct courses selected across all requirements. This dis-
courages the inclusion of extraneous or redundant courses
and promotes a more efficient plan of study. By minimizing
the number of unique courses used to satisfy degree require-
ments, the model encourages compact and targeted solutions
that achieve high satisfaction without inflating course load.

Minimize complexity value:

Minimize Z Z cruciality|c] . x[e, s].
ceC ses

This objective aims to reduce the overall complexity of the
selected courses by considering their cruciality values. Courses
with higher cruciality contribute more to complexity, so the
model prioritizes selections that minimize the total complex-
ity while still meeting the required constraints. This helps
streamline student pathways and reduces potential bottle-
necks in course progression.

4.1.5 Constraints

The formulation incorporates a set of constraints to en-
force hierarchical requirements, credit-based/course-based
thresholds, prerequisite/corequisite conditions, and domain
restrictions. Each sub-requirement contributes to satisfying
its parent requirement, where:

Zegp =0sr-Ys, fs€eR, VreR,seS,,
zsr =05 - x[s,7], ifs€C, VreR,seS,.

)

Courses must contribute the required number of credits to
fulfill credit-based requirements:

Ze,r = x[e, 7] - credits[c], Ve € Sy, Vr € R.

Wildcard requirements dynamically expand into a list of eli-
gible courses, ensuring flexibility in requirement satisfaction.
A course belongs to a wildcard requirement if it meets the
subject and number constraints:

G = {c € C : subject|c] = rule.subjectA

number|c| € [rule.min, rule.max]}.

58

For requirements that specify a minimum number of fulfilled
sub-requirements, the following conditions apply:

> Ger<m., VreR,
SES,

1 ZZ”’ Vr € R.

m
r sES,

Yyr =

For requirements that specify a minimum number of fulfilled
credits, the following conditions apply:

Z Zer 2> Crry, Vr € R,
cESy
1
Yr<— > Zes, Y <1, VreR

Ccr
r cESy

To prevent double counting, separate requirements ensure
that courses are not assigned to multiple independent re-

quirements:

r€ R:type(r)=separate

zle,r] <1, VeeC.

To correctly track the total number of distinct courses used
across all requirements, we define the following linkage con-
straint between the assignment variable z[c, r] and the course-
level indicator Zuniquelc]:

Ve € C, Vr € R such that ¢ € S;.

Tunique[c] > 2[e, 7],

This constraint guarantees that Tunique[c|] is activated (i.e.,
set to 1) if course c is assigned to any requirement. It enables
the model to penalize the total number of unique courses
selected, encouraging more efficient degree plans.

Prerequisite constraints enforce that a course can only be
scheduled once its prerequisite courses have been completed:

> alea,ra] - ger = Y aler,ri] - geyns

roER r1ER
Ver € C, ¢2 € Gk, k € Groups(c).

Ensure exactly one prerequisite group is selected for each

course:

keGroups(c)

gey b =1, Vel € C.

Similarly, corequisites must be taken in the same semester:
Z zler,] = Z zlca,r2], Ve € C, ca € Coreq(cr).
T ER ToER

All decision variables must adhere to their domains:

Vr € R, s €Sy,

Ve e C, r € R, k € Groups(c).

Yr, Zs,rs Z 0,
33[0, TLaSJ‘agC,k € {0’ 1}7

Lexicographic Optimization. The first stage must fully
maximize satisfaction before addressing complexity mini-
mization. To ensure that the second objective function op-
erates within the optimal satisfaction level, the constraint

Z yr > Optimal Value of Objective 1

reR

59

is enforced. This formulation guarantees that students en-
roll in an optimized set of courses that satisfy requirements
efficiently while simultaneously reducing bottlenecks and im-
proving degree completion rates.

4.2 Second Optimization Problem: Balanced

Semester Planning

Following the course selection in Stage 1, the second opti-
mization problem aims to distribute courses across semesters
while minimizing workload imbalances. A well balanced
semester plan ensures students maintain a steady academic
load, reducing extreme fluctuations in credit hours and dif-
ficulty. To achieve this, the optimization model minimizes
deviations from the average credit load per semester while
adhering to prerequisite, corequisite, and institutional con-
straints.

4.2.1 Sets

The formulation builds on structured representations of
courses and semesters.

C': Set of all courses, C = {C1,Cq,...,Ch, }.

S: Set of all semesters, S ={1,2,...,T}.

P(c): Set of prerequisite courses for course ¢ € C.
Q(c): Set of corequisite courses for course ¢ € C.

4.2.2 Parameters

The number of credits for a course is given by credits|c],
and its difficulty is estimated using a historical pass rate
pass_rate[c]. To maintain a reasonable workload, semester-
wise constraints define the minimum and maximum allow-
able credits and courses.

credits[c]: Number of credits for course ¢ € C.
pass_rate[c]: Pass rate for course ¢ € C.

min_credits: Min. total credits allowed per semester.
max_credits: Max. total credits allowed per semester.
min_courses: Min. total courses allowed per semester.
max_courses: Max. total courses allowed per semester.

To facilitate balancing, the average number of credits per
semester is computed as:

> cec credits|c]
5]

Similarly, the overall average pass rate across all courses is:

avg_credits =

> ccc bass_ratelc]
|C]|

These parameters serve as reference points against which
semester deviations are measured.

overall_avg _pass_rate =

4.2.3 Decision Variables

The semester assignment of courses is represented by the
binary decision variable:

if course c is assigned to semester s,
otherwise.

4.2.4 Objective Function
The objective is to minimize the absolute deviation in credits
and difficulty across semesters. Specifically:

Credit Deviation Objective. The absolute deviation of cred-
its assigned in a semester from the average number of credits:

>

seS

Z credits[c] - z[c, s] — avg_credits|.
ceC

Difficulty Deviation Objective. The absolute deviation of
the total pass rate in a semester from the average pass rate:

>

seS

Z pass_rate[c] - z[c, s]—

ceC

overall_avg pass_rate - Z z[e, 8]
ceC

The combined objective function is to minimize both
credit and difficulty deviations:.

Minimize: E
seSs

seS

Z credits[c] - z[c, s] — avg_credits
ceC

+

Z pass_rate[c]-z]c, s]foverall,avg,passg"ate-z x[e, s]|.
ceC ceC

By jointly minimizing these terms, the framework produces
degree plans that evenly distribute academic effort, avoid-
ing semesters that are excessively challenging or too light in
workload.

4.2.5 Constraints

Credit Constraints. The total credits assigned in any semester
must lie within the allowed range:

min_credits < Z creditsc] - z[c, s] < max_credits, Vs € S.
ceC

Course Constraints. The total number of courses assigned
in any semester must lie within the allowed range:

min_courses < E z[c, s] < max_courses, Vs € S.
ceC

Prerequisite Constraints. A course can only be assigned
to a semester if all its prerequisites have been completed in
prior semesters:

s—1

Zx[p, t] > zlc,s], Vee C,Vpe P(c), Vs € S.

t=1

Corequisite Constraints. Corequisites must be assigned
to the same semester:

zle, s] = z[q,s], Vee C,Vq € Q(c), Vs € S.

60

Course Assignment. Each course must be assigned to ex-
actly one semester:

Zx[c, sj=1, VeeC.

seS

4.3 Second Optimization Problem: Balanced

Semester Planning with Linearization
Building upon the absolute deviation approach, this sec-
tion introduces a linearized formulation to improve compu-
tational efficiency. The linearization replaces absolute value
calculations with additional variables and constraints, en-

suring that the optimization model remains solvable as a
Mixed-Integer Linear Program (MILP) [4].

4.3.1 Sets

The formulation follows the same structured representation
of courses and semesters as in the previous subsection.

C': Set of all courses, C = {C1,Co,...,Cr_ }.

S: Set of all semesters, S ={1,2,...,T}.

P(c): Set of prerequisite courses for course ¢ € C.
Q(c): Set of corequisite courses for course ¢ € C'.

4.3.2 Parameters
e credits[c]: Number of credits for course ¢ € C.
e pass_rate[c]: Pass rate for course ¢ € C.

e avg credits: Average number of credits per semester,

. credits|c
avg_credits = %

e overall avg pass_rate: Average pass rate across all
courses, overall_avg_pass_rate = W
min_credits: Min. total credits allowed per semester.
max_credits: Max. total credits allowed per semester.
min_courses: Min. total courses allowed per semester.
max_courses: Max. total courses allowed per semester.

4.3.3 Decision Variables
e zlc,s] € {0,1}: Binary variable; z[c,s] = 1 if course
c € C'is assigned to semester s € S, otherwise 0.
e difficulty_penalty[s] € R>q: Linearized penalty for
semester s based on deviation from average pass rate.
e credit_deviation[s] € R>¢: Linearized penalty for
semester s based on deviation from average credits.

4.3.4 Objective Function
The objective is to minimize the sum of the difficulty penalty
and the credit deviation penalty across all semesters:

Minimize: Z difficulty_penalty|s] + Z credit_deviation][s].
s€S seS

This ensures that the course distribution across semesters
maintains a steady workload without excessive difficulty fluc-
tuations.

4.3.5 Constraints

Credit Constraints. The total credits assigned in any
semester must lie within the allowed range:

min_credits < Z credits[c] - z[c, s] < max_credits, Vs € S.
ceC

Course Constraints. The total number of courses assigned
in any semester must lie within the allowed range:

min_courses < E z[c, s] < max_courses, Vs € S.
ceC

Linearized Credit Deviation. The deviation of credits in
a semester from the average credits is modeled as:

credit_deviation][s]

> Z credits[c] - z[c, s] — avg_credits, Vs € S,
ceC

credit_deviation[s]

> avg_credits — Z credits[c] - z[c, s], Vse€S.
ceC

Linearized Difficulty Penalty. The deviation of the total
pass rate in a semester from the average pass rate is modeled
as:

difficulty_penalty|s]

> Z pass_rate[c] - z[c, s| — overall_avg_pass_rate- Z z[e, s],
ceC ceC
Vs € S,

difficulty_penalty|[s]

> overall avg_pass_rate- g z[e, s]— E pass_rate[c] - z]c, s],
ceC ceC
Vs e S.

Prerequisite Constraints. A course can only be assigned
to a semester if all its prerequisites have been completed in
prior semesters:

s—1
Zx[p, t] > zle,s], VeeC,Vpe P(c), Vs €S.
=1

Corequisite Constraints. Corequisites must be assigned
to the same semester:

zle, s] = z[q,s], Vee C,Vq € Q(c), Vs € S.

Course Assignment. Each course must be assigned to ex-
actly one semester:

Zm[c, s]=1, VeeC.

seS

4.4 Summary and Computational Considera-
tions

61

This two-stage optimization framework integrates prescrip-
tive methodologies to design balanced and efficient degree
plans. The first stage selects courses that maximize require-
ment satisfaction while minimizing curricular complexity,
and the second stage distributes these courses evenly across
semesters to maintain a manageable workload. By explicitly
modeling prerequisite/corequisite dependencies, credit con-
straints, and difficulty balancing, the framework serves as
a practical decision-support tool for students and advisors.
To enhance computational efficiency, the formulation lin-
earizes absolute value deviations, enabling faster and more
scalable optimization while preserving workload balancing
objectives. This ensures feasibility for large-scale curricula
while maintaining adherence to key academic policies. Ad-
ditionally, the integration of wildcard requirements supports
flexible curricular pathways without compromising struc-
tural integrity. By combining requirement satisfaction with
workload balancing, the framework optimizes student pro-
gression in a structured manner. The next section examines
computational complexity and evaluates performance scala-
bility.

S. TIME COMPLEXITY ANALYSIS

The optimization framework for degree plan design com-
prises two interdependent problems: maximizing require-
ment satisfaction while minimizing curricular complexity,
followed by balancing credit loads and difficulty across
semesters. Each problem presents unique computational
challenges, necessitating a careful analysis of time complex-
ity to assess scalability and efficiency. This section provides
a detailed examination of the computational complexity of
both optimization problems, emphasizing the impact of lin-
earization on the second problem and its implications for
real-time decision-making.

5.1 Complexity of the First Optimization Prob-

lem
The first optimization problem seeks to maximize the sat-
isfaction of degree program requirements while minimizing
curricular complexity. It is formulated as a Mixed-Integer
Linear Program (MILP), which is known to be NP-hard
due to the presence of binary decision variables and hier-
archical constraints [8]. Although the mathematical formu-
lation includes terms that may appear quadratic, such as the
product of a continuous variable and a binary variable (e.g.,
Zs,» = Os,r - Ys), the problem remains a Mized-Integer Lin-
ear Program (MILP). This is because d,, € {0,1} acts as
a binary switch, which allows these constraints to be ex-
pressed in an equivalent linear form without introducing
nonlinearity. Most modern MILP solvers natively handle
such constraints, ensuring that the problem retains its linear
complexity. If both variables in the product were continu-
ous, the formulation would require Mixed-Integer Quadratic
Programming (MIQP), but this is not the case in our model.

5.1.1 Decision Variables and Constraints
The number of binary decision variables, z[c,r], which indi-
cate course assignments to requirements, scales as:

O(IC| x| R)

where |C] is the number of courses and |R| is the number
of program requirements. Additionally, continuous variables

for requirement satisfaction, credit contributions, and hier-
archical dependencies further increase the dimensionality of
the problem. The constraint set includes prerequisite and
corequisite constraints, which enforce ordering dependencies
and contribute O(|C| X |P|) constraints, where |P| is the
number of prerequisite dependencies. Hierarchical require-
ment constraints, given the nested structure of academic
requirements, scale as O(|R| x |C|). Ensuring that each re-
quirement meets credit or course thresholds introduces an
additional O(|R|) constraint. Furthermore, separate require-
ment constraints, which enforce that a course is not assigned
to multiple separate requirements, add O(|C|) constraints.

5.1.2 Computational Complexity

The combination of binary and continuous decision vari-
ables, along with hierarchical and ordering constraints, re-
sults in a problem size that scales as:

O(IC| x |R| +|C| x | P).

MILP problems of this nature are solved using branch-and-
bound methods, which, in the worst case, have exponential
time complexity [3]:

O(2/€1xIRly.

However, modern solvers exploit problem structure and heuris-

tics to achieve practical performance improvements, partic-
ularly for medium-scale instances.

5.2 Complexity of the Second Optimization Prob-

lem (Before Linearization)
The second optimization problem focuses on balancing course
load and difficulty across semesters. Unlike the first prob-
lem, which is inherently linear, this problem involves abso-
lute value functions, introducing non-linearity that signifi-
cantly increases computational demands [9].

5.2.1 Decision Variables, Constraints, and Complex-
ity

The second optimization problem assigns courses to semesters
while balancing workload and difficulty. It includes binary

variables for course-semester assignments, z[c, s] (O(|C] x

|S])), and continuous variables for credit deviations and dif-

ficulty penalties (O(|S])). Constraints ensure adherence to

credit limits, prerequisite dependencies (O(|C| x |P|)), and

workload balance. The presence of absolute value constraints
increases computational complexity, requiring auxiliary vari-

ables for linearization. As a result, the problem remains

NP-hard, with a worst-case complexity of:

o(2/¢1x1shy,

This highlights the need for efficient linearization techniques
to enhance scalability [3].

5.3 Impact of Linearization on the Second Op-

timization Problem
To enhance computational efficiency, the second optimiza-
tion problem undergoes linearization, transforming absolute
value terms into linear constraints using auxiliary variables.

This technique significantly reduces the solver’s search space [9].

Table 2: Solver Performance for Various Problem Sizes

Instance Size Linearized (Sec) | Non-Linear (Sec) | Speedup
|C] =50,|S| =8 12.3 32.5 2.6x
|C] =100, S| =8 27.8 71.4 2.6X
|C] =200, |S| =38 65.4 163.2 2.5

5.3.1 Reduction in Complexity

The absolute deviation expressions:

Z credits|c] - z[c, s] — avg_credits
ceC

are replaced by linear constraints with auxiliary variables
credit_deviation[s]:

credit_deviation[s]

> Z credits[c] - z[c, s] — avg_credits, Vs € S,
ceC

credit_deviation][s]

> avg credits — Z credits[c] - z[c, s], Vs € S.
ceC

Similar transformations are applied to difficulty penalties,
eliminating the need for non-linear solvers and allowing ef-
ficient resolution using standard MILP techniques [8].

5.3.2 Post-Linearization Complexity
By replacing non-linear expressions with linear constraints,
the overall problem complexity is reduced to:

o(|c] x |5])-

This reduction leads to a significant improvement in com-
putational feasibility, allowing the solver to find solutions
within practical time limits [9].

5.4 Scalability, Solver Performance, and Ap-

plication Integration

The efficiency improvements from linearization significantly
enhance solver performance, reducing runtime by up to 60%,
as shown in Table 2. These computational gains ensure that
the optimization framework remains scalable and applica-
ble to large academic programs. This computational effi-
ciency enables seamless integration into interactive decision-
support tools, allowing students and advisors to dynamically
modify degree plans and receive real-time feedback on credit
distribution and complexity reduction strategies. The next
section explores the visualization of these solutions within
the application framework.

6. APPLICATION AND VISUALIZATIONS

The proposed optimization framework is integrated into an
interactive application that supports academic planning and
decision-making. This section outlines the key functionali-
ties of the application, including its user interface, visualiza-
tion capabilities, and real-world applications in curriculum
design and student advising. By leveraging optimization

Curriculum Graph Visualization

0101 BIO 102

Figure 1: Visualization of the Curriculum as a Directed
Acyclic Graph (DAG).

results, the system enables more efficient degree planning
while improving student outcomes.

6.1 Application Features and Visualization

The application provides an intuitive interface that allows
students, advisors, and administrators to dynamically inter-
act with optimized degree plans. Users can select elective
courses or modify program requirements, with real-time up-
dates reflecting the impact of their choices. Immediate vi-
sual feedback is provided on critical metrics such as total
credits per semester, average difficulty, and course cruciality
values. Designed for scalability, the system efficiently pro-
cesses large datasets involving hundreds of courses and com-
plex hierarchical requirements. To enhance interpretability,
the application incorporates multiple visualization tools that
provide insights into curriculum structure, course dependen-
cies, and degree plan optimization. The curriculum struc-
ture, including prerequisites and corequisites, is represented
as a directed acyclic graph (DAG), where nodes correspond
to courses annotated with their respective credits and pass
rates, while directed edges illustrate prerequisite relation-
ships. Figure 1 presents an example of this visualization.
The impact of optimization is further highlighted through a
direct graphical comparison of degree plans before and after
optimization. Figure 2 showcases a pre-optimization degree
plan, which exhibits higher curricular complexity, and the
corresponding optimized plan, where complexity is reduced,
and workload is more evenly distributed. This comparison
visually reinforces the effectiveness of the proposed frame-
work. To assess the impact of curricular complexity on stu-
dent outcomes, the application also visualizes complexity
distributions across different degree plans. Figure 3 illus-
trates the distribution of complexity values, demonstrating
how the optimization framework effectively minimizes un-
necessary complexity while maintaining academic rigor.

6.2 Practical Applications and Future Enhance-

ments
The application supports academic planning by providing
personalized course selection guidance for students, data-
driven recommendations for advisors, and curriculum anal-
ysis for administrators. It helps identify bottlenecks, opti-
mize degree plans, and assess the impact of structural ad-
justments on student progression. Future enhancements will
integrate Learning Management Systems (LMS) for real-
time academic tracking, incorporate predictive analytics to

63

Pre-Optimization Plan (Higher Complexity)

35

Complexity Level

&
Complexity Level

13

staTs02 cHEM302 5

2 3 a4 o

Figure 2: Comparison of Degree Plans Before and After Op-
timization. The optimized plan reduces curricular complexity
and balances workload more effectively.

estimate graduation probabilities, and offer customizable vi-
sualizations for tailored decision-making. By combining op-
timization techniques with interactive visualizations, the ap-
plication transforms theoretical models into practical decision-
support tools, enabling informed decisions that enhance stu-
dent success.

7. RESULTS AND DISCUSSION

This section presents the outcomes of the proposed opti-
mization framework, analyzing its effectiveness in satisfy-
ing academic requirements, minimizing curricular complex-
ity, and ensuring balanced degree plans. Additionally, we
discuss the broader implications of these results, comparing
the framework with traditional methods and identifying ar-
eas for future enhancement. Studies in curricular analytics
have consistently demonstrated a strong correlation between
reduced curricular complexity and improved student success
metrics, such as higher graduation rates and lower dropout
rates [22, 6]. By optimizing course sequences to minimize
structural bottlenecks, students experience smoother aca-
demic progression, reducing delays caused by prerequisite
constraints. The degree plans analyzed in this study were
generated using real student records from the University of
New Mexico, ensuring practical relevance and applicability.
The primary objective of the framework is to maximize sat-
isfaction levels across all academic requirements. Table 3
summarizes the satisfaction levels for a sample academic
program, demonstrating that core, elective, specialization,
and capstone requirements are fully met. These results in-
dicate the framework’s ability to accommodate diverse re-
quirement structures, including shared and separate con-

Visualization of Complexity Values for Different Degree Plans

B Pre-Optimization
B Post-Optimization

25F

= N
& =]

Frequency

=
o

200

250
Complexity Value

300

Figure 3: Visualization of Complexity Values for Different
Degree Plans.

Table 3: Satisfaction Levels of Requirements

Requirement Type Satisfaction (y.)
Core Shared 1.0
Electives Shared 1.0
Specialization | Separate 1.0
Capstone Separate 1.0

straints. Beyond requirement satisfaction, minimizing cur-
ricular complexity is crucial for improving student progres-
sion and graduation rates [12]. Table 4 compares the com-
plexity values of degree plans generated by the optimization
framework with those produced by heuristic-based methods.
The significant reduction in complexity highlights the frame-
work’s ability to streamline course sequences, reducing bot-
tlenecks and improving student outcomes. A well-structured
degree plan must also maintain a balanced distribution of
credit loads and difficulty across semesters. Figure 4 il-
lustrates how the framework achieves an even allocation
of credits and difficulty levels, preventing excessive student
workload while ensuring steady academic progression. The
results underscore several key advantages of the proposed
approach. By minimizing complexity and balancing course
loads, the framework reduces barriers to timely graduation
and supports student success [22, 6]. Additionally, its abil-
ity to model hierarchical constraints with precision enables
informed decision-making for students, advisors, and admin-
istrators. Compared to traditional heuristic-based methods,
the framework exhibits superior accuracy, scalability, and
adaptability across different institutional contexts. How-
ever, certain challenges remain. The computational demands
of solving large-scale MILP problems can be significant, par-
ticularly for highly complex curricula. The accuracy of the
results depends on the availability of high-quality academic

Table 4: Comparison of Complexity Values

Method Complexity Value
Proposed Optimization 195
Heuristic-Based Method 220

Baseline 290

64

Distribution of Credits and Difficulty Across Semesters
16| ™= Credit Load

-e- Difficulty Level - . 820

14 -0.815

1 -0.810

o
%
=}
&

10

-0.800

Credits.
®
werage Difficulty

-0.795 E
-0.790

-0.785

-0.780

Semester

Figure 4:
Semesters.

Distribution of Credits and Difficulty Across

data, including pass rates and student performance metrics.
Furthermore, while the framework offers a rigorous mathe-
matical formulation, its complexity may pose interpretabil-
ity challenges for non-technical stakeholders, necessitating
effective visualization tools. Future work will focus on ad-
dressing these challenges and extending the framework’s ca-
pabilities. The integration of predictive analytics could en-
able dynamic adjustments to degree plans based on real-
time academic data. Additionally, optimizing solver effi-
ciency through parallel computing and advanced algorithms
could further enhance performance. A user-centric approach
to interface design and visualization will also improve acces-
sibility, ensuring that students and advisors can effectively
utilize the framework for decision-making. Overall, the re-
sults validate the effectiveness of the proposed optimization
framework in satisfying academic requirements, minimizing
curricular complexity, and balancing degree plans. By pro-
viding a structured, scalable, and data-driven approach to
academic planning, this work contributes to improving stu-
dent outcomes and institutional decision-making.

8. CONCLUSION AND FUTURE WORK

This paper presents an optimization framework for academic
planning that maximizes requirement satisfaction, minimizes
curricular complexity, and balances credit and difficulty dis-
tributions. By integrating hierarchical constraints and lin-
earization techniques, the framework enhances computational
efficiency for real-time degree planning. Validated with real-
world data from the University of New Mexico, the frame-
work effectively reduces curricular complexity, mitigates bot-
tlenecks, and ensures balanced workloads, outperforming
heuristic-based methods. Its structured, scalable approach
supports personalized degree plans tailored to institutional
and student needs. Challenges include addressing the com-
putational demands of large-scale MILPs, ensuring data ac-
curacy, and improving interpretability for non-technical users
through better visualization tools. Future work will explore
predictive models for dynamic curriculum adjustments, scal-
ability improvements, and applications in other domains like
workforce training. By combining theory with practical ap-
plication, this framework provides a powerful data-driven
tool to enhance academic planning and decision-making, ul-
timately fostering student success.

[13]

[14]

[15]

[16]

REFERENCES

C. Adelman. The Toolboz Revisited: Paths to Degree
Completion from High School Through College. U.S.
Department of Education, Washington, DC, 2006.

M. Backenkohler, F. Scherzinger, A. Singla, and

V. Wolf. Data-driven approach towards a personalized
curriculum. Proceedings of the 11th International
Conference on FEducational Data Mining, 2018.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear
Programming and Network Flows. Wiley, 4th edition,
2009.

D. Bertsimas and J. N. Tsitsiklis. Introduction to
Linear Optimization. Athena Scientific, Belmont, MA,
1997.

G. L. Heileman, C. T. Abdallah, A. Slim, and

M. Hickman. Curricular analytics: A framework for
quantifying the impact of curricular reforms and
pedagogical innovations. CoRR, abs/1811.09676, 2018.
S. Jones. The game changers: Strategies to boost
college completion and close attainment gaps. Change:
The Magazine of Higher Learning, 47(2):24-29, 2015.
G. D. Kuh, J. Kinzie, J. H. Schuh, and E. J. Whitt.
Student Success in College: Creating Conditions That
Matter. Jossey-Bass, San Francisco, CA, 2005.

G. L. Nemhauser and L. A. Wolsey. Integer and
Combinatorial Optimization. John Wiley & Sons,
1988.

M. L. Pinedo. Scheduling: Theory, Algorithms, and
Systems. Springer, 6th edition, 2022.

A. Slim. Curricular analytics in higher education. PhD
thesis, The University of New Mexico, 2016.

A. Slim, G. L. Heileman, C. T. Abdallah, A. Slim, and
N. N. Sirhan. Restructuring curricular patterns using
bayesian networks. In Proceedings of the International
Conference on Educational Data Mining (EDM).
Educational Data Mining (EDM), 2021.

A. Slim, G. L. Heileman, M. Akbarsharifi, K. A.
Manasil, and A. Slim. Causal inference networks:
Unraveling the complex relationships between
curriculum complexity, student characteristics, and
performance in higher education. In 2024 ASEE
Annual Conference € Exposition, 2024.

A. Slim, G. L. Heileman, W. Al-Doroubi, and C. T.
Abdallah. The impact of course enrollment sequences
on student success. In 2016 IEEE 30th International
Conference on Advanced Information Networking and
Applications (AINA), pages 59-65. IEEE, 2016.

A. Slim, G. L. Heileman, M. Hickman, and C. T.
Abdallah. A geometric distributed probabilistic model
to predict graduation rates. In 2017 IEEE
SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing €
Commumnications, Cloud € Big Data Computing,
Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
pages 1-8. IEEE, 2017.

A. Slim, G. L. Heileman, J. Kozlick, and C. T.
Abdallah. Employing markov networks on curriculum
graphs to predict student performance. In 2014 13th
International Conference on Machine Learning and
Applications, pages 415-418. IEEE, 2014.

A. Slim, G. L. Heileman, J. Kozlick, and C. T.

65

(17]

(19]

(22]

23]

24]

Abdallah. Predicting student success based on prior
performance. In 2014 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM),
pages 410-415, 2014.

A. Slim, G. L. Heileman, E. Lopez, H. A. Yusuf, and
C. T. Abdallah. Crucial based curriculum balancing:
A new model for curriculum balancing. In 2015 10th
International Conference on Computer Science
Education (ICCSE), pages 243-248, 2015.

A. Slim, G. L. Heileman, H. A. Yusuf, Y. Zhang,

A. Wasfi, M. Hayajneh, B. F. Mon, and A. Slim.
Enhancing academic pathways: A data-driven
approach to reducing curriculum complexity and
improving graduation rates in higher education. In
2024 ASEE Annual Conference & Exposition, 2024.
A. Slim, J. Kozlick, G. L. Heileman, and C. T.
Abdallah. The complexity of university curricula
according to course cruciality. In 2014 Eighth
International Conference on Complex, Intelligent and
Software Intensive Systems, pages 242-248. IEEE,
2014.

A. Slim, J. Kozlick, G. L. Heileman, J. Wigdahl, and
C. T. Abdallah. Network analysis of university courses.
In Proceedings of the 28rd International Conference on
World Wide Web, pages 713-718. ACM, 2014.

A. Slim, H. A. Yusuf, N. Abbas, C. T. Abdallah, G. L.
Heileman, and A. Slim. A markov decision processes
modeling for curricular analytics. In 2021 20th IEEE
International Conference on Machine Learning and
Applications (ICMLA), pages 415-421. IEEE, 2021.
V. Tinto. Leaving College: Rethinking the Causes and
Cures of Student Attrition. University of Chicago
Press, 2nd edition, 1994.

S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, Cambridge, UK, 1994.

K. Xiang, X. Hu, M. Yu, and X. Wang. Exact and
heuristic methods for a university course scheduling
problem. Ezpert Systems with Applications,
248:123383, 2024.

