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ABSTRACT
Fully-Latent Principal Stratification (FLPS) offers a promis-
ing approach for estimating treatment effect heterogeneity
based on patterns of students’ interactions with Intelligent
Tutoring Systems (ITSs). However, FLPS relies on correctly
specified models. In addition, multiple latent variables, such
as ability, participation, and epistemic beliefs, can influence
the effect of an ITS. Consequently, any attempt to model
the latent space will inevitably involve some misspecifica-
tion. In this paper, we extend prior work by investigating a
more realistic scenario: assessing the impact of model mis-
specification on the estimation of the Local Average Treat-
ment Effect (LATE) using simulated data. Our simulation
setup is grounded in a real Randomized Controlled Trial
(RCT) of Cognitive Tutor Algebra 1, an intelligent tutoring
platform. This approach minimizes subjective parameter
specification by relying on data-driven methods, effectively
mimicking real RCT data. Our analysis reveals that FLPS
remains robust in estimating LATE even under latent vari-
able misspecification—specifically when two latent variables
are used in data simulation while only a single latent vari-
able is used in FLPS estimation. This holds regardless of
whether the true LATE is zero or nonzero. These findings
highlight FLPS’s resilience to certain model misspecifica-
tions, reinforcing its applicability in real-world educational
research.

Keywords
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1. INTRODUCTION
As educational technology (EdTech) grows in prominence,
so does the urgency to test the efficacy of computer-based
learning tools in the field. To answer this need, education
researchers have conducted a large number of randomized

controlled trials (RCTs) that generate high-quality evidence
of EdTech effectiveness [5, 14, 11, 1]. The most important
policy goal of these studies is to estimate the average effect
of providing access to the products or programs under study.

Nevertheless, these effects are only the beginning of the
story—the effectiveness of an educational intervention (one
supposes) hinges entirely on how students and teachers ac-
tually use it. Fortunately, EdTech RCTs produce, almost
as a by-product, rich and detailed information on this very
question in the form of student log data. However, discern-
ing important patterns in log data and linking those patterns
with varying program effectiveness present serious statistical
challenges.

Fully-Latent Principal Stratification (FLPS) [8, 9] may pro-
vide a way forward. FLPS combines flexible measurement
modeling to identify patterns in log data with rigorous causal
analysis. Researchers have used FLPS to estimate the extent
to which EdTech effects vary with students’ propensities to
master skills (or, conversely, to wheel-spin) [16], game the
system [18], receive feedback [9], or re-try problems [17].

Unfortunately, FLPS relies heavily on several strong para-
metric assumptions– most importantly, that models of stu-
dents’ behavior and outcomes are correctly specified. More-
over, these assumptions are often difficult or impossible to
test. Hence, there is a crucial need for evidence on the
impact of model misspecification in FLPS—what types of
model misspecification pose the greatest threat? What types
of misspecification are innocuous?

This paper is the first attempt at answering those questions:
preliminary findings from a simulation study of model mis-
specification. While the study includes misspecification of
models of both student usage and outcomes, we focus on the
former. In particular, we investigate the scenario in which
a multidimensional latent variable drives students’ experi-
ences, but the FLPS measurement model includes only one
dimension. Like [4] and [10], our simulation draws as much
as possible from real data—in particular, the outcomes and
covariates, as well as the parameters for the measurement
model, are all drawn from the Cognitive Tutor Algebra 1
effectiveness trial [12]. In the four scenarios we simulated,
the causal estimates performed well, despite model misspec-
ification.
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The following section reviews necessary background mate-
rial, including potential outcomes, FLPS, and item response
theory. Section 3 describes our simulation design based on
real data, with results in Section 4. Section 5 concludes.

2. BACKGROUND
2.1 Fully-Latent Principal Stratification (FLPS)
Principal stratification (PS) is a causal inference method,
used to adjust results for post-treatment covariates, grounded
in the potential outcomes framework (Rubin, [15]).

2.1.1 Randomized Controlled Trial (RCT)
Consider an experiment with N participants, indexed as
i = 1, 2, ..., N . Each participant can be assigned to either
treatment or control arm at random, and we denote Zi fol-
lowing Bernoulli distribution be the i th participant’s treat-
ment assignment, that is,

Zi ⊥⊥ Zj , i ̸= j (1)

P (Zi = t) = pti(1− pi)1−t, t ∈ {0, 1}
where Zi = 1 when the i th participant is assigned to treat-
ment arm and Zi = 0 when control arm. Furthermore, we
observe outcomes Yi and q-dimensional baseline covariates
Xi besides treatment assignment Zi for each participant.

Assume each participant has two nonrandom potential outcomes–
treated potential outcomes ti and control potential outcomes
ci. We can write observed outcomes Yi as

Yi = Ziti + (1− Zi)ci (2)

Individual Treatment Effect (ITE) τi can be written as

τi = ti − ci (3)

ITEs are unidentified due to ti and ci cannot be observed si-
multaneously; instead, causal research tends to focus on ag-
gregate treatment effects, such as Average Treatment Effect
(ATE) E(τ) = E(Y t)−E(Y c) or Local Average Treatment
Effect (LATE) E(τ |X = x).

2.1.2 Principal Stratification (PS)
Principal stratification (Frangakis & Rubin, [6]) provides
a framework for identifying underlying subgroups and esti-
mating causal effects within them. These strata are defined
based on variables that may themselves be influenced by
treatment assignment. Let Mi represent a measure of sub-
ject i’s implementation, exposure, or compliance with an in-
tervention. For example, in an RCT evaluating a high school
where Cognitive Tutor for Algebra 1 (CTA1) is assigned at
random, Mi could indicate whether student i use CTA1. In
an RCT assessing a behavioral intervention conducted over
multiple sessions, Mi might represent the number of sessions
student i attended. If section difficulty, denoted by diffj , is
considered, we use Mij to account for subject i’s implemen-
tation, exposure, or compliance in section j.

Assume that M has two non-random potential outcomes:
mt under the treatment condition and mc under the con-
trol condition. For example, we might ask whether student
i would use a particular feature of CTA1 if assigned to the
treatment group or how many sections student i would at-
tend if randomized to receive the behavioral intervention.

Here, we focus on the ”one-way noncompliance” case, where
mc is either undefined or remains constant for subjects as-
signed to the control group. For subjects randomized to the
treatment arm, M is observed as mt, while for those in the
control arm, mt is unobserved but still well-defined.

The goal of PS is to estimate the LATE [3]:

τ(m) = E(τ |M = mt) (4)

= E(t− c|M = mt)

= E(t|M = mt)− E(c|M = mt)

Classical PS estimates the LATE by defining strata based
on the measurement M . However, it assumes that M is
a single, error-free measurement. In practice, M is often
multidimensional. Let mi represent the set of measurements
for subject i, defined as

mi ≡ {mi1,mi2, . . . ,miJi} (5)

where Ji denotes the number of measurements available for
subject i.

One approach to incorporating multidimensional measure-
ments M is to aggregate them using a pre-specified func-
tion, such as the sample mean m̄. This aggregate can then
be used as a unidimensional intermediate variable, allow-
ing us to stratify based on its potential values m̄t. However,
this approach overlooks measurement error in the aggregate,
which becomes more problematic when the number of mea-
surements varies across individuals, leading to differential
error. Additionally, accounting for treatment effect varia-
tion across multiple variables can impose high demands on
estimation and modeling. As a result, when multivariate
data is measured with error, traditional PS becomes chal-
lenging to implement.

2.1.3 Fully-Latent PS (FLPS)
Unlike classical PS, FLPS approach models the measure-
ment process via setting the distribution of M, denoted as
P (mi | ηt

i), where ηt
i is a subject-level latent trait capturing

the construct of interest. We then assume that ηt
i encapsu-

lates all relevant information about the potential outcomes
reflected in m, leading to the conditional independence as-
sumption:

{ti, ci} ⊥⊥Mi | ηt
i,Xi (6)

The causal estimand in FLPS, τ(ηt) ≡ E(τ |ηt), represents
the LATE for individuals who would follow the intervention
strategy as ηt if assigned to the treatment arm.

When the latent trait ηt is observed, the joint density of the
data can be expressed as:

p(Y,ηt,m | X, Z = 1) = P (t | ηt,X)p(m | ηt)p(ηt | X),
(7)

p(Y,ηt,m | X, Z = 0) = p(c | ηt,X)p(ηt | X).

where p(t,ηt,m | X) and p(c,ηt,m | X) represent the po-
tential outcome models, p(m | ηt) corresponds to the mea-
surement model, and p(ηt | X) characterizes the latent trait
as a function of the covariates.
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The latent trait ηt is unobserved in both the treatment
and control arms, but the data structure differs between
them. In the treatment arm, the model for ηt incorporates
both measurements m and covariates, whereas in the control
group, it includes only covariates.

Let θ be a vector of parameters in the FLPS model. This
includes τ0 and τ1, which represent the principal effects (i.e.,
intercept and slope), ω, which captures the effect of the la-
tent factor, and β and γ, which model the covariate effects
on ηt and Y , respectively. Assuming that the observed data
are independently and identically distributed given θ, Z,
and X, the factorization in Equation (7) leads to the follow-
ing likelihood function for θ:

L(θ | Y,Z,X,m) : (8)
∏

i:Zi=1

∫
p(Yi | Zi,η

t
i,Xi,θ)p(mi | ηt

i,θ)p(ηt
i | Xi,θ)dηt

i

·
∏

i:Zi=0

∫
p(Yi | Zi,η

t
i,Xi,θ)p(ηt

i | Xi,θ)dηt
i.

In Equation (8), the first product corresponds to individ-
uals in the treatment arm (Zi = 1), where both outcome
and measurement models are included. The second product
represents individuals in the control group (Zi = 0), where
only the outcome and latent trait models are considered.
The outcome model p(Yi | Zi,η

t
i,Xi,θ) describes how Yi

depends on covariates (Xi), the latent trait (ηt
i), and treat-

ment (Zi). The measurement model links m to ηt, which
varies with X.

Since the integrals in Equation (8) are intractable, direct
likelihood maximization is not feasible. Instead, we use a
Bayesian Markov Chain Monte Carlo (MCMC) approach
to approximate the posterior distribution of θ, following
prior FLPS research [16]. Specifically, this study employs
No-U-Turn Sampling (NUTS), the default sampler in Stan.
NUTS is an adaptive variant of the Hamiltonian Monte
Carlo (HMC) method and has been shown to be compu-
tationally efficient for estimating correlated parameters [7].

2.2 Item Response Theory (IRT)
Item Response Theory (IRT) models the relationship be-
tween unobservable traits, such as knowledge or attitudes,
and observed responses to test items, placing both traits and
items on a continuous latent scale. In FLPS, we construct
the measurement model using IRT, where each measurement
is characterized by an item parameter ζj , which may be a
vector, associated with measurements from each unique item
that students interact with, Mj , and a scalar subject-level
parameter ηti .

Assuming local independence, the measurements for a given
subject i are conditionally independent, given ζ and ηti . For-
mally, for j ̸= j′ ∈ Ji, we have:

Mij ⊥⊥Mij′ | ζ, ηti , (9)

where ζ is a vector of item parameters across all items. Then
the measurement model is completely specified by a model
for each measurement occasion Mij .

2.2.1 Rasch Model

For binary responses Mij , the most fundamental measure-
ment model is the Rasch model [13], which specifies the
probability of a correct response (Mij = 1) as:

ϕij = P (Mij = 1 | ηti , dj) = logit−1(ηti + dj), (10)

where logit−1(x) = 1
1+e−x , and ζj = dj represents a scalar

intercept parameter.

We assume that ηti follows a normal distribution given the
covariates xi:

ηti | xi ∼ N (β0 + β′xi, σ
2
η), (11)

where β is a coefficient vector, and σ2
η represents the vari-

ance.

Additionally, we assume that Yi is normally distributed con-
ditional on Zi, xi, and ηti :

Yi | Zi, η
t
i ,xi ∼ N (γ0 +γ′xi +ωηti +Zi(τ0 +τ1η

t
i), σ

2
Y ) (12)

Equation (11) implies a linear model for the expected treat-
ment effect as of function of ηt: E(Y | Z = 1, ηt) − E(Y |
Z = 0, ηt) = τ0 + τ1η

t.

Overall, the parametric FLPS models consist of two main
components. The first is a measurement submodel, f(M |
ηt, ζ), as described in Equation (10) assuming local indepen-
dence. The second component involves linear-normal mod-
els. Specifically, Equation (11) defines ηt as a normal vari-
able conditioned on x, with parameters β and σ2

η. Similarly,
Equation (12) models Y as a normal variable dependent on
x, Z, and ηt, characterized by the parameters γ, ω, τ0, τ1,
and σ2

Y .

2.2.2 Two-Parameter Logistic (2-PL) Model
The Two-Parameter Logistic (2PL) model defines the item
response function as:

P (Mij = 1 | ηti , aj , dj) = logit−1(ajη
t
i + dj), (13)

where Mij ∈ {0, 1} represents the response of subject i to
item j, and ηti denotes the subject’s latent trait level. The
parameters aj and dj correspond to the item’s discrimina-
tion (slope) and difficulty (intercept), respectively. If aj is
fixed at one, the model simplifies to the Rasch model.

For simplicity, we used the Rasch model to simulate the data
and employed both the Rasch and 2-PL models as measure-
ment models in the FLPS calculation. This setup ensures
model misspecification, as the simulated data includes two
latent variables, ηt1 and ηt2, while the FLPS model only ac-
counts for a single latent variable, ηt. In future analyses, we
can also explore other measurement models to handle poly-
tomous responses, such as Generalized Partial Credit Model
(GPCM) and the Graded Response Model (GRM).

3. SIMULATION DATA BASED ON CTA1
3.1 Cognitive Tutor Algebra 1 (CTA1)
As one of the first widely adopted intelligent tutoring sys-
tems, the Cognitive Tutor[2], first developed at Carnegie
Mellon University and later managed by Carnegie Learn-
ing, has since been replaced by Carnegie Learning’s Mathia

184



program. Our simulated data is based on a real random-
ized effectiveness study conducted by the RAND Corpora-
tion between 2007 and 2009, which is funded by the U.S.
Department of Education.

Around 25, 000 students across 73 high schools and 74 mid-
dle schools in seven states across two school years are in-
cluded in this study. Schools were paired based on some
vital factors including school level (middle or high), size,
district, and prior achievement at first, and randomized to
either use CTA1 or usual curriculum in the next two school
years. Students’ standardized algebra 1 posttest score in
both the treatment schools and matched controls is what
we interested in. J. F. Pane et al. [12] reported that es-
timated treatment effects of 0.1 with standard deviations
(95% CI: −0.3 to 0.1) in year 1 while 0.21 with standard
deviations (95% CI: 0.01 to 0.41) in year 2 within the high
school stratum.

We focus on students in the treatment arm of the CTA1 ex-
periment, recognizing that their level of commitment to im-
plementing the intervention may vary. To refine the dataset,
we include only students who either mastered or were pro-
moted in Algebra 1, excluding those enrolled in other cur-
ricula. Specifically, we define mastered as students who
successfully completed all required coursework and met the
mastery criteria, while promoted refers to students who ad-
vanced to the next level despite not fully meeting mastery
requirements.

To ensure reliable posttest scores and preserve variation in
mastery status, we exclude sections with fewer than 100
students and those in which all students mastered. After
filtering, we group the data by student ID and section, sum-
marizing mastery status.

Table 1 provides a detailed description of the features used
in our analysis.

Table 1: Description of Used Variables

Feature Description
master Whether the student mastered the skill (binary)
xirt Student’s prior performance score
race WhiteAsian | BlackMulti | HispAIAN
sex F | M
spec typical | speced | gifted
field id Student’s ID
section Section ID

3.2 Data Simulation
To ensure that the simulated data closely mirrors the struc-
ture and characteristics of the original CTA1 experiment,
we employ a data-driven simulation approach grounded in
the experimental design. This method minimizes reliance
on arbitrary parameter settings and enhances the realism of
the simulated data used for FLPS estimation.

Figure 1 provides an overview of the simulation workflow
and the dependencies among key variables. The left panel
outlines the sequential steps taken to construct the simu-
lated dataset, with equation references provided for each

step. The right panel illustrates the structural relationships
among variables used in the simulation. Together, these di-
agrams clarify the generative process and guide the reader
through the logic of the simulation procedure. Each step is
discussed in detail in the following sections.

3.2.1 Random Sampling and Treatment Assignment
To evaluate the robustness of FLPS under model misspeci-
fication in a simulation study, we generated data consisting
of covariates X, treatment assignment Z, a binary variable
master indicating whether a student mastered a specific sec-
tion, and the outcome variable Y , representing the posttest
score.

We begin by randomly selecting n = 2000 students from the
CTA1 treatment arm, which contains a total of N = 5960
students. This sample size strikes a balance between com-
putational speed and representativeness. For each selected
student, we observe covariates X and the observed real out-
come Y Real.

The simulated treatment assignment ZSim is generated in-
dependently for each student using a Bernoulli distribution
with probability p = 0.5, such that

ZSim
i ⊥⊥ ZSim

j i ̸= j (14)

P (ZSim
i = z) = pz(1− p)1−z where z ∈ {0, 1}

3.2.2 Simulating Latent Variables ηt

We define the latent variables as proxies for students’ in-
tentions to engage with the treatment intervention. These
latent traits are determined by population-level covariate
coefficients and each student’s individual covariate values.
Specifically, the latent variables ηt1 and ηt2 are simulated as
follows:

ηt1 = X · coefs+ ϵ (15)

cor(ηt1, η
t
2) = ρ (16)

where X is the design matrix derived from the sampled data,
coefs denotes the population-level covariate coefficients, and
ϵ ∼ N (0, 1) is standard normal noise. We explore two values
of the correlation parameter, ρ = 0.5 and ρ = 0.2.

To ensure that the simulated data reflect patterns observed
in the real CTA1 RCT, we estimate the coefficient vector
coefs using a generalized linear mixed model (GLMM) with
a logistic link function, fitted on the population data. The
fitted model is given by:

P (master = 1) = logit−1
(

3.3601 + 0.8402 · xirt (17)

− 0.5588 · raceBlackMulti

− 0.6624 · raceHisPAIAN + 0.5134 · sexM
− 0.6016 · specspeced+ 0.1508 · specgifted

+ ufield id + vsection
)

where ufield id ∼ N (0, 1.328) and vsection ∼ N (0, 9.351) rep-
resent the random intercepts for field id and section, respec-
tively.

Table 2 displays a subset of section-level difficulty estimates,
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Figure 1: Overview of Data Simulation Workflow and Variable Dependencies. The left panel outlines the simulation steps, with
equation references provided for reproducibility. The right panel depicts the structural relationships among covariates (X),
latent traits (ηt1, η

t
2), treatment assignment (Z), mastery status, and outcomes (Y Sim).

which are incorporated into the simulation of the latent vari-
ables ηt1 and ηt2. 1

Table 2: Subset of Section-Level Difficulty Estimates

Section Difficulty Estimate
centraltendency1 1.0889
centraltendency2 -1.3397
centraltendency3 -1.8160
centraltendency4 -0.4317
cta1012 0.1232
cta1013 -2.0371

3.2.3 Simulating the Rasch Measurement Model
Given the simulated latent variables and treatment assign-
ments, we define the latent data structure using a Rasch
measurement model applied to the simulated treatment arm.
The probability that student i successfully masters section
j is modeled as:

P (Mij = 1) = logit−1 [α · ηt1i + (1− α) · ηt2i − diffj
]

(18)

where Mij indicates whether student i successfully masters
section j, ηt1i and ηt2i represent latent intentions, and diffj
denotes the difficulty level of section j.

To align the simulated mastery outcomes with those ob-
served in the real data, we apply a post-processing adjust-
ment denoted as fakeOut, ensuring that the total number
of mastered sections in the simulated data approximates
that in the real dataset, i.e.,

∑
j M

Sim
ij ≈∑j M

Real
ij , where

MReal
ij corresponds to observed mastery statuses in the orig-

inal study.

3.2.4 Simulating Treatment Effect τ
1Table 2 shows a subset of section difficulty estimates; the
full dataset includes 153 sections.

We assume that the treatment effect can either be influ-
enced by the latent variables defined earlier or be absent.
We simulate the treatment effect τ as follows:

τ =

{
0 LATE = 0

τ0 + τ1 · ηt1 LATE Influenced by η
(19)

where τ0 is set as τ0 = LATE − τ1 · η̄t1 to ensure that the
LATE remains consistent. We set LATE = 0.3 and τ1 =
0.2.

3.2.5 Simulating Outcomes Y Sim

We simulate the outcome of interest, Y Sim
i , based on the

observed outcome Y Real
i , simulated treatment assignment

ZSim
i , and individual treatment effect τi, as follows:

Y Sim
i = Y Real

i + Zsim
i · τi (20)

Finally, we remove sections where mastery status does not
vary and merge the student-level data with log data to en-
sure the proper format for FLPS estimation.

4. IMPLEMENTATION AND RESULTS
We focus on examining how the treatment effect interacts
with the latent variables. Specifically, we consider two LATE
scenarios:

Scenario 1: Constant Treatment Effect

τi = 0 i ∈ {1, 2, . . . , n} (21)

where all units in the simulated sample receive no treatment
effect.

Scenario 2: Latent Variable-Dependent Treatment Effect

τi = τ0 + τ1 · ηt1 (22)

where the treatment effect varies across units based on their
latent variable ηt1.
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Table 3 provides an overview of the manipulated factors,
condition levels, and the distribution of randomly generated
parameters.

The FLPS model parameters were estimated using Stan
via the rstan package in R, which implements Hamiltonian
Monte Carlo (HMC) sampling. The structural model em-
ployed Stan’s default priors (i.e., reference distributions).
For Bayesian estimation, we ran four MCMC chains, each
with 50, 000 iterations, discarding the first 40, 000 samples
as part of the burn-in period. The posterior mean of each
parameter was used as its MCMC estimate.

4.1 mirt-Based Latent Trait Evaluation
We use the mirt package in R to evaluate whether the pop-
ulation model used to generate the initial parameters in our
data simulation effectively captures the latent traits influ-
encing responses. The results of the fitted models are sum-
marized in Tables 4 and 5.

To further assess model performance, Table 6 compares the
models with and without covariate adjustment based on
model selection criteria, including Akaike Information Crite-
rion (AIC), Sample-Size Adjusted Bayesian Information Cri-
terion (SABIC), Hannan-Quinn Criterion (HQ), Bayesian
Information Criterion (BIC), and log-likelihood. Since lower
values indicate better model fit, the covariate-adjusted model
(mod_mirt_covariates) outperforms the model without co-
variates (mod_mirt_without_covariates) across all criteria.
Additionally, a likelihood ratio test reveals a significant chi-
square statistic (χ2 = 124.396, df = 6, p < 0.001), con-
firming that the covariate-adjusted model provides a signif-
icantly better fit than the model without covariates. These
results suggest that incorporating covariates enhances model
estimation and improves the representation of the underly-
ing data structure.

Furthermore, Figure 2 compares the estimated latent traits
from the mirt model to the simulated true values. The
strong correspondence between the two confirms that the
fitted population model with covariates effectively captures
the latent trait structure.

Figure 2: Comparison of Estimated and True Latent Trait
Values

4.2 Local Average Treatment Effect (LATE)
When conducting causal inference with FLPS, our primary
goal is to estimate the LATE. To assess the robustness of
FLPS under model misspecification, we run 128 simulations
on Turing for each simulated scenario. Specifically, we ex-
amine whether FLPS still provides reliable LATE estimates

when the latent variable model used for data simulation dif-
fers from the one assumed in estimation. In our data simu-
lation (Section 3 ), we generate data using a model with two
latent variables. However, in the FLPS estimation process,
we assume only a single subject-level latent variable. The
following Algorithm 1 outlines the FLPS estimation proce-
dure:

Algorithm 1 FLPS Model Estimation

1: Set the number of cores for parallel computation:
mc.cores ← 4

2: Initialize model fitting procedure with FLPS:
3: Attempt to run the FLPS model with the following

inputs:
4: Input Data: data_flps
5: Outcome Variable: Y_sim
6: Treatment Variable: treatment_sim
7: Covariates: covariates
8: Latent Variable Model: lvModel
9: Latent Variable Type: rasch

10: Prior Distributions:
11: τ0 ∼ N (0, 1)
12: τ1 ∼ N (0, 1)
13: ω ∼ N (0, 1)
14: Stan Sampling Options:
15: Number of Iterations: 50, 000
16: Warmup Iterations: 40, 000
17: Number of Chains: 4
18: Thinning Factor: 10
19: Handle errors if model fitting fails
20: Output estimated model parameters

To conserve storage space, we saved only a randomly se-
lected simulation result to present the full model output.
However, we retained the model summaries for all simula-
tion runs to ensure the validity of our LATE estimates.

4.2.1 Model Validation Based on a Randomly Se-
lected Simulation Result

Tables 7 and 8 present the results from a randomly selected
simulation run, demonstrating that the FLPS estimation
performs well for both LATE and latent coefficient estima-
tion. The effective sample size (n eff) is close to 4000, and
the potential scale reduction factor (Rhat) is 1, indicating
proper convergence.2

To further assess model convergence and fitting quality, we
also visualize the trace plots, as shown in Figure 3. These
plots help confirm that the MCMC chains are well-mixed
and have reached stationarity.

Moreover, Figure 4 illustrates that the fitted latent trait ηt

closely matches the true ηt, reinforcing the reliability of our
model.

Given ηt, LATE estimation can be computed using the fol-
lowing formula:

L̂ATE = τ̂0 + τ̂1η̄
t
1 (23)

2For each parameter, n eff provides a crude measure of ef-
fective sample size, while Rhat assesses chain convergence,
with Rhat = 1 indicating successful convergence.
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Table 3: Simulation Design

Condition Simulation Factor Notation

Manipulation

Measurement model Rasch & 2-PL
Treatment effect type Constant & Latent Variable-Dependent (τ)
Correlation between latent variables cor(η1, η2) = 0.5 & cor(η1, η2) = 0.2
Contribution of ηt1to Mij α = 0.9 & α = 0.5

Fixed setup

Sample size n = 2000
Treatment assignment Z ∼ Binomial(n, p) with p = 0.5
Latent trait distribution ηti | xi ∼ N (β0 + β′xi, σ

2
η)

Outcome model Yi | Zi, η
t
i ,xi ∼ N (γ0 + γ′xi + ωηti + Zi(τ0 + τ1η

t
i), σ

2
Y )

Table 4: MIRT Model Without Covariate Adjustment

Iteration Log-Likelihood Max-Change Formula

32 -9636.102 0.00006 y ∼ x

Table 5: MIRT Model With Covariate Adjustment

Iteration Log-Likelihood Max-Change Formula

28 -9573.905 0.00009 y ∼ x

Applying this formula to our results, we obtain LATE =
0.3060, which closely aligns with the true value of 0.3, fur-
ther validating the accuracy of our estimation. Since by
design E[ηt1] = 0, τ̂0 may also be taken as an estimate of the
LATE.

4.2.2 Model Validation Across All Simulation Runs
We considered four simulation scenarios: two with a con-
stant treatment effect (LATE = 0) and two with a latent
variable-dependent treatment effect (LATE = τ0 + τ1η

t
1).

Within each scenario, we examined two correlation struc-
tures.

In the first setting, we set cor(ηt1, η
t
2) = 0.5 and α = 0.9,

meaning that ηt1 and ηt2 are moderately correlated, with ηt1
contributing 90% to Mij . In the second setting, we reduced
the correlation to cor(ηt1, η

t
2) = 0.2 and set α = 0.5, making

the latent traits more distinct. This latter scenario better
reflects real-world conditions where latent traits tend to be
less correlated.

To assess the robustness of the FLPS model under model
misspecification, we evaluate the proportion of true τ values
and coefficients that fall within the 50% and 95% poste-
rior credible intervals. A well-calibrated model should yield
coverage proportions close to 50% and 95%, respectively,
indicating its reliability. Table 9 summarizes the posterior
credible interval coverage for each simulation scenario, with
well-performing proportions highlighted in bold.

From Table 9, we observe that the FLPS model performs
well, particularly in estimating LATE (τ0) and in most cases
of τ1, demonstrating its robustness in treatment effect esti-
mation. However, the model is less accurate in estimating
the coefficients, likely due to the influence of multiple latent
variables. Specifically, the FLPS-estimated latent trait is a
weighted combination of the two true latent traits:

Figure 3: Trace Plot

ηFLPS = αηt1 + (1− α)ηt2 (24)

= [α+ (1− α)ρ]γX,

where ρ = cor(ηt1, η
t
2) represents the correlation between the

two latent traits. This formulation suggests that the coef-
ficient estimates may be biased by the factor α + (1 − α)ρ,
particularly when the covariate coefficient is large. For ex-
ample, we observe that the variable xirt has the greatest
impact on the measurement master, and it also exhibits the
largest bias in the FLPS estimates. In contrast, the variables
specspeced and specgifted have a smaller impact on the mea-
surement and correspondingly show less bias in the FLPS
estimates.

Moreover, in the first case, where the latent variable corre-
lation is higher (cor(ηt1, η

t
2) = 0.5 and α = 0.9), the factor

α+(1−α)ρ is 0.95, which is close to 1. This suggests that the
FLPS-estimated latent trait is strongly aligned with the pri-
mary latent variable, reducing bias in coefficient estimation.
In contrast, in the second scenario, where the correlation is
lower, α + (1 − α)ρ decreases to 0.6, meaning that the es-
timated latent trait deviates more from the primary latent
variable, leading to greater bias. This aligns with the re-
sults in the Table 9, where the coverage proportions in the
first scenario are closer to the expected values than in the
second scenario. Nevertheless, since the primary objective
is to estimate LATE (τ0 and τ1), the FLPS model remains
reliable.

Figure 5 presents violin and scatter plots of the estimation
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Table 6: Comparison of MIRT Models With and Without Covariate Adjustment

Model AIC SABIC HQ BIC logLik χ2 df p

mod mirt without covariates 19498.21 19670.54 19702.11 20029.39 -9636.102 - - -
mod mirt covariates 19385.81 19567.30 19600.54 19945.20 -9573.905 124.396 6 <0.001

Table 7: LATE Estimates on τ0 and τ1

Parameter Mean SD 2.5% 25% 50% 75% 97.5% n eff Rhat

τ0 0.31 0.03 0.25 0.29 0.31 0.33 0.37 3974 1
τ1 0.20 0.04 0.11 0.17 0.20 0.23 0.29 3964 1

Figure 4: Comparison of Estimated Latent Trait (ηt) Across
Treatment Groups with xirt Color-Coded

error for τ̂0 and τ̂1 across four simulation scenarios, where
estimation error is defined as the posterior mean minus the
true value. The left column represents cases with a constant
treatment effect (τ0 = 0, τ1 = 0), while the right column
corresponds to cases where the treatment effect depends on
latent variables (LATE = τ0 +τ1η

t
1 with τ0 = 0.3, τ1 = 0.2).

The top row (ρ = 0.2, α = 0.5) represents weaker correlation
between latent traits, while the bottom row (ρ = 0.5, α =
0.9) represents stronger correlation.

The violin plots indicate that the estimation error for τ̂0 is
well-centered around zero in all cases, suggesting that the
FLPS model provides reliable estimates for LATE, even un-
der model misspecification. However, in the latent-variable-
dependent treatment effect cases, τ̂1 exhibits greater vari-
ability, particularly in the low-correlation scenario (ρ = 0.2, α =
0.5), where the estimation error distribution is wider. In
contrast, higher correlation (ρ = 0.5, α = 0.9) leads to a
tighter error distribution, indicating improved estimation
accuracy. Despite increased variation in τ̂1 when the model
is misspecified, its error remains centered around zero, sug-
gesting that the FLPS model still provides an unbiased es-
timate of τ1 under these conditions.

Besides, we applied the 2-PL model as the measurement
model within the FLPS framework to assess its robustness
under model misspecification. When evaluating convergence,
we found that MCMC successfully converged in only half of
the runs. This suggests that when data is simulated us-

Figure 5: Violin and Scatter Plots of Estimation Error (pos-
terior mean minus population value)

ing the Rasch model but estimated with the 2-PL model,
convergence issues become more pronounced. One possible
explanation is that the 2-PL model introduces an additional
discrimination parameter, increasing the complexity of the
estimation process. However, the exact cause remains un-
clear, and further investigation is needed to better under-
stand this issue.

5. DISCUSSION
Our findings suggest that FLPS remains robust in estimat-
ing LATE even when the latent variable structure is mis-
specified– specifically when two latent variables are used in
data simulation, but only one is modeled in estimation. This
robustness holds whether the true LATE is zero or nonzero,
highlighting FLPS’s practical applicability in real-world ed-
ucational research. These results are particularly relevant
for ITS studies, where multiple latent constructs, such as
ability and engagement, influence learning outcomes. De-
spite simplifying the latent structure, and considerable bias
in estimating regression coefficients, FLPS still produces re-
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Table 8: LATE Estimates on Covariate Coefficients

Coefficient Mean SD 2.5% 25% 50% 75% 97.5% n eff Rhat

xirt 0.72 0.07 0.59 0.67 0.72 0.76 0.85 3995 1
raceBlackMulti -0.64 0.11 -0.86 -0.71 -0.64 -0.57 -0.43 3701 1
raceHispAIAN -0.54 0.13 -0.80 -0.63 -0.54 -0.45 -0.29 3963 1
sexM 0.47 0.09 0.29 0.41 0.47 0.54 0.66 4118 1
specspeced -0.27 0.19 -0.64 -0.40 -0.27 -0.14 0.11 4096 1
specgifted -0.29 0.24 -0.73 -0.45 -0.29 -0.13 0.18 3875 1

Table 9: Posterior Credible Interval Coverage Proportions for Each Simulation Scenario

Simulation Scenario
ρ = 0.5 α = 0.9 ρ = 0.2 α = 0.5

τ0 = τ1 = 0 τ0 = 0.3 τ1 = 0.2 τ0 = τ1 = 0 τ0 = 0.3 τ1 = 0.2

Posterior CI 50% 95% 50% 95% 50% 95% 50% 95%

τ0 0.48 0.95 0.45 0.92 0.56 0.94 0.51 0.95

τ1 0.59 0.93 0.49 0.97 0.57 0.96 0.36 0.82

xirt 0.01 0.06 0.01 0.07 0.00 0.00 0.00 0.00

raceBlackMulti 0.29 0.83 0.36 0.91 0.02 0.25 0.00 0.32

raceHispAIAN 0.27 0.83 0.36 0.89 0.02 0.31 0.02 0.39

sexM 0.19 0.77 0.12 0.62 0.00 0.11 0.00 0.11

specspeced 0.46 0.94 0.41 0.95 0.13 0.61 0.09 0.65

specgifted 0.55 0.98 0.59 0.98 0.59 0.98 0.58 0.97

liable LATE estimates, making it a valuable tool for causal
inference in educational settings. Additionally, grounding
our simulations in real RCT data enhances the realism of
our findings.

The work presented here is preliminary—we will need to in-
vestigate a much wider set of scenarios to establish FLPS’s
strengths and vulnerabilities. Further evaluation under dif-
ferent forms of model misspecification—such as alternative
measurement models (e.g., different IRT models or AI-based
approaches for modeling the relationship between M and
ηt) and varying manually set parameters (ρ and α)—will
help validate its robustness. Large-scale ITS datasets with
well-characterized student traits could also provide deeper
insights into FLPS’s real-world effectiveness. Finally, fu-
ture research should explore strategies to mitigate bias from
misspecification, such as hierarchical modeling or sensitivity
analyses. Though the work here is preliminary, it is quite
encouraging.

In conclusion, while improving model specification enhances
LATE estimation—particularly when latent variable corre-
lation is high—FLPS demonstrates resilience to certain mis-
specifications, making it a promising approach for estimat-
ing treatment effect heterogeneity in ITS research. Address-
ing its limitations through methodological refinements will
further improve its reliability and applicability in educa-
tional causal inference.
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7. REPLICATION MATERIALS
Analysis code is available at https://github.com/yanpingPei/
FLPS_misspecification_EDM. The CTA1 dataset is not pub-
licly available due to privacy constraints.
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