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ABSTRACT 
Research on epistemic emotions has often focused on how students 

transition between affective states (e.g., affect dynamics). More 

recently, studies have examined the properties of cases where a 

student remains in the same affective state over time, finding that 

the duration of a student’s affective state is important for multiple 

learning outcomes. However, the likelihood of remaining in a given 

affective state has not been widely studied across different methods 

or systems. Additionally, the role of motivational factors in the 

persistence or decay of affective states remains underexplored. This 

study builds on two prior investigations into the exponential decay 

of epistemic emotions, expanding the analysis of affective 

chronometry by incorporating two detection methods based on 

student self-reports and trained observer labels in a game-based 

learning environment. We also examine the relationship between 

motivational measures and affective decay. Our findings indicate 

that boredom exhibits the slowest decay across both detection 

methods, while confusion is the least persistent. Furthermore, we 

found that higher situational interest and self-efficacy are 

associated with greater persistence in engaged concentration, as 

identified by both detection methods. This work provides novel 

insights into how motivational factors shape affective chronometry, 

contributing to a deeper understanding of the temporal dynamics of 

epistemic emotions. 
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1. INTRODUCTION 
Research on epistemic emotions has matured over the last decade 

as researchers have progressed from being able to detect them in 

the moment (e.g., [3, 32, 35]) to using the resultant detectors to 

understand patterns in emotion over time and how those patterns 

relate to learning or motivation (e.g., [1, 16, 22, 23, 26, 37]). 

However, one aspect that has received less attention in the literature 

is the temporal dynamics of epistemic emotions—specifically, their 

duration and decay over time (but see [7, 13]). This includes 

understanding how long these emotions last, the rate at which they 

fade, and potential factors such as situational interest or self-

efficacy that contribute to a faster decay or extend students’ 

persistence within those affective states.  

Understanding typical rates of decay is an important area of 

research, particularly for affective states like confusion or 

frustration, where research shows that both too little and too much 

time in that state is bad for learning [22]. As we are seeking to 

personalize learning, understanding the timing-related differences 

in students’ affective experience is an important step. In particular, 

capturing ways in which students’ affective experiences are most 

likely to change over time—and how these changes may be related 

to learning and motivation measures—can be useful for 

understanding different tolerances for negatively valenced 

emotions and/or their antecedents (e.g., problem difficulty, poor 

connections to student’s prior knowledge, etc.). 

In this study, we examine differences in students’ affective 

experience within the context of Crystal Island, an online learning 

system aligned to state curriculum standards for middle school 

math. In this system, two distinct suites of cross-validated affect 

detectors—one based on self-reported data and one based on 

BROMP-observation labels [24]—are already published [37]. We 

use both sets of detectors—analyzed separately—to examine how 

student affect changes over time, with a special emphasis on how 

long a student is likely to persist in each affective state, or its half-

life.  

Affect dynamic results for the full population are first compared to 

previous work investigating the half-life of epistemic emotions, 

namely Botelho et al. [7] and D’Mello et al. [13]. We then look for 

differences based on the students’ motivational measures. 

Specifically, building on new models of affective states that suggest 

that student motivational measures may impact their tolerance for 

difficulty [25], we also examine how the half-life of affective states 

varies with respect to students’ self-efficacy [8] and situational 

interest [21].  

2. LITERATURE REVIEW 

2.1 Affective Dynamics 
To date, there are a handful of theoretical models related to the 

ways in which students experience epistemic emotions during 

learning. One common model is Csikszentmihalyi’s Flow Theory 

[10], which suggests that people experience a state of flow when 

difficulty of their task is well matched to their skill level. More 

specific to epistemic emotions is D’Mello and Graesser’s [12] 

affect dynamics model. This model predicts oscillation between 

engaged concentration and confusion when students are learning, 

and a path from confusion to frustration to boredom when they are 

not.  

More recently, Ocumpaugh et al. [25] have used Pekrun’s Control 

Value Theory [27] to build upon both Csikszentmihalyi’s and 
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D’Mello and Graesser’s frameworks, proposing the Skills, 

Difficulty, Value, Efficacy, and Timing (SDVET) model. The 

SDVET model suggests that motivational constructs like self-

efficacy and value are important to explain why and when a student 

might transition from one affective state to another. Much like 

Csikszentmihalyi’s Flow Theory, it hypothesizes that the 

intersection of skill and difficulty level is important, but it diverges 

from that model in terms of what emotions are predicted when. 

The SDVET model predicts that (a) boredom is likely to occur 

when students’ skill is substantially higher than the task difficulty 

and that (b) either boredom or canonical frustration are likely when 

their skill level is well below their difficulty. However, it does not 

predict that the space between those two areas is entirely occupied 

by a flow state or engaged concentration. Instead, it hypothesizes 

that (c) a student whose skill and difficulty are well matched, but 

who does not value the task, will also experience canonical 

frustration, whereas (d) a student with matched skill and difficulty, 

plus high value, will experience the state of flow. Finally, it 

describes a situation where students with higher self-efficacy are 

asked to complete tasks with difficulty levels above their current 

skill level—but within the range where their self-efficacy 

encourages them to believe they can accomplish this task. Students 

in this space are predicted to (e) experience intolerable levels of 

confusion when their value for the task is low—which could make 

them more likely to transition to boredom or (canonical) frustration. 

However, when their perceived value of the task is high, they are 

predicted to experience pleasurable frustration [17]. Notably, the 

buffering effects of self-efficacy that are predicted in this model (f) 

are expected to diminish as time persists—meaning that even 

students with high self-efficacy will not persist in confusion or 

pleasurable frustration infinitely.  

In other words, there are explicit hypotheses about what extended 

experiences of emotion might indicate, which align both with 

Ocumpaugh et al.’s [25] empirical data and with the relationships 

we often see between self-transitions and learning. For example, 

Nasiar et al., [23] found that extended periods of boredom, 

confusion, and frustration—all indications that a student was not 

being appropriately challenged—were associated with low learning 

gains, while extended periods of engaged concentration and delight 

were associated with high learning gains. Likewise, Andres et al. 

[1] showed that sustained boredom was negatively correlated with 

both pre-test and post-test while sustained delight was positively 

correlated with post-test and learning gains. None of these studies, 

however, are able to show what a normal duration of a given 

affective state might be for a given learner.     

2.2 Exponential Decay Research 
One analytical approach that can help us to understand typical 

durations of affective states is the use of exponential decay. To date, 

there are two primary studies that have looked at the rate of decay 

of affective states in learning analytics. The first is D’Mello & 

Graesser’s [13] study of the AutoTutor system, in which students 

and trained human evaluators labeled students’ affective states 

every 20 seconds based on the recorded interactions with the 

platform. In this study, D’Mello and Graesser observed that both 

self-labeled and judge-labeled affective states tended to change 

rapidly within the first minute after students transitioned into the 

corresponding affect. Specifically, they found a sharp decline in the 

number of instances where a student still persisted in an affective 

state recognized one minute earlier. They proposed that this 

reduction in the probability of persisting in the same affective state 

could be effectively modeled using exponential decay and 

introduce the notion of affective half-life, where a half-life 

represents the point at which a quantity decreases to half of its 

initial value [7, 13]. This measure provides a more informative 

perspective than simply calculating the average episode length, as 

it identifies the point where students are equally likely to remain in 

or transition out of an affective state. 

By modeling these probabilities as exponential decay, D’Mello and 

Graesser [13] observed that students tend to persist longer in 

boredom, engaged concentration, and confusion (persistent states), 

whereas the durations of delight and surprise (transitory states) and 

frustration (an immediate state) were significantly shorter. 

Additionally, they found that prior knowledge was negatively 

correlated with the decay rate of engaged concentration, suggesting 

that students with higher prior knowledge tend to remain in this 

affective state for longer. This finding aligns with 

Csikszentmihalyi’s Flow Theory [10], which proposes a balance 

between challenge and skill level as a key factor in sustaining 

engagement. 

 

Figure 1. D’Mello & Graesser [13] Exponential Decay Results.  

 

Figure 2. Botelho et al.’s [7] Exponential Decay Results. 

Inspired by D’Mello and Graesser’s analysis, Botelho et al. [7] 

studied the same issues within the ASSISTments system [18], 

where BROMP-based affect detectors made predictions about each 
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student’s affective state every 20 seconds. In this study, researchers 

applied the same exponential function to understand the likelihood 

that a student would persist in a given affective state once they 

transitioned into it. However, Botelho et al. [7] found that boredom 

and engaged concentration often lasted longer than the previously 

found one-minute window. Consequently, they extended the decay 

observation period to five minutes to better fit the exponential 

function and determine the decay rate. The results from D’Mello 

and Graesser’s study are shown in Figure 1, while those from 

Botelho et al.’s study appear in Figure 2. 

3. METHODS 

3.1 Data Context 
This study analyzes data from an inquiry-based virtual world 

designed to align with state standards for middle school 

microbiology. In Crystal Island [30], players act as researchers 

prompted to identify the cause of an outbreak that has impacted a 

research team on an island. To complete the game, players navigate 

multiple locations, interact with non-playable characters (NPCs), 

collect information from reading materials distributed across the 

virtual world, and use laboratory tools to test their hypotheses. To 

support their progress, players are given a concept matrix to 

organize information from the readings and a worksheet to 

structure their hypotheses and findings. Figure 3 displays the game 

interface. 

 

Figure 3. Crystal Island interface with suggested solution path 

[33]. 

3.2 Participants 
This study analyzes data from 122 middle school students who 

played Crystal Island at an urban school in the Southeastern United 

States. The dataset is well-balanced in terms of gender, with 44% 

of students coming from economically disadvantaged backgrounds, 

according to school-level statistics. Additionally, over 75% of the 

participants identify as members of ethnic minority groups, 

including 43% Black, 24% Latinx, 5% Asian, and 4% from other 

racial backgrounds. The study was conducted during the students’ 

regular science classes, which lasted approximately one hour per 

day over a two-day period. All procedures were approved by the 

Institutional Review Boards (IRBs) of the partner institutions. 

    

3.3 BROMP vs. Self-Report Detectors 
This study utilizes interaction-based detectors [3, 6] of epistemic 

affective states that were previously published and cross-validated 

[37] to infer their emotions in real-time (see [4, 6] for reviews). 

These detectors were developed using labels generated from two 

sources: (a) in-game self-reports (SR) and (b) observations 

conducted with the BROMP protocol [24].  

Data for both of Zambrano et al.’s [37] detectors were collected 

simultaneously while students were playing the game (average 

gameplay duration: 41.6 minutes, SD = 15.6). At specific moments 

during gameplay (e.g., after completing the tutorial, reading three 

in-game texts, or testing three hypotheses), students were prompted 

to self-report one of six affective states: boredom (31.7%), focus 

(28.9%), confusion (13.4%), happiness (16.8%), frustration (7.6%), 

or nervousness (1.5%). Self-reporting prompts were strategically 

timed to minimize disruptions to gameplay. In total, 463 self-

reports were collected and used to train the self-report-based 

detectors. No student was prompted to report their affective state 

more than 10 times throughout the entire gameplay session. 

As they were playing, BROMP classroom observations—a 

momentary time sampling method designed for building detectors 

of student affect—were conducted. BROMP observers collected 

data on five affective states: boredom (4.7%), engaged 

concentration (82.2%), confusion (6.6%), delight (1.3%), and 

frustration (5.1%). In total, 1,716 observations were collected to 

train the BROMP-based detectors. Nervousness was excluded from 

BROMP observations as it is difficult to observe directly. Self-

report labels were adapted from BROMP researcher categories to 

child-friendly language (e.g., “focus” for engaged concentration 

and “happiness” for delight).  

Although there is a sharp contrast in the base rates between the two 

ground truths (SR vs. BROMP), these differences are consistent 

with findings from prior studies (e.g., see base rate differences in 

[5] and [32]). This contrast likely reflects the distinct nature of the 

signals each method captures and their different limitations (see 

discussion section, below). Despite their differences, both types of 

data are associated with multiple outcomes, including learning and 

motivational measures [37]. Considering both signals can produce 

a more comprehensive view of students’ affective dynamics than 

either method alone (see discussion in [37]). The BROMP and SR 

detectors were developed independently of each other, with each 

set of affective data used to train separate ML-based affect 

detectors. These were binary one vs all detectors trained using 

Logistic Regression, Random Forests, and X Gradient Boosting. 

These detectors were cross-validated at a subgroup level to ensure 

they could generalize to new populations, and the best-performing 

model for each affective state (AUC>0.65 for all affective states) 

was used in this analysis. Consistent with previous work involving 

BROMP [7], both sets of detectors were applied to 20-second 

segments of students’ log files. Two labels were then assigned to 

each clip (one from the SR-based detector and one from the 

BROMP-based detector) based on the highest probability output 

across categories after adjusting probabilities to account for the 

base rates of the ground truth in each detector suite, ensuring the 

distributions matched those observed in the ground truth [23, 25]. 

3.4 Affective Dynamics and Chronometry 
We analyzed affect dynamics using a multistep approach. First, we 

replicated the affect chronometry approach proposed by D’Mello 

and Graesser [13] and replicated by Botelho et al. [7]. We 

segmented each student’s sequence of labels into episodes, with 

each episode representing the continuous duration a student 

remained in a specific affective state before transitioning to a 

different one. For example, if the model classified a student as 

bored for three twenty-second clips before transitioning to 

frustration for two twenty-second clips and then back to boredom 

for four twenty-second clips, then they would have experienced 

three affective episodes—two for boredom and one for frustration.  

For each affective state, we used the detector labels to calculate the 

probabilities of episodes persisting for durations ranging from 20 

seconds to 5 minutes in increments of 20 seconds (𝑃𝑟(𝐸𝑡 =
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 𝐸𝑡+20𝑖), where i represents the number of future clips in which the 

affective state persists). Note that this is in line with Botelho et al.’s 

[7] approach, which also used affect detectors, the same 

granularity, and observed episode lengths similar to those in our 

study, but represents a deviation from D’Mello & Graesser’s 

approach, as they used the same 20-second increments for labeling 

but only considered the initial 60 seconds to estimate affective 

decay. In our study, these calculations produced 16 probabilities 

(for durations of 0, 20, 40, ..., 300 seconds), which were then used 

to compute the decay rates and half-lives of each affective state. 

For this calculation, we ignored the last affective episode of the 

gameplay because it is not possible to determine what the length of 

this episode might have been if the student had kept playing. 

Unlike previous approaches, we fit the exponential function using 

a Bayesian regression model, allowing us to calculate not only point 

estimates but also 95% credible intervals, which represent the 

probability density distribution within which the true parameter 

value is likely to fall, given the data and prior knowledge about the 

parameter (in this case, the prior decay factors found by D’Mello 

& Graesser, and Botelho et al.). This methodological shift 

incorporates uncertainty quantification from a different perspective 

than the more traditional frequentist approach but does not alter the 

mean estimate, ensuring comparability with previous studies.  

In particular, we employed a log regression model to estimate decay 

rates. The model was specified with an intercept of 1, 

acknowledging that at time=0, the student is already experiencing 

the corresponding affective state. Additionally, we used a naïve 

Gaussian prior (Mean=0, SD=1) to avoid imposing strong initial 

assumptions about the distribution of decay rates. This choice 

aligns with findings from D’Mello and Graesser and Botelho et al’s 

studies, who obtained decay rates within the interval (-0.6, 0). Then, 

using the estimated decay rates 𝜆 and their corresponding 95% 

credible intervals, the half-lives were calculated as 𝐻𝐹 = 𝑙𝑛(2)/𝜆.  

We compared results across studies and affective states using half-

lives instead of decay factors because they are expressed in 

seconds, offering a straightforward and interpretable measure of the 

moment when it is more likely to transition to a different affective 

state rather than still persisting on it. For reference,  we include 

half-lives derived from two types of detectors in D’Mello and 

Graesser’s study—those from external judges’ observations and 

those from participants’ self-judgments. In their study, the self-

reported data (referred to as self-judgement) was collected 

retrospectively, with students watching and labeling the video of 

their own session immediately after ending it. Although this 

method diverges from our in-the-moment methods, it is the closest 

prior study to the self-reported data in our analysis. 

3.5 Self-Efficacy and Situational Interest 
After analyzing affect chronometry across the entire group of 

students, we examined its association with self-efficacy and 

situational interest. Prior to playing the game, students completed 

two external survey measures: Linnenbrink-Garcia et al.’s [21] 

situational interest scale and Britner & Pajares’ [8] self-efficacy 

scale. Based on their scores for each measure, students were 

categorized into high, middle, and low groups, considering the 

middle groups as those students within a standard deviation of the 

mean of each measure. Students were categorized into 

high/middle/low separately for each measure. Then, our analysis 

compared the high and low groups for both variables, in terms of 

affect chronometry. This categorization method was chosen to 

reduce the risk of spurious results, which can occur when splitting 

at the mean, as students near the mean often exhibit similar 

characteristics. 

4. RESULTS 

4.1      Exponential Decay (All Students) 
Next, we used affective chronometry to analyze the likelihood of 

students transitioning out of a given affective state and estimate the 

half-life of each affective state according to both suites of detectors. 

Figures 4 and 5 present these results for the SR-based detectors and 

the BROMP-based detectors, respectively. Additionally, Table 1 

summarizes the half-life of each affective state, as well as findings 

from prior studies by Botelho et al. [7] and D’Mello & Graesser 

[13].  

 

Figure 4. SR-based detectors in Crystal Island. 

 
Figure 5. BROMP-based detectors in Crystal Island. 

Across both types of detectors, students experienced longer 

episodes of boredom than in any other affective state, though the 

difference between the two detectors was still quite large. For the 

BROMP-based detector, the half-life of boredom was 319.2 

seconds (95% CI [296.3, 344.5]), whereas SR-based boredom had 

a half-life that was nearly two minutes shorter (93.4 sec.; CI [85.5, 

320



101.6]). These findings align with those reported by Botelho et al. 

(2018), where boredom, as detected using BROMP-based methods, 

was one of the two affective states with the longest half-life (173.3 

sec.). In contrast, D’Mello & Graesser study reported a half-life of 

less than 15 seconds for boredom for both types of labeling (self-

judgment and experienced external judges). 

Table 1. Estimated half-lives (in seconds) and 95% Credible 

Intervals of affective states across different suites of detectors 

and studies. Results from the current study are shown in bold. 

Affect Study Half-life 

Credible Intervals  

Low High 

Boredom SR 93.4 85.5 101.6 

 D'Mello Self  9.6 - - 

 BROMP 319.2 296.3 344.5 

 Botelho BROMP 173.3 - - 

 D'Mello Judge  13.9 - - 

Confusion SR 50.6 46.5 54.8 

 D'Mello Self  19.8 - - 

 BROMP 39.9 36.1 43.8 

 Botelho BROMP 28.8 - - 

 D'Mello Judge  23.5 - - 

Engaged SR 61.9 52.4 71.9 

Concentration D'Mello Self  25.7 - - 

 BROMP 259.7 249.8 270.2 

 Botelho BROMP 231.0 - - 

 D'Mello Judge  13.6 - - 

Frustration SR 65.7 54.8 77.1 

 D'Mello Self  19.8 - - 

 BROMP 74.3 69.2 79.5 

 Botelho BROMP 69.3 - - 

 D'Mello Judge  2.9 - - 

Happiness/ SR 67.9 57.5 78.6 

Delight D'Mello Self  4.1 - - 

 BROMP 44.1 35.0 53.4 

 D'Mello Judge 2.0 - - 

Nervousness SR 59.4 55.9 63.0 

Engaged concentration showed more differences across detectors. 

Among our BROMP-based detectors, engaged concentration had 

the second-longest half-life (259.7 sec., CI [249.8, 270.2]), closely 

matching the half-life reported in Botelho et al.’s study (231.0 sec.). 

However, its half-life was more than three minutes shorter when 

we measured it using the SR-based detectors (61.9 sec., CI [52.4 

71.9]), where it ranked in the middle among the other affective 

states. This value aligns more closely with the shorter half-lives 

(less than 30 seconds) reported by D’Mello & Graesser (2011). 

However, in D’Mello & Graesser’s study, the half-life of 

engagement (referred to by them as flow) obtained from external 

observers (13.6 sec.) was smaller than the half-life obtained from 

self-labeling (25.7 sec.). 

Frustration shows highly consistent results across studies. Among 

the BROMP-based detectors in this study, it had the third lowest 

decay rate, with a half-life of just over a minute (74.3 seconds, CI 

[69.2, 79.5]). Interestingly, the frustration decay curve for the SR-

based detectors also revealed a very similar half-life of 65.7 

seconds (CI [54.8, 77.1]), suggesting that frustration persists for a 

comparable duration according to both students (self-reports) and 

observers (BROMP). These findings are comparable to  Botelho et 

al.’s results (69.3 seconds). Frustration’s half-life was much shorter 

in D’Mello and Graesser’s retrospective self-judgments (19.8 

seconds). However, as with our BROMP-based detectors, 

frustration had the third longest half-life. In contrast, their expert 

judge’s frustration half-life value was substantially shorter (2.9 

sec.). 

The two affective states with the fastest decay rates, according to 

our BROMP-based detectors, were confusion and delight, with 

half-lives of 39.9 (CI [36.1, 43.8]) and 44.1 seconds (CI [35.0, 

53.4]), respectively. Confusion had a similar half-life of 50.6 (CI 

[46.5 54.8]) for the SR-based detectors. These findings again 

closely align with Botelho et al.’s study, where confusion was 

identified as the affective state with the fastest decay, with a half-

life of 28.8 seconds. The authors of that paper did not include 

delight in their analysis due to its low frequency in that paper’s 

learning system (still, they reported some instances of delight in 

their data). Similarly, delight was found to have the lowest 

persistence in the study by D’Mello and Graesser (less than 5 

seconds for both labeling methods). However, when analyzing 

delight through the SR-based detectors, renamed as happiness in 

this context, the decay rate was slightly slower, with a half-life of 

67.9 seconds (CI [57.5, 78.6])—making it the second most 

persistent state, just below boredom. It is possible that these two 

constructs do not align as much as originally intended and that 

students may experience happiness as a more stable, enduring state 

compared to the more transient nature of delight. 

Lastly, SR-based nervousness showed a half-life of 59.4 seconds 

(CI [55.9 63.0]), making it the second least persistent state after 

confusion, but its half-life remained comparable to that of the self-

reported engaged concentration and frustration. Nervousness was 

not measured either with our BROMP-based detectors, nor in either 

of the previous studies, so further comparisons are not possible. 

Overall, we see a pattern in the current data where BROMP-based 

detectors have longer half-life values for boredom and engaged 

concentration, and much shorter values for other detectors. In 

contrast, our SR-based detectors have higher values for boredom 

than other detectors—though not to the extreme seen in either our 

BROMP-based detectors or those reported in Botelho et al. Instead, 

the values for our SR-based detectors sit between the BROMP-

based detectors in both studies and the values reported for both 

types of detectors in D’Mello & Graesser, demonstrating 

considerable variability in half-life values, a finding that deserves 

further consideration. 

4.2 Exponential Decay: Effects of Self-

Efficacy & Situational Interest 
Finally, we examined how different levels of self-efficacy (SE) and 

situational interest (SI) influence the decay rate of affective states 

in this dataset. We first report on the episodic differences in this 

data and then upon the half-life results. 

4.2.1 Episodic Analysis 
Table 2 presents the average number of affective episodes (i.e., the 

number of times an affective state appeared in a consecutive series 

of clips) per student, based on both their self-efficacy and interest 

levels and on the detectors making those predictions.  In line with 

the shorter half-life values seen among the SR-based detectors in 

the previous section (Table 1), the SR-based detectors tended to 

identify more episodes of each affective state than the BROMP-

based detectors (Mean difference of 1.8 episodes, CI [1.3, 2.4]). In 

other words, when affect was detected using SR-based detectors, it 

was more volatile—showing transitions from one affective state to 

another on a more frequent basis. 
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In addition to the differences in the number of episodes between the 

two suites of detectors, there were also differences in the number 

of episodes seen among the High vs. Low SE and High vs. Low SI 

groups. Notably, BROMP-based detectors found no episodes of 

boredom for both High SI and High SE students and no episodes of 

delight for the Low SE group.  

Table 2. Average episodes of each affective state per student. 

Method Group N Bor Conf Eng Fru Del Nerv 

SR High SE 18 3.7 3.3 5.6 1.7 2.9 0.3 

 Low SE 18 3.6 2.3 4.8 1.1 2.6 0.2 

 High SI 20 3.1 3.2 5.8 1.2 3.3 0.2 

 Low SI 16 4.3 2.8 4.7 1.2 1.8 0.8 

BROMP High SE 18 0 1.5 3.3 1.1 0.4 - 

 Low SE 18 0.3 1.7 2.9 0.6 0 - 

 High SI 20 0 1.9 4.1 0.9 0.6 - 

 Low SI 16 0.3 1.8 3.8 1.0 0.3 - 

 

4.2.2 Exponential Decay—Motivational Differences 
We next analyze how students’ motivational measures impact the 

half-life values predicted by these detectors. Results for the SR-

based detectors are presented in Table 3 and Figures 6 and 8, while 

results for the BROMP-based detectors are shown in Table 4 and 

Figure 7. As with our analysis above (where we compared the full 

data set to previous research), we present these results by each 

affective state. The goal is to better understand the relationships 

between these motivational constructs and the duration of each 

affective state, as that is now theorized as an important component 

of understanding affect dynamics. 

Table 3. SR-based detector half-life estimates (seconds) for 

high/low levels of Situational Interest (SI) and Self-Efficacy 

(SE).  

  Low SE/SI Group High SE/SI Group  

  HL Range HL Range hi-lo 

Boredom SE 78.9 (69.9-88.5) 75.7 (66.7-85.2) -3.2 

 SI 97.6 (85.6-110.4) 99.2 (87.5-111.7) 1.6 

Confusion SE 50.2 (44.1-56.5) 41.8 (36.0-47.8) -8.4 

 SI 62.8 (55.8-70.0) 49.7 (43.3-56.5) -13.0 

Eng Conc SE 45.4 (38.4-52.7) 74.8 (65.8-84.2) 29.4 

 SI 45.3 (37.6-53.4) 71.7 (61.5-82.3) 26.4 

Frustration SE 39.1 (32.2-46.5) 63.6 (53.0-74.8) 24.5 

 SI 80.4 (68.1-93.6) 92.2 (77.6-107.7) 11.8 

Happiness SE 48.0 (41.8-54.6) 62.8 (54.9-70.7) 14.7 

 SI 50.4 (45.5-55.5) 69.7 (64.0-75.6) 19.3 

Nervousness SE 38.9 (32.9-45.1) 139.3 (124.4-155.0) 100.4 

 SI 37.6 (33.2-42.1) 11.0 (8.5-13.6) -26.6 

*Grayscale indicates non-overlapping 95% credible intervals 

comparing high vs low SE/SI groups. 

In our first analysis, boredom showed the longest half-life values   

among all detectors, though that finding was much stronger for 

BROMP-based detectors than for SR-based detectors. As Table 4 

and Figure 7 show, we can see that the BROMP-based findings 

were driven exclusively by students with low self-efficacy and/or 

low situational interest, who experienced episodes of boredom 

lasting longer than nine minutes. When measured with BROMP-

based detectors, neither the high self-efficacy or high situational 

interest groups exhibited any boredom at all. However, this effect 

is not seen in the SR-based detectors (Table 3 and Figure 6), where 

there was minimal difference in the duration of boredom between 

both situational interest groups (97.6 and 99.2 seconds) and 

between both self-efficacy groups (75.7 and 78.9 seconds). These 

half-lives—around a minute and a half—differ substantially from 

the nearly nine minutes observed for the BROMP-based detector, a 

trend seen across all affective states. 

Table 4. BROMP-based detector half-life estimates (seconds) 

across low/high levels of Situational Interest (SI) and Self-

Efficacy (SE).  

  Low SE/SI Group High SE/SI Group  

  HL Range HL Range hi-lo 

Boredom SE 602.8 (505.4-724.3) - (---) -600.3 

 SI 536.6 (435.6-668.0) - (---) -533.1 

Confusion SE 57.4 (52.6-62.4) 38.1 (34.4-41.9) -19.3 

 SI 62.5 (58.1-67.0) 37.3 (34.0-40.6) -25.2 

Eng Conc SE 216.4 (198.4-235.9) 302.1 (274.1-333.2) 85.7 

 SI 183.6 (168.5-199.8) 282.2 (256.2-310.7) 98.6 

Frustration SE 58.7 (53.0-64.6) 86.5 (79.1-94.3) 27.8 

 SI 82.4 (75.6-89.5) 79.9 (73.4-86.6) -2.5 

Delight SE - (---) 22.4 (18.0-27.1) 22.6 

 SI 35.3 (30.0-40.7) 23.6 (19.7-27.7) -11.7 

*Grayscale indicates non-overlapping 95% credible intervals 

comparing high vs low SE/SI groups. 

We next examine the relationship between motivational measures 

and the half-life values of engaged concentration, which had overall 

half-life values of four and half minutes in the BROMP-based data 

but less than a minute in the SR-based data. In this analysis, we see 

that there are significant differences in both motivational measures 

for both BROMP and SR-based detectors. In the BROMP data, 

both high self-efficacy and situational interest groups tend to persist 

in being concentrated for periods around 5 minutes (302.1 and 

282.2 sec.), which is around a minute and a half longer than 

students with low self-efficacy (216.4 sec.) and low situational 

interest (183.6 sec.). In the SR-based data, these differences are 

smaller, but in the same direction, students with high situational 

interest and high self-efficacy tended to remain in the engaged 

concentration state for nearly 30 seconds longer than their low self-

efficacy and low situational interest peers (SE: 74.8 vs. 45.4 sec and 

SI: 71.7 vs. 45.3 sec.), suggesting a difference over 25 seconds 

between both groups (non-overlapping credible intervals). A 

similar result is observed according to the BROMP-based 

detectors.  

In our first analysis, confusion had the shortest half-life values for 

both suites of detectors (under one minute), at only 39.9 seconds in 

the BROMP data and 50.6 seconds in the SR data. In the BROMP-

based data (Table 4), this low half-life appears to be driven by 

students with high self-efficacy and high situational interest, whose 

values approached the half-minute mark (38.1 sec. CI [34.4, 41.9] 

and 37.3 sec., CI [34.0, 40.6]). Students with lower motivational 

measures tended to remain in the confusion state for nearly a minute 

or more (SE: 57.4 sec., CI [52.6, 62.4] and SI: 62.6 sec., CI [58.1, 

67.0]). These differences are lower than those seen in the BROMP-

based detectors for motivational differences in engaged 

concentration (approx. 20-25 sec. for confusion vs. 85-100 sec. for 

engaged concentration), but account for a greater proportion of the 

variance related to the estimated half-life across all students (39.9 

sec. for confusion and 259.7 sec. for engaged concentration). A 

similar pattern was observed using the SR-based detectors, though, 

as Table 3 shows, the credible intervals overlapped in this 

comparison.
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Figure 6. Half-life of SR-based detectors by high and low self-efficacy (SE) and situational interest (SI). 

 

Figure 7. Half-life of BROMP-based detectors affective states by high and low self-efficacy (SE) and situational interest (SI).

Frustration’s half-life values had highly consistent patterns within 

our own results and also in Botelho’s results. Interestingly, in this 

analysis, neither suite of detectors showed differences based on 

situational interest, both of which remained within 79.9 to 92.2 

seconds. All the estimated half-lives for the High and Low SI 

groups were greater than the overall results (SR: 65.7 sec.; 

BROMP: 74.3 sec), indicating that mid-level situational interest 

students tended to show shorter episodes of frustration according to 

both suites of detectors. Self-efficacy, however, had more 

contrasting results between the high and low groups. For both suites 

of detectors, students with high self-efficacy showed longer 

episodes of frustration (63.6 and 86.5 seconds for SR and BROMP-

based detectors, respectively), persisting 20 seconds longer than the 

low self-efficacy groups (39.1 and 58.7 seconds for SR and 

BROMP). 

Happiness and delight tended to rank in the middle compared to the 

estimated half-lives of the other affective states, with happiness 

lasting longer than delight. Students in the high self-efficacy and 

high situational interest groups also tended to remain in a state of 

happiness for longer durations (62.8 and 69.7 sec., respectively), 

according to the SR-based detectors. However, this difference (14.7 

and 19.3 sec., respectively) was smaller than the differences 

observed for engaged concentration and frustration, particularly for 

self-efficacy. Notably, students with low self-efficacy either never 

experienced delight or, if they did, transitioned almost immediately 

to another affective state, similar to the boredom dynamics 

observed in the high situational interest and high self-efficacy 

groups. For situational interest, the pattern was the opposite. 

Students with high situational interest remained in the delight state 

for only 23.6 seconds, compared to 35.3 seconds for their low 

situational interest peers. However, this result merely indicates that 

high situational interest students transitioned out of delight more 

quickly. Since they also experienced twice as many episodes of 

delight as their low situational interest peers, this should not be 

interpreted as a negative association between situational interest 

and delight. 

Finally, we examine the results for nervousness (Figure 8), which 

was the affective state with the second fastest decay for the SR-

based detectors. Notably, the difference in nervousness between SE 

groups are greater than the difference for SI groups. Surprisingly, 

however, high self-efficacy is associated with higher half-life 

values for nervousness (139.3 sec., CI [124.4, 155.0]). In contrast, 

students with high situational interest have substantially shorter 

half-lives compared to those with low situational interest (11.0 sec. 

CI [8.5, 13.6]; CI [33.2, 42.1], respectively), though both 

situational interest groups have half-life values for nervousness that 

are well below the estimate we gave in the previous section for the 

full group (59.4 sec., CI [55.9, 63.0]). 

 

Figure 8. Half-life of nervousness among students with varying 

levels of self-efficacy and situational interest. 
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Overall, the BROMP-based detectors show greater sensitivity to 

motivational differences than the SR-based detectors. Although 

neither type of detector revealed differences in the relationship 

between situational interest and frustration, the BROMP-based 

detectors showed distinctions for all other motivational and 

affective combinations. In contrast, the SR-based detectors did not 

find self-efficacy or situational interest differences for either 

boredom or confusion. This suggests that if affect detectors are to 

be used in motivational interventions, BROMP-based detectors 

may offer some advantages, though notably, the SR-based detectors 

do offer the ability to detect nervousness, which also showed 

motivational differences. 

5. DISCUSSION  
In this study, we examined the half-lives of epistemic emotions 

using two different suites of detectors—one trained on in-game 

self-reported data and the other on BROMP observations. We also 

analyzed how the decay rates of these affective states interact with 

motivational factors such as self-efficacy and situational interest.  

5.1 Comparison to Previous Results 
Notably, the order and broader distribution of half-lives observed 

in our BROMP-based detectors (ranging 40 to 320 seconds) closely 

aligned with the findings of Botelho et al. [7], who also used 

BROMP-based detectors. In contrast, the SR-based detectors 

produced shorter half-lives, ranging between 50 and 100 seconds. 

In other words, the SR-based detectors portray students’ affect 

dynamics as more volatile than the BROMP-based detectors, which 

show fewer transitions from one affective state to the next. Despite 

these differences, across both suites of detectors, boredom 

consistently exhibited the slowest decay rate (highest persistence), 

while confusion had the fastest decay rate (lowest persistence). 

Additionally, the half-lives observed in our study were 

substantially higher than those reported by D’Mello and Graesser 

[13]. It is not clear why D’Mello & Graesser’s students appeared to 

experience more volatility in their affective states, but it could be 

related to methodological differences, as their transitions were 

manually labeled on intervals of 20 seconds by human experts and 

students, and the data was collected within a laboratory study, 

which may have impacted how they approached the task. 

The strong similarity between our results and those reported by 

Botelho et al., despite their use of a very different non-game 

learning platform, suggests some degree of generalizability in the 

typical half-lives of affective states. However, the sharp contrast 

with the findings from D’Mello & Graesser also indicates that 

differences in estimated half-lives may not only reflect variations 

in learning contexts but may also stem from similarities or 

differences in the methodologies used across these studies. 

Specifically, four distinct methods were employed to determine 

students’ affective states: (1) self-reports from students (this study), 

(2) retrospective self-judgments after watching recordings of 

themselves (D’Mello & Graesser), (3) real-time observations by 

human evaluators (this study and Botelho), and (4) expert labeling 

based on video reviews of students (D’Mello & Graesser). 

Each of these methods for obtaining ground truth present unique 

challenges and may capture slightly different signals. The 

implications of these differences could help to explain the patterns 

we are reporting upon here. For example, while the student is the 

only person with direct access to their own emotions, the way they 

categorize affective states can vary depending on whether they 

report them in real time or recall and label them later while 

watching a video of their past experiences. When reviewing a 

video, students may interpret their facial expressions as signs of 

emotional transitions, potentially perceiving shifts in affect that felt 

more gradual in the moment. For instance, a person who feels bored 

or has low interest in a particular activity might be more likely to 

report boredom in real time than they would be if, after that 

experience is resolved positively, they are asked to reflect on it 

later. If their overall perception of the educational experience is 

positive at the end, they may rely on that perception to identify 

fewer instances of boredom and instead report more instances of 

delight or engaged concentration than they would have labeled in 

real-time. In other words, the opportunity to self-reflect might 

influence their reporting in ways that do not capture the in situ 

experience. 

Similar differences may arise between real-time, in-person 

observations and retrospective assessments by trained experts. The 

additional contextual information that might help determine a 

student’s affective state more accurately, cannot be fully captured 

in video. On the other hand, since it is impractical to observe all 

students at each instant—just as students should not be asked to 

report their affective state every 20 seconds—video recordings 

might capture more granular and subtle expressions associated with 

more momentary states. In contrast, a real-time observer who is not 

permanently assessing the same student (as doing so would disrupt 

the learning experience) may perceive a slightly more stable 

emotional signal rather than capturing every fleeting shift in affect. 

In addition to differences in the collection of the ground truth, 

another important distinction between D’Mello & Graesser, and 

Botelho et al.’s and our study lies in the use of detectors. Because 

detectors estimate general behavioral patterns, they may capture 

more stable emotional signals over time. In contrast, labeling based 

on video recordings—without the use of detectors—may focus 

more on fleeting affective states, such as brief facial expressions 

lasting only a few seconds (e.g., 0–5 seconds), which may not fully 

represent the predominant emotional state over longer time 

intervals (e.g., 20–30 seconds). 

Finally, the choice of a 1-minute window (D’Mello & Graesser) 

versus a 5-minute window (Botelho et al. and our study) can 

significantly impact the estimation of decay rates and half-lives. 

While the exponential function provides a good approximation of 

how the probability of remaining in a given affective state declines 

over time, as seen in D’Mello & Graesser’s and Botelho et al., 

studies [7, 13], it is not a perfect model. Shorter windows (e.g., 1 

minute) may be particularly useful for capturing the initial decay of 

an emotion or tracking affective states that are brief (e.g., delight). 

In contrast, longer windows (e.g., 5 minutes) may be better suited 

for capturing both the initial decay and the later-stage decline of 

more persistent states (e.g., boredom or engaged concentration). 

These methodological differences and the potential limitations of 

each approach do not imply that any of these studies are incorrect. 

Rather, they highlight how research design choices can shape 

results. The most appropriate method depends on the type of 

affective signal researchers aim to capture—whether momentary 

emotional states, students’ real-time self-perceptions, more stable 

affective states, or external observers’ interpretations—all of which 

might be correlated with important learning outcomes (e.g., [37]). 

Future research should focus on identifying the specific aspects of 

the affective constellation that each labeling method captures to 

develop a more nuanced understanding of the implications of half-

lives estimated across multiple ground truths and contexts.  
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5.2 Alignment to SDVET Model 
Our analysis of the differences across groups with different levels 

of self-efficacy and situational interest allows us to explore some 

of the theoretical and empirical claims made by the SDVET model 

[25]. Although we did not have a large enough sample to run an 

analysis on prior knowledge or time in game, which are important 

components of the SDVET predictions, situational interest is a 

reasonable proxy for value and self-efficacy is explicitly included 

in the model. 

In particular, we see that engaged concentration episodes have 

significantly longer half-life values for students with high 

situational interest, corresponding to the SDVET model. This is 

true regardless of detector type. Although there were no SDVET 

predictions for the effect of self-efficacy on engaged concentration, 

the effects of high self-efficacy were the same as those seen with 

situational interest.  

Similarly, the longer half-life of confusion among students with 

low situational interest supports the SDVET model’s prediction 

that this affective state is most likely to occur when value is low. 

However, this finding appears only in the BROMP-based data, 

where low self-efficacy follows the same pattern. 

The BROMP-based data also align with SDVET model predictions 

for boredom. Specifically, no episodes of boredom were observed 

among students with high situational interest or high self-efficacy. 

This supports the SDVET prediction that higher self-efficacy 

enables students to persist longer before cycling between 

frustration and boredom. 

Because our data collection did not distinguish between canonical 

frustration and pleasurable frustration [17], our results around 

frustration are more difficult to interpret. Students with low self-

efficacy are predicted in SDVET to transition more quickly into the 

space where cycles between canonical frustration and boredom 

occur. Students with high situational interest are predicted by 

SDVET to spend more time in pleasurable frustration, and higher 

self-efficacy would be predicted to further extend those 

experiences. In our results, students with high self-efficacy are 

more likely to experience longer episodes of frustration, which 

would be predicted if these experiences were pleasurable. To the 

degree that there is considerable diversity in how confusion and 

frustration manifest [2, 9], it may be worth considering how to 

capture different forms of confusion and frustration in future 

studies of this nature. One approach could involve follow-up 

questions administered shortly after students self-report or are 

observed experiencing confusion or frustration. These prompts 

could ask about the cause of the emotion, whether the issue was 

resolved, and how the student is feeling now, providing deeper 

insight into the underlying affective dynamics. 

Although there were no predictions for delight in the SDVET 

model, the relationship between self-efficacy and delight in this 

study would be compatible with the idea that high self-efficacy is 

associated with pleasurable frustration. Notably, no student in the 

low self-efficacy group showed any episodes of delight (in the 

BROMP-based data), and although happiness (the SR-based 

equivalent) does occur among low self-efficacy students, the 

duration of this emotion is longer among those with high self-

efficacy. 

That said, this interpretation is complicated by results related to 

situational interest, which contrasts with the relationship between 

self-efficacy and delight/happiness. For the SR-based happiness 

detector, low situational interest is associated with shorter bouts of 

happiness, but for the BROMP-based delight detector, the results 

are the opposite; students with low situational interest experienced 

longer bouts of delight. However, despite persisting longer in this 

state, students with low situational interest experienced only half as 

many episodes of delight as their high situational interest peers. 

This suggests that, overall, they do not necessarily experience more 

delight.  

One possible explanation is that students who are already interested 

in a specific domain may become less sensitive to novelty, surprise, 

or success after overcoming challenges—factors that typically 

trigger and prolong the high-intensity emotion of delight [27]. As a 

result, their experiences of delight may occur more frequently but 

be shorter in duration. In contrast, students with high situational 

interest tend to persist longer in other positive but less intense states 

[24, 31], such as happiness and engaged concentration, as observed 

in this study. Overall, these students appear to have a more 

positive—but potentially less intense—experience of the game. 

Further research exploring the underlying causes of delight, 

happiness, and engaged concentration may help validate this 

interpretation. 

5.3 Potential for Interventions 
The strong similarity between Botelho’s findings and ours, even 

using different systems (a question-based learning platform and an 

educational game), suggests the presence of general trends in 

affective half-life that could inform interventions across multiple 

platforms. The high persistence of boredom (lasting over five 

minutes according to the BROMP-based detectors) indicates that 

this affective state may be particularly difficult to overcome, a 

finding previously noted [23]. For this reason, researchers should 

focus on predicting boredom before it occurs, as students may 

struggle to transition out of it once they are bored [36]. This 

prolonged persistence in this affective state can negatively impact 

multiple learning outcomes [5]. 

Additionally, understanding the half-lives of confusion and 

frustration—affective states that are not inherently negative but can 

lead to undesirable outcomes if unresolved [15, 28, 29, 34]—can 

help determine the optimal time frame for interventions. For 

example, educational systems or games could use this information 

to provide timely hints that assist students in overcoming these 

states. Interventions should not necessarily be immediate, as 

confusion and frustration can contribute to positive outcomes [14, 

16, 20, 22, 26]. However, waiting until the students potentially 

transition to boredom might also have negative effects. Therefore, 

knowing that there is a window of 30 seconds to a minute in which 

these affective states can be effectively resolved—potentially 

allowing students to transition back to engaged concentration 

[22]—enables systems to deliver more strategically timed 

interventions. Still, as noted earlier, different forms of confusion 

and frustration may vary in duration, impact on learning, and the 

types of interventions they require [2, 9]. 

The interplay between motivational factors and the half-lives of 

affective states also plays a crucial role in determining the most 

effective timing for interventions. For example, as proposed by the 

SDVET framework, students with higher self-efficacy or 

situational interest may be better equipped to manage frustration, 

making them more likely to self-regulate and transition back to 

engaged concentration even if they persist in frustration for longer 

[25]. This hypothesis is further supported by the absence of 

boredom detected in these students. In contrast, students with lower 

situational interest or self-efficacy may persist in frustration for a 

shorter duration but, in some cases, transition to boredom more 
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quickly, which could lead to the potential negative consequences 

associated with this affective state. Further research is necessary to 

evaluate this hypothesis. 

The association between confusion and motivational factors 

appears to be the opposite of what was observed for frustration. 

Students with low situational interest and self-efficacy tend to 

persist in confusion for longer, suggesting that they may require 

more time to resolve their confusion and either return to engaged 

concentration or transition to another affective state. Based on this, 

further analysis is needed to determine when these students are able 

to self-regulate, overcome confusion, and re-engage independently 

versus when external support from the system or game is necessary 

to facilitate their learning process. 

Additionally, the shorter half-life of engaged concentration—

generally the most common emotion for learners using digital 

learning platforms [19]—in students with low situational interest 

and self-efficacy suggests that their affective dynamics may be 

more volatile, causing them to transition out of the flow state more 

quickly and frequently. These findings align with predictions in the 

SDVET framework [24] and highlight the importance of predicting 

affective states in this group to develop targeted interventions, such 

as motivational messages [11], that could help them sustain 

engagement for longer periods. 

6. CONCLUSIONS 
This study highlights the importance of understanding the half-lives 

of affective states as a crucial step toward better understanding 

students’ affective dynamics and designing more effective 

interventions in learning environments. Our findings suggest that 

while emotions like boredom and engaged concentration tend to 

persist for extended periods, emotions like confusion have shorter 

durations. The alignment between our results and previous research 

investigating a different digital non-game learning environment 

indicates the presence of general affective trends that could inform 

adaptive learning systems across different platforms. However, 

there is a need to replicate these results in other learning contexts 

and different domains. Additionally, our findings show that 

motivational factors, such as self-efficacy and situational interest, 

influence student persistence in these states. As this is, to our 

knowledge, the first study of its kind, further replication across 

varied educational settings—incorporating a range of motivational 

measures—is warranted.  

Overall, the results presented in this study could guide the 

development of timely interventions aimed at preventing boredom 

while promoting positive transitions between confusion, 

frustration, happiness, and engaged concentration—pathways that 

may lead to improved learning outcomes. These insights 

underscore the importance of considering both motivational factors 

and the appropriate time frame when designing affect-based 

interventions. 
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