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ABSTRACT 
Missing data presents a significant challenge in Educational Data 

Mining (EDM). Imputation techniques aim to reconstruct missing 

data while preserving critical information in datasets for more ac-

curate analysis. Although imputation techniques have gained 

attention in various fields in recent years, their use for addressing 

missing data in education remains limited. This study contributes 

to filling the research gap by evaluating state-of-the-art deep gen-

erative models: Tabular Variational Autoencoder (TVAE), 

Conditional Tabular Generative Adversarial Networks (CTGAN), 

and Tabular Denoising Diffusion Probabilistic Models (TabDDPM) 

for imputing missing values using the Open University Learning 

Analytics Dataset (OULAD) with varying levels of missing data. 

These deep generative models identify relationships among demo-

graphic, behavioral, and partial assessment data to impute absent 

numerical assessment scores. TabDDPM showed the best imputa-

tion performance and maintained closer alignment with the original 

data, as demonstrated by the KL divergence and KDE plots. To fur-

ther enhance predictive modeling performance with imputed data, 

this study proposes TabDDPM-SMOTE, which combines 

TabDDPM with the Synthetic Minority Over-sampling Technique 

(SMOTE) to tackle the class imbalance often encountered in edu-

cational datasets. Our TabDDPM-SMOTE model consistently 

achieves the highest F1-score when using the imputed data in 

XGBoost classification tasks, showcasing its strong efficiency and 

potential to enhance predictive effectiveness modeling. 

Keywords 
Tabular Missing Data Imputation, Deep Learning Model, Educa-

tional Tabular Missing Data, Educational Data Mining 

1. INTRODUCTION 
Missing data is typically a challenge to data mining. It may occur 

due to errors in data collection [38], incomplete survey responses 

[34], equipment failures [44], privacy preservation [42], or incom-

plete attendance records [22]. For instance, missing exam scores 

can occur when students drop out. 

Imputation techniques aim to reconstruct the missing values and 

preserve critical information in the datasets for more accurate anal-

ysis [1]. These techniques have gained attention in recent years in 

several fields, such as healthcare [31], image restoration [15], and 

industrial research [20]. For example, imputation techniques have 

been applied to fill in missing values in patient records in the 

healthcare industry [31]. In image restoration, Generative Diffusion 

Prior (GDP) [15] has been used to recover missing regions in oc-

cluded images, achieving high-fidelity reconstruction while 

preserving structural details. However, their application for ad-

dressing missing data in education remains limited. 

Educational data is often presented in tabular formats [6], including 

numerical data such as scores and attendance. However, the effec-

tiveness of data imputation techniques in handling missing data in 

structured tabular datasets presents unique complexities due to het-

erogeneous relationships [6]. 

In educational data mining (EDM) research, historical data is cru-

cial in predicting or correlating student performance [10] [11]. 

However, missing data can present challenges when building accu-

rate predictive models.  

Deep generative models, including Tabular Variational Autoencod-

ers (TVAE) [45], Conditional Tabular Generative Adversarial 

Networks (CTGAN) [45], and Tabular Denoising Diffusion Prob-

abilistic Models (TabDDPM) [28], provide innovative solutions for 

imputing missing values while preserving statistical fidelity and 

feature relationships.  

Furthermore, educational datasets often exhibit a class imbalance 

[19] in the target variable that the models aim to predict, where 

some target classes (e.g., student performance levels) have signifi-

cantly fewer samples than others. This imbalance can bias 

predictive models toward the majority class, leading to suboptimal 

performance in predicting the minority class [13].  

To address the class imbalance problem, our study introduced 

TabDDPM-SMOTE, which combines TabDDPM with the Syn-

thetic Minority Over-sampling Technique (SMOTE) [16] to 

improve machine learning efficiency. 

Despite these advances, deep learning use for data imputation has 

not been widely explored in education [41]. This study aimed to fill 

this gap by investigating the potential of these models in managing 

missing numerical data and improving the predictive capabilities of 

educational datasets. We proposed two research questions. 

(1) How do different deep generative models perform at imputing 

missing values in educational tabular datasets?  
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(2) How do different deep generative models perform regarding 

machine learning efficiency when their imputed data is used for 

classification tasks? 

Our findings showed that TabDDPM consistently produced im-

puted data that better preserved the original distribution. This was 

evidenced by lower KL divergence and KDE plots that closely 

matched the original data, even at high missing data levels.  

Additionally, TabDDPM-SMOTE could address the class imbal-

ance in the educational dataset and enhance machine learning 

performance, achieving the highest F1 scores compared to other 

deep generative models. These results demonstrated its effective-

ness in reconstructing missing values and preserving essential 

feature relationships, enhancing subsequent predictive analyses' 

overall reliability in EDM. 

The rest of the paper is organized as follows: Section 2 reviews 

related work, Section 3 explains the methodology, Section 4 pre-

sents results, Section 5 discusses findings, and Section 6 concludes 

with a summary. 

2. RELATED WORK 
Missing data poses a significant challenge in data analysis, stem-

ming from various sources such as human error, equipment failure, 

and incomplete responses during data collection [32]. The presence 

of missing data can severely bias analytical results and affect the 

performance of predictive models [14].  

To better understand the causes of missing data and select appro-

priate imputation methods to recover them, researchers relied on 

Rubin’s categorization of missing data mechanisms [36]: Missing 

Completely at Random (MCAR), Missing at Random (MAR), and 

Not Missing at Random (NMAR). MCAR assumes that the miss-

ingness occurs randomly, MAR depends on observed variables, and 

NMAR is determined by unobserved variables, including the miss-

ing data. 

Nijman et al. [33] reviewed 152 papers on clinical prediction mod-

els developed using machine learning methods from 2018 to 2019. 

They found that 36.8% of papers did not adequately report how 

they handled missing data, limiting reproducibility. Despite known 

limitations, 42.7% of the papers used deletion to handle the missing 

data, which introduces bias and overlooks potential data relation-

ships. Only 5% of the papers employed multiple imputations for 

missing data handling. 

Over time, researchers have developed a wide range of imputation 

methods, which can be divided into three groups [40]: conventional 

statistical techniques, machine learning approaches, and advanced 

deep learning methods.  

Statistical methods, such as regression imputation and MICE (Mul-

tiple Imputation by Chained Equations) [43], were commonly used. 

Machine learning approaches, such as K-nearest neighbors (KNN) 

[4] and MissForest [39], have shown flexibility in adapting to dif-

ferent datasets [40].  

Recent progress in deep learning has introduced models like Vari-

ational Autoencoder (VAE) [24] and Generative Adversarial 

Network (GAN) [17]. These methods utilize neural networks to 

model complex data distributions and impute missing values more 

precisely [40] [3]. 

Recent developments, such as Denoising Diffusion Probabilistic 

Models (DDPM) [18], have expanded the landscape of deep learn-

ing methods for data imputation. DDPM showed promise in 

imputing complex datasets while preserving the statistical relation-

ships among variables.  

However, despite these advances, the use of deep learning for data 

imputation remains relatively limited. A systematic review [41] ex-

amined 117 papers from 2010 to 2020 and found that only 6% of 

missing data imputation research used deep learning methods, sug-

gesting a limited adoption rate in this field. 

This gap is even more pronounced in educational research. Another 

review [3] examined papers on imputation research published be-

tween 2017 and 2024 and found that only two addressed imputation 

in education. Specifically, Khanani and Lawson [23] employed 

Predictive Mean Matching (PMM) [26] for educational data, while 

Omar et al. [21] used traditional machine learning methods like de-

cision trees [35] and random forests [5]. None of these papers 

explored deep learning models, highlighting a significant oppor-

tunity to apply deep learning imputation approaches in education. 

Given the constraints of current studies, a thorough comparison of 

state-of-the-art deep generative imputation models is needed. By 

exploring these models, our study fills the research gap in applying 

deep learning models to educational missing data imputation, lead-

ing to more accurate and reliable analyses in the field. 

3. METHODOLOGY 

3.1 Original Dataset 
Our study utilized the Open University Learning Analytics Dataset 

(OULAD) [30] related to STEM online courses. We randomly se-

lected a course labeled CCC, which comprises 1,936 records. The 

dataset includes 22 features categorized into demographic, behav-

ioral, and assessment data, as summarized in Table 1. 

The demographic data (features 1–6) provides information that de-

scribes the students. Feature 1 is gender, with 0 indicating male and 

1 indicating female. Feature 2 represents the highest level of edu-

cation, with values normalized to [0, 0.25, 0.5, 0.75, 1] 

corresponding to no qualification, below A-levels, A-levels, higher 

education, and postgraduate, respectively. Feature 3, age, is divided 

into three categories: 0 for 0–35 years, 0.5 for 35–55 years, and 1 

for 55 years or older. Feature 4 reflects studied credits, scaled from 

0 to 1. Feature 5 indicates disability status, where 0 means no and 

1 means yes. Feature 6 counts the number of previous attempts at 

the course, providing insight into each student’s academic history. 

The behavioral data (features 7–14) capture interaction information 

from the online course. Specifically, these features record the nor-

malized number of clicks during eight assessments, measuring 

student engagement across various components of the course. 

The assessment data (features 15–22) contain the normalized scores 

from eight assessments. The original scores, which range from 0 to 

100, have been scaled to values between 0 and 1 to facilitate direct 

comparisons. 

The target variable represents the final course outcome, with 1 sig-

nifying a passing grade and 0 indicating a failing grade. This binary 

variable was mainly used to evaluate machine learning perfor-

mance in assessing the quality of imputed data for classification 

tasks. 
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Table 1. Features and Target Variable in the OULAD Dataset 

ID Type Features Value Description 

1 

Demographic 

Data 

Gender [0, 1] 
0: Male 

1: Female 

2 Highest education level [0, 0.25, 0.5, 0.75, 1] 

0: No qualification 

0.25: Below A-levels 

0.5: A-levels 

0.75: Higher education 

1: Postgraduate  

3 Age [0, 0.5, 1] 

0: 0-35 years 

0.5: 35-55 years 

1: 55 years or above 

4 Studied credits [0, 1] Normalized from credits to [0, 1] 

5 Disability [0, 1] 
0: No 

1: Yes 

6 

Number of times the stu-

dent has attempted this 

course 

[0 – 1] Normalized from original number 0 to N to [0 – 1] 

7–14 
Behavioral 

Data 

Clicks across eight as-

sessments 
[0 – 1] Normalized from original count 0 to N to [0 – 1] 

15–22 
Assessment 

Data 

Scores across eight as-

sessments 
[0 – 1] Normalized from original scores of 0-100 to [0 – 1] 

23 
Target  

Variable 
Final grade in the course [0, 1] 

0: Fail 

1: Pass 

 

3.2 Data Normalization 
Since the original value ranges of features 6–22 are various, this 

study applied the Min-max scaler, a technique frequently adopted 

in EDM, to normalize the data to the continuous value ranging from 

0 to 1.  

The scaling process was performed using Equation 1, where 𝑅𝑚𝑎𝑥 

and 𝑅𝑚𝑖𝑛 denote the maximum and minimum values of a given fea-

ture. 𝑅′ represents a continuous value ranging from 0 to 1. 

𝑅′ =
𝑅− 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
 ∈ [0 − 1]       (1) 

This normalization step ensures that all numerical features remain 

within a comparable scale and prevents features with larger ranges 

from disproportionately influencing model training.  

3.3 Datasets with Missing Data 
We generated four datasets with varying levels of missing data. 

Subsequently, we utilized them to create tabular numerical imputa-

tion data using various deep generative models.  

First, we used a chi-square test [47] to identify the four most sig-

nificant features (assessment scores 5–8). These features were 

selected to introduce missing data due to their high predictive im-

portance to the final grade in the OULAD dataset. 

We randomly deleted 20%, 40%, 60%, and 80% of the data in the 

assessment scores 5–8 to create four datasets with increasing levels 

of missing data. The missing data was limited to these selected fea-

tures (assessment scores 5–8), while all other features 

(demographic, behavioral, and assessment scores 1–4) and the tar-

get variable (final grade) remained unchanged. 

This controlled design allows for a systematic comparison of im-

putation techniques across varying levels of missing data while 

preserving the consistency of the dataset for reliable analysis. 

3.4 Missingness Mechanism 
Missing values were introduced by randomly deleting entries from 

selected important features (assessment scores 5–8). This setup ap-

proximated a MAR [36] mechanism, where random missingness 

depended on observed feature selection rather than completely ran-

dom across all features.  

3.5 Deep Generative Models 
This study imputed the missing data using state-of-the-art deep 

generative models, TVAE [45], CTGAN [45], and TabDDPM [28]. 

These methods were selected because they are tailored to handle 

tabular data and have limited educational research applications [41]. 

We also propose TabDDPM-SMOTE to enhance machine learning 

efficiency. 

3.5.1 TVAE 
The TVAE [45] is a probabilistic model that extends the VAE 

framework [24] to capture the tabular data distribution. It consists 

of an encoder network that maps input data 𝑥 into a latent space 

representation 𝑧 and a decoder network that reconstructs the origi-

nal input from this latent representation. By leveraging this 

structure, the TVAE captured the dependencies in tabular datasets.  

In deep generative models, the loss function quantifies how well 

the model learns to generate data similar to the original [37]. A 

lower loss indicates better reconstruction and a more accurate 

learned distribution. The TVAE loss function was defined as Equa-

tion 2. 

𝐿TVAE = 𝔼𝑞𝜙(𝑧∣𝑥)[−log 𝑝𝜃(𝑥 ∣ 𝑧)] + 𝛽 ⋅ 𝐷KL(𝑞𝜙(𝑧 ∣ 𝑥) ∥ 𝑝𝜃(𝑧)) (2) 

where 𝑞𝜙(𝑧 ∣ 𝑥) represents the approximate posterior distribution of 

the latent variable 𝑧 given the observed data 𝑥, which the encoder 

network learns. The term 𝑝𝜃(𝑥 ∣ 𝑧) denotes the probability of recon-

structing 𝑥 given the latent representation 𝑧, as modeled by the 

decoder. 
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The first term, 𝔼𝑞𝜙(𝑧∣𝑥)[−log 𝑝𝜃(𝑥 ∣ 𝑧)], represents the reconstructed 

data's expected negative log-probability, quantifying the recon-

struction error. The second term, 𝐷KL(𝑞𝜙(𝑧 ∣ 𝑥) ∥ 𝑝𝜃(𝑧)), measures 

the Kullback-Leibler (KL) divergence between the approximate 

posterior and the prior distribution 𝑝𝜃(𝑧), which is assumed to fol-

low a standard normal distribution. The parameter 𝛽  is a 

regularization coefficient that balances the trade-off between re-

construction accuracy and the constraint on the latent space. 

3.5.2 CTGAN 
The CTGAN [45] is a generative model for synthesizing tabular 

data with mixed numerical and categorical features. It extends the 

conditional GAN-based model [17] framework by incorporating 

conditional information into the generator and discriminator, ensur-

ing the preservation of feature dependencies and consistency across 

heterogeneous data types. 

Let 𝐺 denote the generator, 𝐷 the discriminator, 𝑧 the input noise 

vector sampled from a prior distribution, and 𝑥 the original data. 

CTGAN introduces a conditional vector 𝑐, which encapsulates con-

textual information to guide the generator and discriminator.  

The loss functions for the generator and discriminator are defined 

as Equations 3 and 4. 

𝐿𝐺 = 𝔼[log (𝐷(𝐺(𝑧 ∣ 𝑐)))]    (3) 

𝐿𝐷 = 𝔼[log(𝐷( 𝑥 ∣ 𝑐 ))] + 𝔼[log (1 − 𝐷(𝐺(𝑧 ∣ 𝑐)))] (4) 

where 𝐷(𝐺(𝑧 ∣ 𝑐)) represents the probability the discriminator as-

signs to an imputed sample and 𝐷( 𝑥 ∣ 𝑐 ) denotes the probability 

assigned to an original sample, both conditioned on the conditional 

vector 𝑐. 

In Equation 3, the generator loss 𝐿𝐺  is formulated as 

𝔼[log (𝐷(𝐺(𝑧 ∣ 𝑐)))], which represents the expected log-probabil-

ity output by the discriminator when evaluating imputed samples. 

The generator is trained to maximize this expectation, making the 

imputed data as indistinguishable as possible from the original data. 

Formally, 𝐺(𝑧 ∣ 𝑐) denotes the imputed data produced by the gen-

erator, conditioned on 𝑐, ensuring that the imputed data follows the 

statistical dependencies of the original dataset. 

Equation 4 defines the discriminator loss 𝐿𝐷, which consists of two 

components. The first term, 𝔼[log(𝐷( 𝑥 ∣ 𝑐 ))], represents the ex-

pected log-probability assigned by the discriminator to an original 

data, reinforcing its ability to classify real data correctly. The sec-

ond term, 𝔼[log (1 − 𝐷(𝐺(𝑧 ∣ 𝑐)))], accounts for the expected log-

probability assigned to the imputed data, enhancing the discrimina-

tor’s ability to distinguish synthetic from original data. 

The novelty of CTGAN is its conditioning of both the generator 

and discriminator on additional context to address intra-table de-

pendencies. The generator loss is defined to maximize the 

discriminator’s output for generated samples, while the discrimina-

tor loss aims to accurately distinguish real from fake data. This 

approach allows CTGAN to handle the heterogeneity of tabular 

data. 

3.5.3 TabDDPM 
TabDDPM [28] is a diffusion-based model that applies the DDPM 

framework [18] to tabular data. It effectively handles mixed data 

types using Gaussian diffusion for continuous features and multi-

nomial diffusion for categorical features.  

This model operates in two stages: forward noising and reverse de-

noising processes. In the forward process, noise is gradually added 

to the original data 𝑥0 over 𝑡 timesteps, transforming it into a fully 

noisy representation 𝑥𝑡 . The reverse process then iteratively re-

moves noise, generating imputed samples that follow the statistical 

distribution of the original data. 

Additionally, it optimizes noise scheduling specific to each feature 

type, contributing to its efficacy in high-dimensional and heteroge-

neous tabular datasets. 

The total loss of TabDDPM is a combination of Gaussian diffusion 

loss for continuous features and averaged multinomial diffusion 

losses across categorical features, as shown in Equation 5. 

𝐿TabDDPM = 𝐿Gaussian +
1

𝐶
∑ 𝐿Multinomial 

𝑖𝐶

𝑖=1
 (5) 

where 𝐶 represents the number of categorical features. The first 

term, 𝐿Gaussian , accounts for the loss associated with continuous 

features, while the second term, 𝐿Multinomial 
𝑖 , handles categorical 

features by averaging losses across all categorical variables. 

𝐿Gaussian = 𝔼𝑥0,𝜖,𝑡[∥ 𝜖 − 𝜖𝜃(𝑥𝑡 , 𝑡) ∥2
2]  (6) 

The Gaussian diffusion loss function is shown in Equation 6, where 

𝑥𝑡 represents the noisy data sample at timestep 𝑡, and 𝜖𝜃(𝑥𝑡, 𝑡) is 

the predicted noise at that timestep, learned by a neural network 

parameterized by 𝜃. The term 𝜖 denotes the true noise added during 

the forward process, and the loss is computed as ∥ 𝜖 − 𝜖𝜃(𝑥𝑡, 𝑡) ∥2
2, 

corresponding to the Mean Squared Error (MSE) between the pre-

dicted and actual noise. This formulation ensures a smooth and 

stable training process. 

TabDDPM uses a multilayer perceptron (MLP) with two hidden 

layers of size 128, a dropout rate of 0.1, and a time embedding di-

mension of 128 to parameterize the reverse process. 

The training process involves optimizing the MLP using the Adam 

optimizer [25] with a learning rate of 10-3. The dataset is split into 

training and test sets with an 80:20 ratio. The model is trained for 

up to 300 epochs using a batch size of 128.  

During training, the model processes mini-batches of data at each 

epoch. The loss computed as MSE between predicted and actual 

target values is used to update parameters. Early stopping is applied 

based on test loss, terminating training if no improvement is seen 

after 15 epochs, or if both training and test losses are sufficiently 

small and close. This setup helps ensure stable training and avoids 

overfitting. 

3.5.4 TabDDPM-SMOTE 
Our study introduced TabDDPM-SMOTE, an extension of 

TabDDPM that includes SMOTE [16]. SMOTE can address the 

class imbalance in educational datasets [12] [9]. This extension fur-

ther enhances predictive modeling performance with imputed data. 

Educational datasets are often imbalanced data. For example, in a 

dataset of student graduation grades, the Excellent category might 

include only below 10% of the data, while the Average category 

makes up 40% [2]. A significant class imbalance can bias the model 

toward predicting the majority class when using machine learning 

to predict student grades [13]. 

In our used OULAD dataset, the target variable (final grade) distri-

bution is 663:1273 (pass-fail), which is imbalanced and may bias 

model performance toward the majority group. 

Specifically, TabDDPM-SMOTE first imputes missing values us-

ing TabDDPM, then applies SMOTE to generate additional 

samples for minority classes and balance the class distribution. The 
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imputed samples are generated based on the k-nearest neighbors of 

each minority class instance. Given a feature vector 𝑥𝑖 and one of 

its 𝑘-nearest neighbors 𝑥𝑛𝑛, a new imputed instance 𝑥𝑠 is computed 

as Equation 7.  

𝑥𝑠 = 𝑥𝑖 + 𝑔𝑎𝑝 (𝑥𝑛𝑛 − 𝑥𝑖)       (7) 

where gap is a random number drawn between 0 and 1, ensuring 

that the imputed sample is positioned on the linear interpolation be-

tween the original sample and its selected nearest neighbor. 

SMOTE continuously generates synthetic samples for the minority 

class by interpolating between an original instance and a randomly 

chosen neighbor from its 𝑘-nearest neighbors. This process repeats 

until the required number of synthetic samples is created.  

Moreover, we employed hyperparameter optimization [46] to de-

termine optimal model settings. By combining TabDDPM’s 

generative capability with SMOTE’s ability to handle imbalanced 

data, TabDDPM-SMOTE provided an innovative approach that re-

tains TabDDPM’s generative capability while enhancing its 

balance on minority class patterns in educational data. 

3.6 Datasets with Imputed Data 
Our study utilized the educational data in the OULAD dataset to 

impute missing numerical scores for assessments 5-8 (ranging from 

0 to 1). We applied the deep generative models to four datasets con-

taining 20%, 40%, 60%, and 80% missing data in these assessment 

scores. 

Specifically, deep generative models were trained to capture rela-

tionships between three types of features: demographic information 

(gender, education level, age, credits, disability status, previous at-

tempts), behavioral data (click counts across assessments), and 

available assessment scores (completed assessments 1-4 scores and 

partial original for assessments 5-8 scores).  

This facilitated the imputation of the missing assessment 5-8 scores. 

Finally, each model produced four imputed datasets. 

3.7 Model Training Configurations 
The deep learning models were implemented using Python with 

PyTorch. Each model was trained for 300 epochs with a batch size 

of 128.  

Moreover, an early stopping criterion was implemented to mitigate 

overfitting, monitor validation loss, and terminate training when no 

substantial improvement was observed over consecutive epochs. 

3.8 Evaluation Measure  
We utilized KL divergence [29] and Kernel Density Estimation 

(KDE) plots [8] to evaluate the imputation performance of TVAE, 

CTGAN, and TabDDPM. Afterward, we assessed machine learn-

ing efficiency on all models, including our proposed TabDDPM-

SMOTE. 

3.8.1 KL Divergence 
This study used the KL divergence to quantitatively measure how 
the imputed probability distribution generated by the deep gener-
ative model deviates from the original distribution. It is defined as 
Equation 8. 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑖)log
𝑖

 
𝑃(𝑖)

𝑄(𝑖)
   (8) 

where 𝑃(𝑖) and 𝑄(𝑖) represent the discretized densities of the orig-

inal and imputed data, respectively. Lower KL divergence indicates 

that the imputed data is closer to the original distribution, reflecting 

better imputation quality. 

3.8.2 KDE Plots 
KDE plots visually represent the probability density for continuous 

variables, making them an effective tool for comparing the distri-

butions of imputed and original data.  

This study used KDE plots to assess how well the imputed values 

from TVAE, CTGAN, and TabDDPM align with the original data 

distribution. A more significant overlap between the KDE plots of 

the original and imputed data signifies better imputation perfor-

mance, demonstrating the models' ability to capture the underlying 

data structure. 

3.8.3 Machine Learning Efficiency 
Machine learning efficiency was evaluated through the perfor-

mance of imputed data in classification tasks [45]. Each deep 

generative model’s imputed datasets were used to train an XGBoost 

(XGB) classifier [7] to predict student pass/fail outcomes. 

To maintain consistent conditions, 80% of the data was used for 

training, and 20% for testing. Additionally, 10-fold cross-validation 

[27] was applied within the training set to enhance the robustness 

of the model evaluation. 

Predictive performance was measured using the F1-score, which is 

widely used for evaluating classification tasks [10]. The formula of 

the F1-score is defined as Equation 9. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (9) 

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 represents the proportion of correctly predicted 

positive instances among all predicted positives, while 𝑅𝑒𝑐𝑎𝑙𝑙 
quantifies the proportion of actual positives correctly identified by 

the model. The F1-score combines both, providing a reliable meas-

ure of classification performance.  

Higher F1 scores indicate that the imputed data retains the mean-

ingful relationships present in the original data, reflecting its quality 

and utility for machine-learning tasks. 

4. RESULTS 

4.1 KL Divergence Comparison 
This study used KL divergence to evaluate how closely TVAE, 

CTGAN, and TabDDPM generated the imputed data. 

Table 2 and Figure 1 present the KL divergence results for assess-

ment 8's score data. Similar imputation performance trends were 

observed in the imputed data of assessments 5–7, reinforcing the 

consistency of the models' behavior. 

In the dataset with 80% original and 20% imputed data, TVAE 

achieved the lowest KL divergence (0.8718), demonstrating strong 

alignment. However, as the proportion of generated data increased, 

TabDDPM consistently outperformed the other models.  

In the 40% imputed dataset, TabDDPM's KL divergence was sig-

nificantly lower (0.2868) than TVAE (0.8295) and CTGAN 

(1.3905). This trend continued in the 60% imputed dataset, with 

TabDDPM maintaining a lower KL divergence (0.2389). 

In the most challenging scenario, with the 80% imputed dataset, 

TabDDPM still exhibited the best performance (0.3836). TVAE 

(1.6833) and CTGAN (0.6060) showed considerable increases in 

KL divergence, indicating a decline in imputation quality as the 

proportion of generated data increased. 
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These results highlight TabDDPM's robustness in handling varying 

levels of missing data while preserving the underlying data distri-

bution.  

TVAE was competitive in scenarios with lower missing data (20% 

imputed dataset) but faced challenges as the proportion of imputed 

data increased. CTGAN consistently showed higher divergence, 

suggesting less effective imputation capabilities than the other 

models. 

Table 2. KL Divergence Comparison  

Model 
80% Original  

+20% Imputed 

60% Original  

+40% Imputed 

40% Original  

+60% Imputed 

20% Original  

+80% Imputed 

TVAE 0.8718* 0.8295 1.0024 1.6833 

CTGAN 1.3551 1.3905 0.4567 0.6060 

TabDDPM 1.0662 0.2868* 0.2389* 0.3836* 

*Asterisks indicate the best values in each imputed dataset  

Figure 1. KL Divergence Comparison Diagram 

 

Figure 2. Comparison of KDE Plots of Deep Generative Models for the Score Data of Assessment 8 
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4.2 KDE Plots Comparison 
KDE plots visually compared the probability density for the score 

data of assessment 8 between the original (blue area) and imputed 

data (magenta area). Figure 2 illustrates how closely the imputed 

data from TVAE, CTGAN, and TabDDPM aligned with the origi-

nal data distribution as the proportion of imputed data increased. 

TVAE showed strong alignment at 80% original and 20% imputed 

dataset. However, its ability to capture the full distribution declined 

as the proportion of original data decreased, with noticeable devia-

tions in the tail regions in the 80% imputed dataset. 

CTGAN faced challenges consistently aligning with the original 

data, with discrepancies around the peaks and tails even at lower 

missing data levels (20% and 40% imputed datasets). Despite slight 

intermediate-level improvement, CTGAN's performance deterio-

rated as the proportion of imputed data increased, revealing 

instability in capturing the underlying distribution. 

TabDDPM exhibited the best performance across most scenarios. 

At 40% and 60% of imputed datasets, TabDDPM's KDE plots sig-

nificantly overlapped with the original data, effectively capturing 

both peaks and tails. Even at an 80% imputed dataset, TabDDPM 

maintained better alignment than TVAE and CTGAN, preserving 

the original data's underlying structure despite increasing missing 

data. 

The KDE plots confirmed the trends observed in the KL divergence 

analysis. These results highlighted TabDDPM's strength in accu-

rately imputing missing values while preserving the overall data 

distribution. 

4.3 Machine Learning Efficiency Comparison 
To verify the quality of the four datasets containing different pro-

portions of imputed data, we applied an XGB model to evaluate a 

binary classification problem.  

We used demographic, behavioral, and assessment scores (includ-

ing imputed data from assessments 5–8) as the input features to 

predict the target variable (final grade).  

The F1-score of the entirely original dataset was 0.9320, which was 

used as the comparison baseline. 

Table 3. Machine Learning Efficiency of XGB 

Model 
80% Original  

+20% Imputed 

60% Original  

+40% Imputed 

40% Original  

+60% Imputed 

20% Original  

+80% Imputed 

TVAE 0.9147 0.9178 0.9078 0.9226 

CTGAN 0.9110 0.9122 0.9164 0.9338 

TabDDPM 0.9310 0.9252 0.9278 0.9428 

TabDDPM

-SMOTE 
0.9324* 0.9257* 0.9333* 0.9435* 

*Asterisks indicate the highest values in each imputed dataset 

Table 3 presents the results of machine learning efficiency. When 

using 80% original data and 20% imputed data, TabDDPM main-

tained a high F1 Score (0.9310), only slightly below the 

performance of the entirely original dataset (0.9320). This reflects 

its ability to preserve data quality with a small proportion of im-

puted data. TabDDPM-SMOTE further improved (0.9324) upon 

this, surpassing the original dataset. In contrast, TVAE (0.9147) 

and CTGAN (0.9110) achieved lower F1 Scores. 

At the 40% imputed dataset, TVAE (0.9178) and CTGAN (0.9122) 

showed improved F1-scores, while TabDDPM (0.9252) and 

TabDDPM-SMOTE (0.9257) experienced a slight decline. How-

ever, TabDDPM-SMOTE remained the best-performing model, 

effectively handling class imbalance. 

In the scenario with 60% imputed data, TVAE showed a slight drop 

(0.9078), whereas CTGAN improved further (0.9164). TabDDPM 

also increased (0.9278), reaffirming its stability in handling higher 

proportions of generated data. Again, TabDDPM-SMOTE outper-

formed all other models, achieving the best F1-score (0.9333). 

In the most challenging case, with 80% imputed data, all three deep 

generative models achieved their highest F1 Scores. TVAE reached 

0.9226, and CTGAN peaked at 0.9338. TabDDPM outperformed 

the others with an F1 Score of 0.9428, highlighting its ability to 

generate high-quality data even with a high level of missing data. 

TabDDPM-SMOTE further improved TabDDPM's performance, 

achieving the highest F1 Score of 0.9435, demonstrating the effec-

tiveness of combining TabDDPM with SMOTE for handling class 

imbalance in educational datasets. 

 

Figure 3. Machine Learning Efficiency Comparison 

Figure 3 further supports these results, showing the trends in per-

formance across different imputed ratios. TabDDPM and 

TabDDPM-SMOTE demonstrate a more stable performance, with 

clear improvements as the proportion of imputed data increases. 

The upward trend of TabDDPM-SMOTE across all imputation lev-

els suggests that it not only preserves but enhances data utility, 

particularly when dealing with a high percentage of missing values. 

Overall, while TVAE and CTGAN showed fluctuations in perfor-

mance, TabDDPM consistently delivered strong results. Our 

proposed TabDDPM-SMOTE model exhibited the best perfor-

mance across all scenarios of different missing data levels, 

showcasing its ability to address class imbalance in EDM. 

5. RESULTS 

5.1 RQ1: How do different deep generative 

models perform at imputing missing val-

ues in educational tabular datasets? 
The experimental results demonstrated that the three deep genera-

tive models, TVAE, CTGAN, and TabDDPM, performed 

differently in imputing tabular numerical missing data in the OU-

LAD educational dataset.  

Using the score data of assessment 8 as an illustrative example, the 

KL divergence comparison and KDE plots provided valuable in-

sights into the models' abilities to capture the original data 

distribution and generate imputed values. 

Regarding KL divergence, TabDDPM consistently outperformed 

TVAE and CTGAN significantly as the proportion of missing data 

increased. While TVAE showed strong alignment with the original 

data at lower missing data levels, its performance declined as the 
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imputed data proportion grew. On the other hand, CTGAN encoun-

tered challenges in aligning with the original data distribution 

across all missing data levels, as evidenced by its higher KL diver-

gence values. 

The KDE plots further supported these findings, visually illustrat-

ing the models' capabilities in capturing the probability density. 

TabDDPM maintained strong alignment with the original data dis-

tribution, effectively capturing the peaks and tails even at high 

levels of missing data. TVAE performed well at lower missing data 

levels but faced the challenge of maintaining this alignment as the 

generated data proportion increased. CTGAN faced difficulty con-

sistently reproducing the original distribution. 

The consistent results from KL divergence and KDE plots con-

firmed their ability to effectively evaluate the imputation 

performance of deep generative models on educational data. Com-

bining these complementary measures allows for a comprehensive 

understanding of the models' capabilities in capturing data charac-

teristics and distributions. 

These results highlighted TabDDPM's effectiveness in imputing 

educational missing data. Its strong performance can be attributed 

to its diffusion-based modeling approach, which effectively incor-

porates Gaussian diffusion for continuous features and multinomial 

diffusion for categorical features.  

This approach enables TabDDPM to handle the mixed data types 

prevalent in educational datasets, capturing the complex relation-

ships and dependencies within the data. 

5.2 RQ2: How do different deep generative 

models perform regarding machine learn-

ing efficiency when their imputed data is 

used for classification tasks? 
Our experimental results demonstrated the remarkable potential of 

deep generative models in enhancing machine learning efficiency 

for classification tasks in educational datasets.  

Among the TVAE, CTGAN, TabDDPM, and TabDDPM-SMOTE 

models, TabDDPM-SMOTE consistently exhibited the best F1-

scores across all scenarios and even achieved the highest F1-score 

compared to the original dataset.  

This outstanding performance can be attributed to TabDDPM's dif-

fusion-based modeling approach and the incorporation of SMOTE, 

which showcased its ability to generate high-quality data efficiently 

utilized by XGB for classification tasks and effectively addresses 

the class imbalance prevalent in educational datasets. 

Interestingly, the models achieved higher F1-scores when using da-

tasets with more imputed data. For example, the F1-scores of most 

models were higher when using the dataset with 80% imputed data 

compared to the 20% imputed data. Moreover, CTGAN (0.9338), 

TabDDPM (0.9428), and TabDDPM-SMOTE (0.9435) achieved 

even better F1-scores with the 80% imputed dataset than the en-

tirely original dataset (0.9320). This result may be attributed to the 

deep learning models' ability to generate data that reduces the pres-

ence of outliers in educational datasets, thereby improving data 

quality. However, further investigation is needed to understand 

these underlying mechanisms better. 

This result indicated that the deep generative models could success-

fully capture relationships between demographic, behavioral, and 

partial assessment data and effectively impute the missing assess-

ment scores. 

6. CONCLUSION 
This study provided a comprehensive comparison of deep genera-

tive models, including VAE-based (TVAE), GAN-based (CTGAN), 

and diffusion-based (TabDDPM, TabDDPM-SMOTE) for imput-

ing numerical missing data in an educational dataset. 

The findings showed that TabDDPM generally excelled in captur-

ing the original data distribution while preserving essential features, 

especially under high missing data levels. Moreover, the KL diver-

gence and KDE plots indicated that TabDDPM maintained closer 

alignment with the original data.  

Notably, our proposed TabDDPM-SMOTE model consistently 

demonstrated the best machine learning efficiency across all sce-

narios, achieving the highest F1 Score and even outperforming the 

entirely original dataset.  

In the educational context, these models successfully captured the 

underlying data distribution of student performance by learning the 

complex relationships between different educational features. This 

enabled them to generate realistic imputations for missing assess-

ment scores. 

This study filled the research gap in applying deep learning to edu-

cational data imputation by examining the performance of 

advanced generative methods on educational data. It presents the 

potential to improve subsequent analyses, particularly the strong 

performance of our proposed TabDDPM-SMOTE model. 

Future research could extend this work by evaluating these deep 

generative models, especially TabDDPM-SMOTE, across different 

educational datasets, including larger datasets or educational con-

texts such as K-12 education.  

Such broader applications would help establish more generalizable 

findings about the effectiveness of these imputation approaches in 

EDM.  
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