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ABSTRACT
The increasing use of complex machine learning models in
education has led to concerns about their interpretability,
which in turn has spurred interest in developing explainability
techniques that are both faithful to the model’s inner work-
ings and intelligible to human end-users. In this paper, we
describe a novel approach to creating a neural-network-based
behavior detection model that is interpretable by design. Our
model is fully interpretable, meaning that the parameters we
extract for our explanations have a clear interpretation, fully
capture the model’s learned knowledge about the learner
behavior of interest, and can be used to create explanations
that are both faithful and intelligible. We achieve this by
implementing a series of constraints to the model that both
simplify its inference process and bring it closer to a hu-
man conception of the task at hand. We train the model
to detect gaming-the-system behavior, evaluate its perfor-
mance on this task, and compare its learned patterns to
those identified by human experts. Our results show that
the model is successfully able to learn patterns indicative
of gaming-the-system behavior while providing evidence for
fully interpretable explanations. We discuss the implications
of our approach and suggest ways to evaluate explainability
using a human-grounded approach.

Keywords
Explainable AI, model transparency, interpretable neural
networks

1. INTRODUCTION
The field of education, as with many other areas of research,
has continued to see an increasing use of complex machine
learning models as these have become more powerful and
versatile over the years. However, as these models have
grown in complexity, they have also become more difficult to
interpret, leading to concerns around fairness, accountability,
and trust [8], while also obscuring pedagogical insights that
could improve learning outcomes among students.

There has been significant interest in tackling these issues
within the eXplainable AI (XAI) community, with a grow-
ing group of educational data mining (EDM) researchers
focusing on the implications and possible solutions to the
problems arising from highly complex models (as evidenced
by workshops specializing on XAI in education [21]). There
is growing awareness of the inherent limitations of post-hoc
explainability techniques (i.e. generating explanations, typ-
ically feature importance measures, based on analyses of a
model’s inputs and outputs) which may often make them
unsuitable for use in educational settings.

In this paper, we describe a novel approach to training a
neural-network-based behavior detection model (more specif-
ically, a convolutional neural network) that is interpretable
by design [28]. Our model is fully interpretable, by which we
mean that the parameters we extract for our explanations
(1) have a clear interpretation, (2) fully capture the model’s
learned knowledge about the learner behavior of interest, and
(3) can be used to create explanations that are both faithful
and intelligible. We achieve this by implementing a series
of constraints to the model that both simplify its inference
process and bring it closer to a human conception of the task
at hand.

We specifically focus on the detection of gaming-the-system
behavior, a type of learner disengagement with an educational
task. We chose this due to the existence of previous expert-
based features and models [17] that serve as a baseline of
both accuracy and interpretability. We also chose to use a
deep learning model due to their rising popularity among
EDM researchers and the difficulty of faithfully interpreting
their decision-making process [19].

Our research is guided by the following questions:

1. Can we train a convolutional neural network to detect
gaming-the-system behavior with convolutional filters
acting as explicit behavioral patterns?

2. Can we alter the model’s architecture so that the pat-
terns are the only learnable parameters?

3. How can we create a differentiable perfect matching
function that allows the model to definitively indicate
a match or non-match based on the presence of any
exact filter match to the input?

4. How do the patterns learned by our model compare to
those identified by human experts?
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5. How can we evaluate the interpretability of our model’s
explanations?

2. BACKGROUND
2.1 Intrinsically interpretable models
The literature abounds with descriptions of the differences
between models that are intrinsically interpretable and those
that are opaque (often referred to as “black-box models”) [11,
10]. Yet fundamentally, any model’s interpretability must
be judged by the interpretability of the explanations derived
from it [23, 20]. These explanations can be derived from one
of two sources: the model’s inner workings themselves (e.g.
its parameters or gradients) or via post-hoc techniques that
use simplified approximations based on the model’s inputs
and outputs alone (such as LIME [22] or SHAP [12]).

With this understanding, [23] has proposed defining an ex-
planation as the output of an interpretation function being
performed on a piece of evidence. Evidence, in this context,
refers to direct aspects of the model’s workings, which can be
extracted from any combination of its parameters, gradients,
inputs, and outputs. A piece of evidence in itself carries no
semantic significance—this can only be added by an interpre-
tation function. The interpretation function describes how
the model makes use of the evidence. By this definition, an
explanation is therefore an inference made from interpreting
specific evidence.

An important concept that [23] introduce is that of explana-
tory potential. This is the extent to which a specific set of
evidences accounts for the whole of the model’s predictions.
In other words, using a subset of a model’s parameters to
create an explanation may be sufficient to explain a portion
of the transformations that the input goes through to reach
the output, say 70%, but it may not provide a complete
picture. Of course, a model does not typically use each pa-
rameter equally when making predictions, so the explanatory
potential of each individual piece of evidence (along with
their interactions) may vary.

It should be noted that explanatory potential as defined
by [23] pertains only to a set of evidences. It is the upper
limit of the extent to which an explanation derived from
it can account for the model’s predictions, but an expla-
nation also depends on an accurate interpretation function.
Interpretations can be particularly challenging to identify
given sufficiently complex transformations. Furthermore,
even when derived from sound interpretations and a set of
evidences with high explanatory potential, an explanation
may still prove to be too complex for a target audience to
understand. Thus why creating useful explanations must
ultimately be a human-centered endeavor.

With these considerations in mind, the question then arises
of how to evaluate not just an explanation’s potential ex-
plainability, but its actual usefulness in practice.

2.2 Evaluating explainability
Predictive and inferential models are typically evaluated pri-
marily based on the accuracy of their outputs. Many robust
methods for measuring different aspects of this accuracy
have been devised and validated. It has become clear that

no single accuracy metric captures the full complexity of a
model’s performance, and so a variety of metrics are used
to provide a more complete picture [3, 18]. When it comes
to evaluating explainability, however, there is yet no clear
consensus.

This may be in part due to the subjective nature of explain-
ability. While accuracy can be measured by comparing a
model’s predictions to a ground truth, explainability is a
more abstract concept that depends on the needs and ex-
pectations of one or more end-users [26]. Still, some helpful
frameworks have been proposed to guide the evaluation of
explanations, both theoretical and practical.

2.2.1 Theoretical framework
[20] proposed a theoretical framework that brings together
important elements to consider. They describe two main
criteria through which explanations can be evaluated, with
both as prerequisites for a useful explanation: intelligibility
and faithfulness. Intelligibility refers to the ease with which
a human can understand the explanation (also referred to as
comprehensibility [4]), while faithfulness refers to the extent
to which the explanation accurately reflects the model’s inner
workings. The authors argue that both criteria are necessary
for a useful explanation, since an explanation that is not
intelligible will likely not be used, and an explanation that
is not faithful may be misleading.

As prerequisites to these two criteria, [20] further propose
that an intelligible explanation must be plausible (i.e. it
aligns with human intuition [6]) while a faithful explanation
must be stable (i.e. it does not change drastically with small
perturbations to the model’s input [1]).

These criteria help explain why post-hoc explainability tech-
niques, which are popular due to their ease of use and model-
agnostic nature, are often problematic. Their faithfulness is
difficult to measure with certainty since they rely exclusively
on a model’s inputs and outputs, with no direct access to its
internal evidences, thus treating it precisely like a black box
[24]. Furthermore, while individual post-hoc techniques may
lead to internally stable predictions, different approaches
often produce different explanations for the same model and
inputs [9]. Their appeal is partly due to their ability to
produce plausible and intelligible explanations—but when
coupled with a lack of faithfulness, this may lead to problems
where even experts are unable to decide which explanation
to trust [27].

2.2.2 Practical framework
On the practical side of evaluation, [5] have proposed three
methodological categories, as well as specific approaches, for
evaluating explanations. Each evaluation approach empha-
sizes a different set of criteria [20].

First, application-grounded evaluation involves testing a
model in the real world for the target application for which
it was developed. Approaches in this category can be costly
and time consuming but have high fidelity with the needs
of end-users. For example, learning dashboards are some-
times evaluated based on how well they help instructors
understand their students’ learning and provide help [25, 29].
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Such evaluation methods can effectively measure explanation
intelligibility, but they do not directly measure faithfulness.

Second, human-grounded evaluation involves measuring how
well humans can accurately answer questions about the model
based on its explanation. Examples of the types of experi-
ments in this category include: binary forced choice, where
participants must pick which explanation they consider best
when presented with multiple options (e.g. [27]); forward sim-
ulation, where participants must correctly predict the model’s
output given specific inputs; and counterfactual simulation,
where participants must correctly identify how a specific
input needs to be changed in order to alter the model’s given
output. The latter two approaches in particular can serve
as rigorous tests of the faithfulness of an explanation, while
simultaneously capturing many aspects of intelligibility.

Finally, functionally grounded evaluation involves measuring
some abstract aspects of a model or its explanation that
capture constructs related to interpretability, but without
human involvement. Being the least direct category, such
approaches make it difficult to make robust claims about
either intelligibility or faithfulness, but some measures such
as model sparsity or explanation simplicity [13] can be said
to make proxy measures of intelligibility. They can likewise
be used to measure stability.

The modeling approach we describe in this paper will par-
ticularly emphasize faithfulness. That is, we are interested
in training a model that makes it possible to generate ex-
planations that fully capture the model’s inference process,
all while not becoming overwhelming and thus remaining
intelligible. This is what we refer to as full interpretability.
For this reason, we also aim for explanations that can be eval-
uated using human-grounded methods, especially forward
simulation and counterfactual simulation.

2.3 Interpretable gaming behavior detection
Gaming the system is a well-studied learner behavior in which
learners exploit the properties of a learning environment in
order to succeed at a task, often by guessing or extracting
answers from a support system. Using sequences of five
student-actions from Cognitive Tutor Algebra that were
previously coded for gaming behavior by [2], [17] set out to
create a classification model based on human expert insights.

Through cognitive task analysis—in which an expert in the
behavior of interest reasons through various action sequences
and explains their thinking out loud—[17] were able to iden-
tify a set of features designed to capture elements of students’
problem-solving behavior that experts pay attention to when
looking for gaming-the-system behavior. For example, these
features included whether a student reuses the same answer
in a different part of the problem interface or if the student
enters consecutive similar answers. Each feature is binary,
indicating whether it was observed or not for a given action
step. An action step is a point in time at which data was
collected, and is triggered by the student either making a
submission or asking for a hint.

With iterative input from the expert, they then used these
features to create a set of 13 patterns indicative of gaming-
the-system behavior. Using these patterns as sliding windows

Figure 1: Example expert pattern from cognitive model.

of consecutive actions in each sequence—thus serving as a
cognitive model—the researchers achieved a Cohen’s kappa
of 0.430 on the training data and 0.330 on unseen test data.
Their model was able to outperform a machine learning
model trained on the same data by [2] that achieved a kappa
of 0.218 and AUC of 0.691 on held-out test data (as reported
in [15]).

An example of one of these patterns can be seen in Figure 1.
Each row is a different feature identified via cognitive task
analysis, and each column indicates a student action step.
The pattern is a 3-action sequence. As originally written out,
this pattern is as follows:

help & [searching for bottom-out hint] → incor-
rect → [similar answer] & incorrect

[15] later trained a series of machine learning models using
features that were automatically engineered using the results
of the cognitive task analysis. Their best model, an ensemble
of naive Bayes classifiers, achieved a kappa of 0.376 and AUC
of 0.876 on the same test set. Importantly, they compared the
interpretability of all three models trained and tested on the
same data: the original ML model [2], the cognitive model
[17], and the hybrid approach [15]. Not surprisingly, they
found the cognitive model to be the most interpretable. The
hybrid model that used expert-informed features provided
an interesting middle ground, but the simple expert patterns
that made up the cognitive model proved to be the most
effective for human end-users. The ML model in this case
was the least accurate and interpretable, but it also required
far fewer resources to create.

An analysis of the generalizability of the same 13 expert
patterns explored how their frequency varied across different
student populations and learning environments [14]. They
found that differences in the learning environments were
more strongly associated with differences in gaming behavior
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Figure 2: Model architecture.

than were student populations. A similar study found that
the cognitive model generalized better across learning envi-
ronments than the ML model [16]. This suggests that the
expert patterns identified by cognitive task analysis, while
(not surprisingly) affected by aspects of the data from which
they were generated, are nevertheless robust and can be used
across contexts.

3. METHODS
Rather than relying on post-hoc explainability techniques to
create explanations with questionable faithfulness, we set out
to create a neural-network-based behavior detection model
that is interpretable by design [28]. Furthermore, we aimed
to create a model that is fully interpretable. Such a model
would be able to provide sufficient evidence to lend 100%
explanatory potential while ensuring that this evidence would
have a clear interpretation. We deemed these qualities to be
prerequisites to creating effective explanations that are both
entirely faithful to the model’s inner workings and intelligible
to human end-users.

For this task, we use the same dataset and features as [17] to
train our model for two primary reasons. First, this allows
us to directly compare the accuracy of our model with that
of their cognitive model. Second, it gives us a template for
the types of patterns we would like our model to be able
to create. These patterns serve as the cognitive model’s
explanations—which are both fully faithful, since they make
up the entirety of the cognitive model, and were manually
designed by humans, suggesting a high level of intelligibility—
so we reasoned that they would serve as a useful target for
our own explanations. This also allows us to directly measure
the similarities and differences between our model’s learned
patterns and those identified by human experts.

The dataset consists of sequences of actions from 59 stu-
dents using the Cognitive Tutor Algebra system during an
entire school year. Cognitive Tutor tasks students with
solving multi-step mathematical problems and can provide

on-demand hints. A total of 10,397 clips (i.e., student ac-
tion sequences) were previously labeled by an expert [2]
and contained 708 examples of gaming-the-system behavior
(6.8%).

Our model is purposefully simple, consisting of a single con-
volutional layer followed by a novel layer that we refer to as
a differentiable thresholding fully connected layer (explained
in detail in section 3.2, see also Figure 2). The convolu-
tional layer is designed to learn student patterns indicative
of gaming-the-system behavior and which are similar in form
to those identified by human experts in [17].

For the sake of simplicity, we only use student action se-
quences from the dataset that have a fixed length of 5 action
steps (85% of all sequences). We use the same held-out test
set as [17], consisting of 25% of the data. We further split
the remaining data into a training/validation set using an
80/20 stratified split, using the validation set to tune hy-
perparameters and further refine our learned patterns. The
final sets consist of 5,249 training clips, 1,313 validation clips,
and 2,170 test clips, each with about 6% positively labeled
instances.

Since convolutional filters must have a fixed kernel length
(i.e. number of action steps), we use a kernel length of 3,
corresponding with the most common pattern length iden-
tified by the human expert. Theoretically, the model could
learn patterns with smaller lengths than this, but not longer.
We set the convolutional layer’s padding to 1 to allow the
model to learn shorter patterns on the edges of input action
sequences, and we set the number of filters to 2,048 to allow
the model to learn a wide variety of patterns.

During training, the model contains additional elements, such
as a dropout layer for the outputs of the convolutional layer,
as well as a fully connected layer that acts as a traditional
classifier via a weighted branching architecture, but these
are not used during inference.
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To achieve full interpretability, we followed two atypical
approaches. First, our model architecture is minimalist—
i.e. it avoids any learnable weights outside of the target
patterns contained in the convolutional layer’s filters, such
as bias terms or fully-connected-layer weights. Second, we
introduced a series of constraints to the model’s learning
process that encourage the convolutional weights to follow
certain guidelines. Both of these approaches allow us to
control the amount of inherent flexibility in the model.

Flexibility is key to models that aim to be interpretable
by design. Closely related to the tradeoff between bias
and variance, increased flexibility (which is itself related
to decreased bias) tends to lead to more complex models that
make interpretability more difficult. Thus, our constraints
are designed to decrease flexibility just enough to allow the
model to learn the patterns we are interested in, while still
maintaining a high level of predictive accuracy.

3.1 Loss function constraints
The model was trained using binary cross entropy as its main
loss term. To this were added four regularization terms, each
aimed to constrain the model’s learning in a specific way.
The full loss function is given by:

L = LBCE + γ1Lbin + γ2Lmin + γ3Lsub + γ4Lposs

where LBCE is the main loss term (binary cross entropy loss)
and γi are scaling weights that control the impact of each
regularization term.

All of these constraints specifically affect the weights in the
model’s convolutional layer. Figure 3 visually demonstrates
the impact of each additional constraint on the convolutional
filters. We will now describe each of these regularization
terms in turn.

3.1.1 Binarize convolutional filter weights
The first regularization term constrains the model’s convolu-
tional layer to learn weights very close to 0 or 1 by penalizing
values that deviate from these. Constraining the weights in
this way enables a more straight-forward interpretation of
each filter as a sequential pattern that emulates the binary
presence or absence of specific features per action step. This
binarizing effect can be seen in the difference between the
two left-most filters in Figure 3.

For this constraint, we used the term described in [7] for
multiple concurrent elements:

Lbin =

M∑

p=1

k∑

n=1

d∑

j=1

∣∣W 2
pnj −Wpnj

∣∣

where W ∈ RM×k×d is the weight tensor for the convolution
layer, M is the number of filters (i.e. the number of patterns
to learn), k is the number of action steps, and d is the number
of features.

Note that this approach is not simply a hard thresholding of
the weights (such as rounding) since that would be a non-
differentiable operation—i.e. it would lack a well-defined
derivative, creating complications for the back-propagation
process used to train the model. While the absolute value

Figure 3: Visualization of the effects of increasing constraints
on the model’s convolutional filters.

function in our regularization term is also non-differentiable
at exactly 0, it remains differentiable for every other case,
allowing the model to learn via gradient descent.

3.1.2 Minimize positive weights per action step
An additional regularization term places a penalty on action
steps that have a high number of positive weights. We
introduced this term to encourage the model to focus only
on the most relevant features per action step. We reasoned
that having fewer activated features would also improve
intelligibility by reducing cognitive load at explanation time.

The impact of this constraint can be seen in Figure 3: there
are far fewer positive features in the third filter from the left
compared to the second. Note that the weights in both of
these example filters are already binarized.

To achieve this, we added the following term to the loss
function:

Lmin =

M∑

p=1

k∑

n=1

ReLU(r(a−wpn) − b)

where r controls the penalty rate, a sets the number of
activated features at which the penalty begins to be applied,
and b is a bias that further accelerates the penalty rate.
These hyperparameters were set during tuning.

3.1.3 Force single submission type
In our dataset, every student action step has one submission
type attached, whether a request for help in the form of a
next-step hint, a correct attempt, or an incorrect attempt.
Consequently, we introduced a regularization term to ensure
that the model learns at most one submission type per action
step.

Note that this is slightly simplified from the original features
described in [17], which used two separate incorrect attempt
labels: wrong and bug. Some of the expert patterns also use
attempt to indicate any submission type that is not help. We
removed this feature to simplify the submission types—all
expert patterns that used it also included a non-help-related
feature in the same action step, making it unnecessary.
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The regularization term we used to enforce this constraint is:

Lsub = ReLU(spn − 1)

where spn refers to a squashed vector of a slice of Wpnj across
dimension j—similar to the penalty term to minimize the
number of positive weights as described above, but using
only the features that correspond to submission types.

Figure 3 again shows the impact of this regularization term.
The fourth filter from the left (where this constraint has been
introduced) contains at most one positive submission type
per action step (column), unlike those to its left which don’t
have this constraint.

3.1.4 Ensure possible feature combinations
Our final regularization term encourages the model to learn
only positive weights in one of two feature sets for any single
action step. For example, the nature of our feature set makes
it so that the first five features are help-related features, so
they can only be positive when the submission type is help
(third feature from the bottom in the filters visualized in
Figure 3). By extension, all other features (except submission
types) are attempt-related features and can only be activated
when the submission type is NOT help.

This means that the input data will never have a positive
feature in both feature sets in the same action step. Filters
that don’t follow this guideline will never lead to a perfect
match, so our constraint is designed to avoid such ineffective
patterns. Compare the right-most filter in Figure 3 with the
others to see the effect of this constraint.

The regularization term we used for this purpose is:

Lposs =

M∑

p=1

k∑

n=1

min

((∑
i∈Sh

Wpni

len(Sh)

)2

,

(∑
i∈Sa

Wpni

len(Sa)

)2
)

where Sh and Sa are vectors containing the indices of help-
and attempt-related features, respectively.

3.2 Explicit filter matching
Aside from the constraints implemented via regularization
terms to the loss function, we introduced a set of final con-
straints on our model by altering the architecture of the
model itself. In a typical convolutional neural network, the
outputs of the convolutional layer, after passing through an
activation function, become the inputs to a fully connected
layer designed to turn them into a final probability prediction
reminiscent of a logistic regression. As with the convolutional
layer’s weights, the weights of this fully connected layer are
learned during training. Because these weights play an im-
portant role in shaping the model’s final prediction, they
would need to be included in the evidence used to create a
fully faithful explanation.

In order to achieve our goal of allowing the convolutional
filters to act as self-contained patterns of gaming-the-system
behavior, and to ensure that a filter match unequivocally
leads to a positive prediction and that the absence of a
matching pattern leads to a negative prediction, we designed
a novel fully connected layer architecture. Our layer di-
verges from the conventional linear transformation followed

by a global activation function. Instead of this conven-
tional approach, our layer employs an element-wise activation
function—specifically, a scaled sigmoid that approximates a
step function—applied immediately after the input is mul-
tiplied by the layer’s weights and prior to the summation
step.

The layer’s inputs are the convolutional layer’s outputs after
passing through a max pooling layer that ensures only each
filter’s convolution with the most matching activations is
passed on. The layer’s weights (of length equal to the number
of convolutional filters, M , and thus equal to the length of the
layer’s input filter), rather than being learned, are manually
set to the inverse of the sum of all weights for each filter.

In essence, this makes it so that when the layer’s inputs
are multiplied element-wise by its weights, any filters that
perfectly matched on the input will result in a 1, whereas
all others will result in a 0. Note that a “perfect match” in
this case exists when all positive weights in a filter (i.e. 1
after binarization) are also positive in the input instance.
Negative weights in a filter (i.e. 0 after binarization) can
have any value in the input instance.

This design allows the network to output a scalar value that
decisively indicates a match (i.e., above or equal to 0.5) or
non-match (i.e., below 0.5) based on the presence of any
exact filter match. We refer to this mechanism as a differ-
entiable thresholding fully connected layer, as it bridges the
gap between hard thresholding (e.g. a conditional function)
and standard fully connected layer soft aggregation, all while
remaining trainable via gradient descent.

3.2.1 Formal description
Formally, we can describe the differentiable thresholding fully
connected layer as follows.

Let the matrix h ∈ RM×C be the output of the convolutional
layer (the feature maps) after passing through a ReLU ac-
tivation function, where M is the number of filters in the
convolutional layer and C is the number of convolutions. A
max pooling function is applied to these feature maps to
keep only the convolution with the most activations per filter.
Therefore, let f = MaxPool(h), where f ∈ RM .

This vector then serves as the input to the differentiable
thresholding fully connected layer. Let the layer’s weight
vector be w ∈ RM . The thresholding layer processes the
input in four distinct stages:

First, the weights wp are manually set using the convolu-
tional filters. If W ∈ RM×k×d is the weight tensor for the
convolutional layer, then for each filter p:

wp =
1∑k

n=1

∑d
j=1

∣∣Wp,n,j

∣∣+ ε

where ε is a small constant added for numerical stability.

Second, each input element is multiplied by its corresponding
weight:

zi = fi · wi, for i = 1, . . . ,M
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Third, a scaled sigmoid function is applied to zi to approxi-
mate a step function:

ai = σ
(
t(zi − β)

)

where σ(·) is the sigmoid function, t controls the steepness
(with larger t making σ approach a step function), and β is
an offset (typically set near 1, e.g. 0.99).

Fourth, a softmax function with a small temperature τ is
used to compute weights that emphasize larger activations:

si =
exp

(
ai
τ

)
∑n

j=1 exp
(aj

τ

)

Finally, the layer’s final output is a weighted sum of the
activated values:

ythresholding =

M∑

i=1

ai si

This formulation allows the layer to perform a nearly hard
thresholding operation in a differentiable manner. The sig-
moid approximates a step function, ensuring the network
can decide between match (output ≥ 0.5) and non-match
(output < 0.5) in a soft, gradient-friendly fashion.

3.2.2 Branching architecture
Notably, our architecture includes both our custom thresh-
olding layer and a conventional fully connected layer, with
the final output being a weighted sum of the two via a con-
vex combination using the weight α. Like the γi scaling
weights we use to modulate the regularization terms in our
loss function, this branching approach allows us to control
the impact of the thresholding layer. In this way, the model
can have a more traditional warm-up period during training
before our explicit filter matching via differentiable thresh-
olding fully connected layer begins to influence the model’s
final predictions. Once this weight surpasses a certain (low)
threshold, we also freeze the weights of the traditional fully
connected layer so that the convolutional weights are the
only parameters learned.

The traditional fully connected layer, or traditional branch of
our architecture, processes the input through adaptive max
pooling, flattening, a linear transformation, and a sigmoid
activation:

ytrad = σ
(
w⊤ flatten

(
pool(x)

))

The model’s final output is then computed as a weighted
sum of the two branches:

y = (1− α) ytrad + αythresholding,

with an additional clipping to ensure that y = min{y, 1}.

This approach serves as a differentiable mechanism that
gradually shifts from a traditional fully connected layer to
our custom thresholding layer as controlled by α.

3.3 Progressive constraining
In order to allow the model to properly learn over multiple
epochs, we used the scaling weights γi to control the impact
of each regularization term i independently, as well as α to
control the impact of the differentiable thresholding fully
connected layer. We allowed a warm-up period for each
constraint, during which time its corresponding weight was
gradually increased from 0 to its final value.

The warm-up periods were staggered, with each term having
its own starting epoch and growth rate, which we treated
as hyperparameters to be tuned. We used this staggered
approach so that the model could begin incorporating a
single constraint at a time, having greater flexibility at the
beginning of the training process and progressively becoming
more constrained, until finally converging on our desired
filter format and inference approach.

We used grid search to find the optimal values for these hyper-
parameters, ensuring both that the model reached appropri-
ate accuracy on the validation set and that the convolutional
filters followed the constraints we set out to enforce. The grid
search was set up with various possible starting epochs for
each constraint, different growth rates, and different orders
in which to introduce the constraints. Alongside accuracy
on the validation set, we also exported visualizations of the
learned filters at different points during training to compare.

We found that when the binarizing constraint was introduced
too early, the weights had difficulty changing, even when the
loss was high due to the penalties from other constraints. We
also found that when the explicit filter matching constraint
(via the differentiable thresholding fully connected layer) was
introduced too late, the model often struggled to later learn
patterns that matched the inputs exactly. Ultimately, we
found that the best results were achieved when we intro-
duced the constraints in the following order: explicit filter
matching, possible feature combinations, single submission
type, minimum positive weights per action step, and binary
filters.

3.4 Training across multiple eras
Unfortunately, even with the gradual introduction of con-
straints, the model eventually reached a point where the gradi-
ents stopped flowing. This was likely due to the combination
of the binary constraint and the explicit filter matching—
along with its scaled sigmoid approximating a step function—
which prevented the model from continuing to learn to the
point of overfitting.

To address this potential underfitting, we introduced a mech-
anism to reset the training process at regular intervals. Ex-
trapolating from the conventional use of the term epoch,
borrowed from geologic chronology, we refer to these com-
pleted intervals of training epochs as training eras.

We trained our model for a total of 50 eras, each consisting
of 200 epochs. At the end of each era, we reinitialized the
weights for empty filters (those with all 0 weights) and for
those with precision < 0.3. We also reset all γi values, restart-
ing their staggered warm-up periods. This approach allowed
the model to learn entirely new gaming-the-system patterns
or refine existing ones by once again allowing gradients to
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Figure 4: Scaling weight increases with staggered warm-up
periods across two eras of 200 epochs each.

flow and giving the chance for the weights to escape local
minima, all while still adhering to the constraints we set out
to enforce. We did not reset the α scaling weight. Figure 4
shows the model’s progressive constraining across two eras.

One advantage of our minimalist architecture—one with
learnable weights only in the convolutional layer—is that we
could save these weights to an external file at the end of each
era, retaining the model’s entire set of learned parameters
for future use. This provided us a far larger set of gaming-
the-system patterns than what the model could learn in
a single era. By analyzing these patterns, we were able to
identify the most effective ones, remove duplicates, and insert
those remaining back into the model for final inference. We
further describe this process and report our results in the
next section.

4. RESULTS
Our approach generated a total of 102,400 filters (2,048 per
era for 50 eras) from which we saved the 25,981 filters that
achieved a precision above 0.3. Because the non-reinitialized
filters were carried over to the initial state in subsequent
eras, there was a large amount of repetition in the total set
of filters identified during training. After removing duplicate
filters, only 1,359 were unique. Furthermore, because of the
nature of convolutional filters, if the positive weights in one
filter are also positive in another, even if the latter has more
positive weights, the former will match on the same inputs
as the latter. In this scenario, the first filter has captured a
more general gaming-the-system pattern than the second.

After accounting for these redundant filters, and keeping
only the more general ones, we were left with 210 unique,
non-redundant patterns.

From this set of patterns, we individually calculated each
one’s precision on our training set, which ranged from 0.302
to 1.0 with a mean of 0.610. We sorted the patterns by
precision and calculated the cumulative Cohen’s kappa on
our validation set for each subset of n best patterns. The
resulting metrics are shown in Figure 5.

Table 1: Performance metrics on various datasets.
Set Accuracy AUC Kappa Precision Recall
train 0.940 0.923 0.541 0.499 0.672
val 0.917 0.883 0.380 0.360 0.513
test 0.909 0.847 0.319 0.324 0.422

Based on this analysis, we selected the top 132 patterns

Figure 5: Cumulative metrics on patterns sorted descending
by precision on the training set.

to use in our final model. We then evaluated the model’s
performance on our held-out test set, achieving a kappa of
0.319. This is slightly lower than the cognitive model’s kappa
of 0.330 on the same test set [17].

4.1 Comparison with expert patterns
We compared our model’s 132 final learned filters with the
expert patterns identified by [17]. However, of these 13 expert
patterns, we had to make some small modifications to two of
them to make them fully compatible (and comparable) with
our filters. The two expert patterns in question contained
an additional condition not reflected directly in the binary
features: “with at least one similar answer between steps”.

For example, one of these patterns was originally formulated
as follows:

help → incorrect → incorrect → incorrect
(with at least one similar answer between steps)

which we split into two variations that include the feature
similar answer in key locations.:

help → incorrect → incorrect & [similar an-
swer] → incorrect

help → incorrect → incorrect → incorrect
& [similar answer]

This increased the number of expert patterns to compare up
to 15.

Furthermore, because some expert patterns contained 2 or 4
action steps (as opposed to our filters’ 3), we expanded them
to all possible 3-action sequences for this analysis. From
2-action patterns we created two separate patterns: one with
a blank action step at the beginning and another with a
blank action step at the end. From 4-action patterns we
also created two separate patterns: one encompassing the
first three action steps and another the last three. While
this latter scenario likely leads to trimmed patterns that
the expert may no longer consider indicative of gaming-the-
system behavior, we reasoned that such a comparison with
our model’s learned filters would still be informative.
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Figure 6: Expert patterns (red) and our model’s learned filters
(green) for the most similar pairs.

We made our comparison using the Levenshtein edit distance,
which measures the minimum number of single-value edits (in
our case, substitutions from 0 to 1 or vice versa) required to
change one pattern into another. We found that the average
distance between our filters and the expert patterns was 13.5,
with a standard deviation of 2.6. This suggests that our
model’s learned filters differed quite significantly from those
identified by human experts. Our model did not learn any
of the expert patterns on its own. The most similar patterns
had an edit distance of 3 and 5, but only three pairs were
this similar (shown in Figure 6).

One noticeable difference is that our model’s learned filters
tended to have many more positive features than the expert
patterns. The model’s filters had a mean of 12.0 positive
features, with a range of 4 to 18 and a standard deviation of
2.3. This is in contrast to the expert patterns, which—when
taking into account only those with three action steps—had
a mean of 4.9 positive features, with a range of 4 to 7 and a
standard deviation of 1.1. The entire set of expert patterns
had a mean of 5.1 positive features, with a range of 4 to 7
and a standard deviation of 1.0.

We also measured the differences between the model’s own
learned filters pairwise. The mean edit distance between
two filters was 12.9, with a range of 2 to 26 and a standard
deviation of 3.7. The smallest edit distance between two
filters was 2, which occurred 13 times, while the next smallest
edit distance was 3, which occurred 25 times.

5. DISCUSSION
Our model achieved performance comparable with the cog-
nitive model described in [17], with a slightly lower kappa
on the held-out test set. Its precision was higher than the
cognitive model’s (0.324 vs. 0.307), while its recall was lower
(0.422 vs. 0.528). It outperformed the machine learning
model created by [2]. This suggests that our model was able
to learn patterns indicative of gaming-the-system behavior.

Surprisingly, despite the many eras during which our model
was trained and reinitialized with new starting weights, and
despite the high number of convolutional filters (2,048), the
final number of usable filters was only 210. Only 5.2% of our
total number of filters with precision > 0.3 were unique. The

model therefore repeatedly learned many of the same filters,
even while it had the opportunity to learn many new ones.

One possibility is that the constraints we introduced were
too restrictive, causing the model to converge repeatedly on
local minima. This is supported by the fact that the model’s
filters had more positive features than the expert patterns
on average—the very outcome that our Lmin regularization
term tried to prevent.

Our more complex filters (i.e. with more positive features)
help explain the model’s higher precision but lower recall
compared to the cognitive model. The model’s filters were
more specific, leading to fewer false positives, but they were
also less encompassing, leading to more false negatives. This
also explains the two models’ similar overall performance
despite our model having many times more patterns than
the cognitive model.

Despite this, the final set of learned filters do successfully
predict gaming-the-system behavior when compared to the
cognitive model with similarly structured patterns. While
our model uses many more patterns than the cognitive model,
its performance on the held-out test set indicates that it did
not overfit to the training data. Given this, the question
remains of how well these filters can be used to create effective
explanations.

5.1 Explainability
We set out to create a model that was fully interpretable,
meaning that we could extract sufficient evidence from it to
create an explanation that (1) is faithful, fully capturing the
model’s inference process, while (2) remaining intelligible.

By ensuring that the model’s only learnable parameters are
contained in the convolutional filters, and by constraining
those filters to follow the template of patterns created by
human experts, we believe we have achieved our goals. The
weights of the convolutional layer provide 100% explanatory
potential [23]. They can be clearly interpreted as sequential
patterns that emulate the binary presence or absence of
specific student actions.

These weights, paired with this interpretation, can thus be
used to create different kinds of explanations. For example, if
the model detects gaming-the-system behavior in a student’s
actions because they matched a specific filter, that filter’s
weights can be used to explain why the model made that
decision. These explanations can take many forms, such
as visual matrices for more technical end-users, simplified
bullet-point explanations, or even text-based explanations
in user-friendly language using LLMs (see the examples in
Figure 7).

This is an example of local explainability, where a specific
prediction is explained. More global patterns can also be
extracted from the model’s filters, such as the most common
patterns or the most important features. These can be used
to create more general explanations, such as identifying the
most common reasons a student is flagged for gaming-the-
system behavior or the most important features to look for.
Through all of this, the model’s filters provide a direct link
to the entirety of the model’s learned parameters, allowing
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Figure 7: Example explanations created from the model’s
learned filters.

for fully faithful explanations.

The implications of this are significant. If such fully in-
terpretable models are possible and can retain sufficient
flexibility to fit a wide range of use cases, they could be
used to create more transparent AI systems in education.
Our contribution is not the specific model we have trained,
but rather the general constraints-based approach we have
outlined, along with the evidence we have provided that it
functions as intended.

However, before making strong claims about interpretability,
it is clear that we need to evaluate the explanations our
approach can generate. Fortunately, the explanations we
have proposed here are the perfect test case for the human-
grounded evaluation methods outlined by [5]. There is also
room for future work to further refine our approach.

5.2 Limitations and future work
While our approach so far indicates the successful learning
of interpretable patterns for behavior detection, there re-
main important limitations to address. The most pressing
of these is the issue we encountered with the model’s gra-
dients no longer flowing after a certain number of training
epochs. Experiments we conducted with disabling individual
constraints while tracking gradient norms indicated that the
issue arises from the combination of the binary constraint
and the explicit filter matching via thresholding layer.

We managed to produce a workable model with functioning
filters through the use of multiple training eras, but this is
not an ideal solution. There may be specific transformations
where the gradients are being blocked that could easily be ad-
dressed. For example, it may simply be that the thresholding
layer’s scaled sigmoid function becomes too steep too quickly.
Most likely, the issue involves multiple transformations inter-
acting in a way that is difficult to predict. Broadening our
hyperparameter search to include such variables would be
one possible solution, though it is not clear how effective this
brute force approach would be. We plan to systematically
investigate this issue further in future work.

One limitation of our overall approach to explainability is

that it relies on carefully engineered interpretable features.
We were able to rely on those previously crafted by gaming-
the-system experts using cognitive task analysis [17], but in
many real-world scenarios, such features may not be available.

Another, less insurmountable, limitation of the current model
is that the convolutional filters only allow for a fixed number
of action steps. That is, the input may be of any length,
but the patterns can only have at most three student action
steps. This is an inherent limitation of the architecture, since
the tensor containing the convolutional weights forces a fixed
kernel size. One possible solution to explore in future work
would be to provide separate but parallel convolutional layers,
one for each desired sequence length. The feature maps, or
output of each layer, could then be concatenated and passed
through the thresholding layer as normal.

As we have mentioned, future work should seek to evalu-
ate the explainability of the explanations derived from our
convolutional filters. Following [5], we plan to conduct two
human-grounded evaluation experiments: forward simulation
and counterfactual simulation. By asking participants to pre-
dict the model’s output and to identify changes to inputs
that will lead to different outputs, we can measure the extent
to which our explanations are intelligible and faithful.

Finally, we plan to conduct an ablation study to measure the
impact of each constraint on the model’s accuracy and on the
filters’ interpretability. This will help us better understand
the interplay between constraints and between interpretabil-
ity and accuracy. It may also provide insights into the issue
of gradients no longer flowing.

6. CONCLUSION
We have described a novel approach to creating a neural-
network-based behavior detection model that is interpretable
by design. By constraining the model’s learning process
through a series of regularization terms and architectural
changes, we were able to create a model that learned patterns
indicative of gaming-the-system behavior. These patterns
emulate the structure of those identified by human experts,
indirectly indicating that their interpretations are sound.

Importantly, the parameters pertaining to these patterns en-
compass all the learnable weights in the final model, providing
100% explanatory potential to the model’s inner workings.
We demonstrated some possible ways in which these patterns
can be used to create explanations for different potential
audiences, all while remaining fully interpretable.

We have not yet conducted a systematic evaluation of these
explanations, but we believe they have the potential to be
both faithful and intelligible to human end-users. We in-
dicated some promising ways to evaluate these claims via
forward simulation and counterfactual simulation tasks as
human-grounded evaluation experiments. We will conduct
this evaluation in future work, along with an investigation
into the model’s gradient issues and an ablation study to
better understand the interplay between flexibility and inter-
pretability.
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and L. Cohausz. Preface to the proceedings of the
Human-Centric eXplainable AI in Education Workshop
(HEXED 2024). In Joint Proceedings of the
Human-Centric eXplainable AI in Education and the
Leveraging Large Language Models for Next Generation
Educational Technologies Workshops
(HEXED-L3MNGET 2024), volume 3840, Atlanta,
Georgia, USA, 2024. CEUR-WS.

[22] M. T. Ribeiro, S. Singh, and C. Guestrin. ”Why should
I trust you?”: Explaining the predictions of any
classifier, Feb. 2016.

[23] M. Rizzo, A. Veneri, A. Albarelli, C. Lucchese,
M. Nobile, and C. Conati. A theoretical framework for
AI models explainability with application in
biomedicine. In 2023 IEEE Conference on
Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), pages 1–9, Eindhoven,
Netherlands, Aug. 2023. IEEE.

[24] C. Rudin. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence,
1(5):206–215, May 2019.

[25] H. Scheers and T. De Laet. Interactive and explainable
advising dashboard opens the black box of student
success prediction. In T. De Laet, R. Klemke,
C. Alario-Hoyos, I. Hilliger, and A. Ortega-Arranz,

29



editors, Technology-Enhanced Learning for a Free, Safe,
and Sustainable World, volume 12884, pages 52–66,
Cham, 2021. Springer International Publishing.

[26] H. Suresh, S. R. Gomez, K. K. Nam, and
A. Satyanarayan. Beyond expertise and roles: A
framework to characterize the stakeholders of
interpretable machine learning and their needs. In
Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI ’21, pages 1–16,
New York, NY, USA, May 2021. Association for
Computing Machinery.

[27] V. Swamy, S. Du, M. Marras, and T. Kaser. Trusting
the explainers: Teacher validation of explainable
artificial intelligence for course design. In LAK23: 13th
International Learning Analytics and Knowledge
Conference, pages 345–356, Arlington TX USA, Mar.
2023. ACM.

[28] V. Swamy, J. Frej, and T. Käser. The future of
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