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ABSTRACT
Understanding the relationship between student behaviors
and learning outcomes is crucial for designing effective col-
laborative learning environments. However, collaborative
learning analytics poses significant challenges, not only due
to the complex interplay between collaborative problem-
solving and collaborative dialogue but also due to the need
for model interpretability. To address these challenges, this
paper introduces a multi-view predictive student modeling
framework using causal graph discovery. We first extract in-
terpretable behavioral features from students’ collaborative
dialogue data and game trace logs to predict student learn-
ing within a collaborative game-based learning environment.
We then apply constraint-based sequential pattern mining
to identify cognitive and social behavioral patterns in stu-
dent’s data to improve predictive power. We employ uni-
fied causal modeling for interpreting model outputs, using
causal discovery methods to reveal key interactions among
student behaviors that significantly contribute to predict-
ing learning outcomes and identifying frequent collaborative
problem-solving skills. Evaluations of the predictive student
modeling framework show that combining features from dia-
logue and in-game behaviors improves the prediction of stu-
dent learning gains. The findings highlight the potential of
multi-view behavioral data and causal analysis to improve

both the effectiveness and the interpretability of collabora-
tive learning analytics.

Keywords
Causal graph discovery, Collaborative problem solving, Pre-
dictive student modeling, Sequential pattern mining

1. INTRODUCTION
Collaborative problem solving involves a complex interplay
between cognitive and social dimensions of group behav-
ior during collaborative learning [2, 3]. Improving students’
collaborative problem-solving abilities can in turn improve
their critical thinking skills while fostering essential soft skills
such as teamwork and communication, which are crucial for
success in the 21st century workplace [15, 19, 32]. If adap-
tive learning environments had access to accurate predictive
student models that could effectively analyze students’ fine-
grained problem-solving interaction data and text-mediated
communication [5, 32, 33], they could provide adaptive scaf-
folding that could enhance student learning and support
teachers in classrooms. However, developing predictive mod-
els for collaborative learning presents significant challenges
due to both computational complexity and the need for
model interpretability.

Multi-view machine learning can provide a powerful foun-
dation for predictive student modeling that enables the in-
tegration of diverse data sources to capture complementary
aspects of student learning behaviors [14, 30]. It can in-
corporate different views of the data describing the same
entity from multiple perspectives to capture the interrela-
tions among data sources best describing the construct un-
der investigation. In addition, it can accommodate a broad
range of supervised, semi-supervised, and clustering-based
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techniques [16, 26, 35]. By leveraging multiple perspec-
tives, multi-view predictive student modeling can support
rich representations of student engagement and collabora-
tion and can overcome issues with single-view techniques
that have difficulty incorporating features across multiple
perspectives simultaneously. This allows multi-view meth-
ods to effectively improve the accuracy, robustness, and gen-
eralizability of downstream learning analytics tasks. How-
ever, these techniques pose significant challenges, such as
the curse of dimensionality, view consistency, and comple-
mentarity [38]. Our work incorporates behavioral patterns
extracted from dialogue and game trace log information to
represent social and cognitive aspects of students’ behaviors
while interacting with a collaborative game-based learning
environment. We explore kernel multiple canonical correla-
tion analysis (kMCCA) and a deep learning-based approach
to incorporate each view to predict student learning out-
comes.

Sequential pattern mining (SPM) identifies recurring behav-
iors and learning trajectories in student interactions, pro-
viding insights into their learning processes and outcomes
[31, 39]. In collaborative game-based learning, SPM ex-
tracts key engagement patterns, but traditional methods of-
ten generate too many irrelevant patterns. Constraint-based
sequential pattern mining (CSPM) overcomes this by incor-
porating domain knowledge and filtering out less informative
patterns [36]. Our research applies CSPM to extract mean-
ingful behavioral patterns from dialogue and game trace
data, facilitating the identification of key predictors of stu-
dent learning.

Predictive student modeling aims to infer learning outcomes
from behavioral data, making the extraction of salient fea-
tures that effectively represent these outcomes well suited
for a causal modeling approach. Causal modeling provides
an effective avenue for better understanding the impact of
learning behaviors on student learning outcomes [21, 34].
Traditional causal modeling approaches often rely on do-
main knowledge by manually specifying causal relationships
in directed acyclic graphs. However, this process is often
labor-intensive, requiring domain expertise and iterative re-
finement to develop effective representations of the under-
lying data. Discovery-based methods instead learn relation-
ships directly from observational data to reveal the under-
lying data-generating process [10]. Causal discovery tech-
niques have been used to perform counterfactual and in-
terventional reasoning, but it is difficult due to structure
identifiability and computational complexity [23]. Our work
employs CSPM techniques to abstract low-level interaction
and dialogue data to extract a smaller subset of features for
causal structure discovery.

This paper introduces a multi-view predictive student mod-
eling framework that integrates multi-view learning and
causal discovery methods to create an interpretable frame-
work for predicting learning outcomes from fine-grained in-
teraction and dialogue information in a collaborative learn-
ing context. Building on previous work mapping behav-
ioral process data along multiple dimensions of collabora-
tive problem solving, we align in-game actions and dialogue
with the social and cognitive dimensions of a collaborative
problem-solving framework [2]. This abstraction method

generates an interpretable sequence of dialogue and game
trace data that can be used to extract pedagogically mean-
ingful behavioral patterns. The multi-view predictive stu-
dent modeling framework considers dialogue and game trace
log information to represent two distinct views (cognitive
and social) of students’ collaborative behaviors. Utilizing
CSPM techniques, we collect a set of candidate behavioral
predictors of student learning outcomes. We evaluate the
effectiveness of these features using four machine learning
models and estimate causal relationships using the Peter-
Clark (PC) algorithm [25]. Additionally, we link causal
structures with feature importance scores to better under-
stand how causal structures influence predictive modeling
outputs, enhancing interpretability. We address the follow-
ing research questions:

RQ1: What impact does the use of CSPM have on identi-
fying candidate cognitive and social behavioral pre-
dictors of student learning outcomes in collaborative
learning contexts?

RQ2: How effective is the multi-view learning approach in
integrating interaction and dialogue data to predict
student learning outcomes in collaborative learning
contexts?

RQ3: How does combining interpretable causal discovery
with multi-view predictive modeling reveal underlying
cause-effect dynamics between collaborative behaviors
and student learning outcomes prediction?

2. RELATED WORK
Multi-view machine learning (MVML) has emerged as a
powerful approach for analyzing complex educational data
by integrating information from multiple sources or perspec-
tives [27]. These techniques have been applied to enhance
student performance prediction and understanding of col-
laborative behaviors. Recently, Venkatachalam & Sivan-
raju introduced an enhanced generative adversarial network
with an improved semi-automatic deep learning model based
on a multi-view approach to predict student academic per-
formance [30]. Their model effectively integrates heteroge-
neous student behavioral logs and assessment scores to pro-
vide a more comprehensive analysis of student performance.
Other research in this area explored the use of co-training
for predicting student performance by combining two dis-
tinct feature views in learning management systems [14].
This approach also enables early identification of struggling
students, offering opportunities for timely interventions to
improve learning outcomes.

Sequential pattern mining (SPM) [39] has been success-
fully applied in computer-supported collaborative learning
and adaptive learning environments [7, 11, 12]. Addi-
tionally, these methods have been used to extract mean-
ingful patterns from dialogue [28, 40, 41] and interaction
log data [18, 37]. They have proven effective in analyz-
ing students’ progression through problem-solving activities,
self-regulated learning processes, and capturing local learn-
ing patterns that link log-generated information to specific
learning outcomes [24]. Recent studies have explored the use
of SPM in online learning environments to provide valuable
insights into learner behavior. This includes work that has
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focused on applying SPM to navigational patterns in learn-
ing management systems [20]. Research in science education
has used SPM to analyze student behavior during scientific
calculations, highlighting the importance of guidance usage
for successful task completion [31].

Recent research has highlighted the growing importance of
causal modeling in learning analytics. Causal modeling
helps bridge the gap between learning analytics and learning
theory by providing interpretable insights [13]. Causal dis-
covery methods, which extract relationships among variables
without predefined structures, offer a powerful approach to
understanding complex systems [9]. In learning analytics,
causal inference plays an important role in identifying the
impact of different factors on learning outcomes. Insights
derived from causal discovery methods can aid in the design
of adaptive learning environments and other digital learning
platforms [6]. Prior work has emphasized the distinction
between causal discovery and causal inference, with both
approaches proving essential for moving beyond correlation-
based machine learning models [17]. In addition, causal
inference has informed education policy [29]. The present
work introduces a novel multi-view predictive student mod-
eling framework that incorporates causal graph discovery
to interpret complex relationships between student behav-
iors. Unlike prior work that has focused separately on di-
alogue or problem-solving behaviors, this approach offers a
unified method for improving the predictive power and in-
terpretability of collaborative learning analytics.

3. COLLABORATIVE GAME-BASED
LEARNING ENVIRONMENT

The EcoJourneys collaborative game-based learning envi-
ronment is designed to improve students’ understanding of
life science topics and enhance their collaborative problem-
solving skills [22]. It uses a problem-based learning inquiry
cycle that emphasizes complex problem-solving through ac-
tive collaboration and dialogue. Students work in groups of
up to four, with each student using their own laptop to en-
gage with the unfolding narrative, while exploring a virtual
tropical island, taking notes, watching videos, and talking
to non-player characters (NPCs) who act as local experts
as students work to solve a mysterious illness affecting fish
on the island. Students must collect and analyze informa-
tion while discussing their findings via a persistent in-game
chat interface. Initially, students work independently before
coming together at predefined intervals to solve the game
objectives, while explaining their reasoning process collabo-
ratively. The collaborative game-based learning experience
is organized into three phases: 1) Talk & Investigate, 2)
Deduce, and 3) Explain. The Talk & Investigate encom-
passes non-explicitly collaborative activities where students
explore the virtual environment while collecting clues and
information about their diagnosis. The Deduce and Explain
phases are explicit collaborative activities where students
must work together to answer questions and reach a consen-
sus on their proposed hypothesis. The game-based learning
environment includes four activities, including a tutorial and
three quests.

During the Deduce phase, students must collaboratively an-
swer multiple-choice questions that help them interpret the
data they have collected for the final Explain phase of the

game. Students share relevant information and ideas while
negotiating differences in opinion. Once they have reached
a consensus on their hypothesis, the game provides feed-
back on the validity of their answers, prompting students
to revisit the task if their answers are incorrect. The De-
duce phase ends with students collaboratively answering a
constructed response question. In the Explain phase, stu-
dents utilize a virtual whiteboard to structure the informa-
tion they have gathered supporting their hypothesis claims.
They argue for or against the claim and must again come
to a consensus regarding the support of a particular claim
for their hypothesis while explaining their reasoning. In this
study, we specifically focus on the collaborative activities of
students’ interactions with the EcoJourneys learning envi-
ronment, only using data extracted from the Deduce phase
of each activity for downstream predictive modeling.

Our study uses data collected from 75 middle school stu-
dents in sixth through eighth grades (ages 11-14) while they
interacted with the EcoJourneys collaborative game-based
learning environment. For each participant, their primary
caregivers were provided informed consent forms and stu-
dents completed assent forms, as approved by the univer-
sity’s ethics review board. These forms outlined the research
objective and procedures of the study, including participa-
tion in data collection and surveys. From these interactions,
student game trace log information captures a wide range
of in-game actions such as interacting with NPCs, watch-
ing videos, sending/receiving chat messages, and navigating
the virtual environment, as well as miscellaneous informa-
tion such as user interface interactions and game progress
monitoring. Students’ text-based communications through
the persistent in-game chat interface allow for the capture of
collaborative dialogue practices, which can provide insights
into group collaborative dynamics. On average, there are
663 trace log events and 33 dialogue contributions per stu-
dent during the Deduce phase of their interactions with the
learning environment. We conceptualize a multi-view mod-
eling approach by considering dialogue and game trace log
information as different views of students’ social and cogni-
tive collaborative problem-solving behaviors. Both cognitive
and social behavioral views are analyzed for our downstream
predictive modeling approaches.

4. METHODOLOGY
We now outline our methodology for transforming raw stu-
dent interaction data into interpretable features for predic-
tive and causal modeling. We begin by describing the ab-
straction process for dialogue and game trace data, followed
by the application of constraint-based sequential pattern
mining to extract meaningful behavioral patterns. Next, we
detail our predictive modeling approach using multi-view
learning and conclude with our causal discovery framework
to identify underlying relationships between student behav-
iors and learning outcomes.

4.1 Game Trace & Dialogue Abstraction
The EcoJourneys learning environment collects students’
game trace information through semi-structured CSV files.
These files encode event information with a timestamp and
key-value pairs containing mixed data types. This hetero-
geneous representation complicates downstream sequential
pattern mining algorithms by containing a large search space
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of temporal states and can result in uninterpretable out-
puts, limiting its use in learning analytics. We introduce an
abstraction method that streamlines sequential analysis by
transforming fine-grained, semi-structured behavioral data
into coarse-grained yet more interpretable action sequences.
Each trace log event is first mapped to a high-level action in-
tent through cluster-based analysis. Text-based representa-
tions of each game trace log are embedded using a Word2Vec
model trained on reserved game trace data to capture con-
textual and semantic information from each trace event. K-
means clustering is used to categorize each trace event, while
silhouette score and latent-Dirichlet allocation are used to
devise interpretable cluster names that describe their high-
level intent. For each trace-log cluster, a domain-expert
reviewed the extracted topics and manually created a de-
scriptive category that encapsulates the overall intent of the
corresponding trace logs. Next, each trace log event is an-
notated with the high-level intent category to produce an
interpretable sequence of in-game actions from raw trace log
data. Finally, a qualitative analysis by domain experts es-
tablished a mapping from high-level intent categories to four
collaborative problem solving (CPS) codes within the cogni-
tive dimension of the collaborative problem-solving ontology
[2], which serves as our guiding pedagogical framework for
analyzing students’ collaborative behaviors (Table 1).

Table 1 presents the mapping of trace log clusters and their
high-level intent to the CPS codes within the ontology pro-
posed by Andrews-Todd & Forsyth [2]. First, the Explor-
ing and Understanding CPS code is linked to activities in-
volving interacting with in-game objects, learning resources,
and non-player characters as they reflect students’ active
engagement in seeking information and deepening their un-
derstanding of the learning environment. Second, the Rep-
resenting and Formulating CPS code is associated with ac-
tions reflecting answer formulation and submission, includ-
ing clusters such as “Interaction & Exploration Cessation”
and “Answer Submission and Validation.” Third, the Moni-
toring CPS code refers to actions that track progress, evalu-
ate understanding, and/or regulate actions to achieve goals.
Finally, we categorize active and passive communication un-
der the broad Social category. This qualitative analysis facil-
itates the interpretation of raw game trace log information
in the context of a relevant collaborative problem-solving
theory, allowing for interpretable and actionable insights.

To effectively capture salient information from the active
and passive communication under the Social CPS code, we
further analyze the collaborative dialogue. Contributions
to collaborative dialogue can be extracted from game trace
log information, providing additional points for analyzing
dialogue dynamics. However, raw dialogue sequences can
be challenging to interpret without domain knowledge and
often contain significant noise while also failing to capture
pedagogically meaningful characteristics, such as how stu-
dents negotiate, share ideas, and regulate group efforts.

We overcome this limitation by devising an LLM-based dia-
logue act recognition model to identify CPS-related dialogue
acts, representing the communicative intents of utterances
[4]. We extract each student’s sent message from their game
trace logs and apply zero-shot prompting to a Llama 3.1
8B model to assign one of six dialogue acts under the So-

cial CPS code (Table 2). In this way, we transform a se-
quence of raw input utterances into a more interpretable
sequence of CPS dialogue practices. Llama 3.1 was se-
lected for its strong performance on benchmark datasets and
its open-source availability, offering advantages over propri-
etary LLMs and legacy natural language processing mod-
els. While fine-tuning was beyond the scope of this work,
it presents a promising direction for future research. More-
over, model quantization enables efficient inference on lim-
ited computational resources, making it well-suited for de-
ployment in educational settings. In conjunction with ab-
stracted student game trace logs, dialogue sequence informa-
tion is used to extract sequential behavioral patterns along
cognitive and social dimensions for downstream predictive
modeling and causal discovery.

Utterances classified as “Maintaining Communication” are
contributions that encourage or support others during their
collaborative tasks. “Sharing Ideas” refers to utterances that
attempt to share ideas, resources, or information about on-
going tasks. “Negotiating Ideas” are dialogue contributions
that clarify, correct, or elaborate on ideas presented dur-
ing group discussions. “Regulating” behaviors attempt to
establish a shared understanding by organizing, planning,
or evaluating the group’s progress. Finally, “Off-task” refers
to any utterances that are not on topic but still contribute
to building social rapport. Any utterance that cannot be
classified into one of the previous five categories is simply
labeled as “Other”.

These codes capture the discursive practices that align with
the social dimension of the CPS ontology and, when com-
bined with abstracted game trace log information, provide
a more holistic understanding of students’ collaborative be-
havior contributions.

4.2 CSPM Behavioral Pattern Extraction
Previous work has shown the efficacy of using text-mediated
communication and process data as evidence of collabora-
tive problem-solving practices and mapping this evidence
along each dimension of the CPS framework [2, 8]. Simi-
larly, we map collaborative dialogue contributions and low-
level in-game actions to each dimension of the CPS ontol-
ogy. Although this mapping generates an interpretable se-
quence of collaborative contributions, identifying meaning-
ful and pedagogically relevant behavioral patterns within
these sequences remains challenging due to the sheer volume
of possible patterns and the presence of redundant or low-
impact sequences. To address this, we employ constraint-
based sequential pattern mining techniques to extract cog-
nitively and socially relevant behavioral patterns that are
most indicative of student learning outcomes. We utilize
Seq2Pat [36], a CSPM technique based on multi-valued deci-
sion diagrams that find frequent patterns within a sequence
database subject to specified constraints. In this context,
constraints refer to domain knowledge such as specified or-
derings, cycles, or otherwise a priori behavioral information
that can be used to restrict the search space of possible se-
quential patterns. Additionally, Seq2Pat enables efficient
conversion of sequential patterns into binary-valued feature
vectors that indicate the presence or absence of each de-
tected pattern for individual students. These features sup-
port downstream predictive modeling and causal discovery.
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Table 1: Mapping of trace log clusters to CPS codes along the cognitive and social dimensions of the CPS ontology.

CPS Code Description Trace Log Cluster

Social Communication through the in-game chat
Passive Communication Receipt
Active Communication Initiation

Exploring &
Understanding

Exploring the game environment by
interacting with objects and resources

Termination of Specific Interactions
Workbook Engagement and Note-Taking

Active Exploration and Interaction Initiation
Tutorial Progression Engagement

Representing &
Formulating

Answering and submitting multiple-choice or
constructed-response questions

Answer Submission and Validation
Interaction and Exploration Cessation

Monitoring Receiving feedback from NPC conversations NPC Dialogue and Conversation Initiation

Table 2: CPS codes assigned to dialogue utterances within the social dimension of the CPS ontology.

CPS Category CPS Code Description

Maintaining Communication Maintaining Encourages or supports others during the task.

Sharing Resources/Ideas Sharing Shares ideas, resources, or information about the task.

Negotiating Ideas Negotiating Clarifies, corrects, or elaborates on ideas.

Regulating Problem Solving Activities Regulating Organizes, plans, monitors, or evaluates progress.

Off-task Off-task Not related to the task.

Other Other Does not fit into any category.

We extract behavioral patterns by independently applying
CSPM to abstracted dialogue and game trace log sequences.
Dialogue patterns can help to identify effective collabora-
tion cycles or breakdowns in engagement and may be in-
fluential in predicting student learning outcomes. To filter
out spam chat messages, we apply a count constraint on the
minimum (3) and maximum (20) number of words per se-
quence. Often, students spam chat by either sending many
small messages or a small number of very large messages,
typically containing non-intelligible words. We apply this
count constraint to avoid identifying spurious patterns. We
should note that in some cases, it may be preferable to de-
tect these types of disruptive behaviors. However, a pre-
liminary analysis showed that this often introduces a large
amount of noise, negatively affecting downstream predictive
modeling and causal discovery methods. In addition to the
word count constraint, we further impose a minimum sup-
port count (2) and maximum span (8) constraint on ex-
tracted patterns to identify patterns that occur across two
or more individuals and to restrict patterns to only cover
up to eight utterances, both of which were likewise deter-
mined through preliminary analysis. Restricting the maxi-
mum span helps to ensure that patterns occur over a tem-
porally related period of time rather than across students’
entire dialogue contribution. After applying CSPM to stu-
dent dialogue sequences, we identify 56 dialogue patterns.
Using Seq2Pat’s pattern-to-feature generation, we obtain a
binary feature vector for each student representing the pres-
ence/absence of each extracted dialogue pattern. These ex-
tracted features provide a structured representation of di-
alogue patterns, enabling more interpretable and effective
downstream predictive modeling and causal analysis. Fig-
ure 1 illustrates how the Seq2Pat algorithm extracts cogni-
tive behavioral patterns from action sequences derived from
game trace logs.

Similarly, we apply CSPM to in-game action sequences that

M0→ Social1 → EU1 → Social1

Sequence-to-Pattern 
Generation

.

.

.

Trace Log 
Event k

Trace Log 
Event 2

Trace Log 
Event 1

Passive 
Communication 

Receipt

Termination 
of Specific 
Interactions

NPC Dialogue 
& 

Conversation 
Initiation

Social

Exploring & 
Understanding 

(EU)

Monitoring 
(M)

.

.

.

.

.

.

Student Action Sequences

Figure 1: An illustrative example converting raw trace log
information to CPS patterns. Seq2Pat’s sequence-to-pattern
generation extracts patterns from abstracted trace log se-
quences.
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have been linked to the cognitive dimension of collaborative
problem solving. Patterns extracted from game trace data
can pinpoint knowledge exploration and problem-solving
behaviors in addition to socially mediated and feedback-
oriented patterns. These behavioral practices provide a lens
into the cognitive behaviors predictive modeling finds infor-
mative for understanding student learning outcomes. Due
to a large number of game trace log events (663 events
on average) per student, Seq2Pat finds a large number of
spurious and routine behaviors that do not necessarily re-
flect students’ collaborative problem-solving behaviors. We
mitigate this by introducing temporal and categorical re-
straints. Temporal constraints ensure that an extracted pat-
tern spans no more than one minute, maintaining temporal
consistency and minimizing overlap between disparate be-
havioral sequences. Categorical constraints are designed to
minimize the number of cyclical actions that repeat more
than three times. For example, categorical constraints will
avoid the problem of frequently repeating patterns of the
form “Negotiating → Negotiating → Negotiating → . . . ”.
This also ensures that the algorithm is more likely to cap-
ture patterns that “break” from cyclical behaviors and move
on to patterns with more action diversity. As a final mea-
sure, we filter out any patterns that occur more than one
hundred times. Patterns with very large support counts of-
ten reflect routine or system-level behaviors and generally
are not pertinent to the predictive modeling task. By refin-
ing the extracted patterns through these constraints, we en-
hance their relevance for predictive modeling, ensuring they
capture meaningful collaborative problem-solving behaviors
rather than routine or spurious actions.

4.3 Predictive Modeling
In order to assess the efficacy of the extracted multi-view
behavioral patterns as indicators of student learning out-
comes, we compare the performance of four machine learn-
ing models in their ability to disambiguate high- and low-
performing students using dialogue and game trace log in-
formation. We apply ten-fold cross-validation with three-
fold nested cross-validation for hyperparameter tuning. We
evaluate their predictive performance using the averaged ac-
curacy and macro-F1 scores from the outer cross-validation
folds. Models were evaluated using extracted behavioral pat-
terns from dialogue and game trace views separately, com-
paring single-view models against those utilizing both views
(i.e., multi-view). Our work examines the predictive per-
formance of Explainable Boosting Machines (EBM), Gaus-
sian Process (GP) models, Tabular Prior-data Fitted Net-
work (TabPFN), and a custom Multi-View neural network
(MVNN).

Our model selection was motivated by the need to balance
interpretability, adaptability, and flexibility to multi-view
data while addressing some of the limitations of more tradi-
tional machine learning approaches. Explainable Boosting
Machine (EBM) is a predictive modeling approach that pro-
vides high interpretability and performance while overcom-
ing the limitations of Generalized Additive Model (GAM)-
based approaches by providing iterative error correction
abilities through boosting. By learning feature interactions
in a data-driven manner, EBMs are adaptable to extracted
behavioral patterns while maintaining transparency in fea-
ture contributions.

Due to our relatively small dataset size (75 students), Gaus-
sian Process (GP) models are a non-parametric method that
was chosen because of its ability to generalize well in low-
to-moderate resource environments. Additionally, it can
capture potential non-linear relationships while providing a
principled way of quantifying uncertainty. TabPFN is a pre-
trained transformer based on the supervised classification
of tabular data. It generally requires no hyperparameter
tuning and is trained to approximate Bayesian inference on
synthetic datasets. As a transformer-based model, TabPFN
can also model feature interactions without any manual tun-
ing. Finally, we construct a multi-view neural network that
takes advantage of the attention mechanism to attend to
one or more views simultaneously. It explicitly learns both
shared and view-specific representations of extracted behav-
ioral patterns while identifying complementary information
highly predictive of student learning outcomes. Although
neural network-based approaches lack the interpretability
of other machine learning approaches, the use of integrated
gradients or Shapley (SHAP) values provides a reasonable
means to approximate feature contributions along the path
from baseline input to model outputs. We also evaluate
model performance without applying CSPM or performing
multi-view learning. To this end, we utilize the UniLM-V6
BERT-based sentence transformer model to generate em-
beddings for dialogue and game trace data independently,
serving as a naive baseline. We average each sequence of
embeddings to generate a final embedding vector for each
student that summarizes their trace and dialogue contribu-
tions. These representations are processed by a simple feed-
forward neural network to identify high- and low-performing
students. Along with a simple majority baseline, these naive
embedding-based implementations serve as a baseline com-
parison for our chosen machine learning methods.

To systematically compare single- and multi-view modeling
approaches, we generate multi-view representations using
two distinct methods. For all models except the Multi-View
Neural Network (MVNN), we apply Kernel Multiple Canon-
ical Correlation Analysis (KMCCA) [1] to integrate dialogue
and game trace data. This method performs dimensionality
reduction using a Gaussian kernel with regularization, ensur-
ing that the combined representations preserve high-order
dependencies between views. In contrast, the MVNN di-
rectly processes raw input features, learning cross-view rela-
tionships automatically during training. Rather than relying
on a precomputed joint representation, the MVNN projects
each view into a shared feature space, where interactions are
refined through a scaled dot-product attention mechanism.
This formulation allows us to evaluate the MVNN’s ability
to integrate multiple views without imposing external con-
straints, ensuring a fair comparison between models that
use engineered multi-view representations and the MVNN’s
learned feature integration.

4.4 Causal Discovery
To understand how extracted behavioral patterns relate to
student learning outcomes, we employ a causal discovery
method to reveal the underlying dependencies and poten-
tial causal structures within the data. Given that we do
not already know the underlying causal structure of the
data-generating process, we utilize the Peter-Clark (PC) al-
gorithm, a constraint-based approach in causal discovery
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Figure 2: An overview of our multi-view student modeling
framework.

[23]. The PC algorithm is a constraint-based causal dis-
covery method that constructs a causal graph by leveraging
conditional independence tests. It is well-suited for scenar-
ios with high-dimensional data and relatively small sample
sizes, as it does not require solving complex optimization
problems. Additionally, PC is efficient for discrete data and
is less sensitive to strong regularization constraints that may
distort true causal relationships. We apply causal discov-
ery to extracted cognitive and social behavioral patterns,
identifying potential causal relationships between each as-
pect of students’ collaborative behaviors and their learning
outcomes. By analyzing conditional dependencies among
extracted patterns, we can find sequential structures or co-
occurring behaviors that may influence learning success, dis-
tinguishing between behaviors that are merely correlated
and those that play a more direct role in shaping outcomes.

While the PC algorithm effectively reveals causal structures
and the direction of dependence between behavioral pat-
terns and learning outcomes, it does not provide information
about the strength of these relationships. To estimate the
magnitude of causal effects, we fit Generalized Additive
Models (GAMs) to quantify how changes in one variable
influence another along identified causal pathways. This
approach enables us to assign edge weights to the causal
graph, offering a more nuanced understanding of behavioral
influences. Estimating edge weights is particularly advanta-
geous in our research context, as it helps differentiate strong
predictive relationships from weaker associations, allowing
us to prioritize key behavioral patterns that significantly
impact learning outcomes. By capturing nonlinear effects,
this approach provides a more interpretable and data-driven
foundation for understanding how different collaborative
behaviors contribute to student success, and by integrating
causal structure discovery with effect size estimation, we
gain a more comprehensive understanding of how behavioral
patterns contribute to student learning. An overview of
our multi-view student modeling framework is outlined in
Figure 2.

5. RESULTS
We now present our findings on predicting student learning
outcomes using multi-view behavioral data. We first evalu-
ate the effectiveness of predictive modeling approaches lever-
aging dialogue and game trace logs, followed by an analysis
of causal discovery techniques to uncover underlying rela-
tionships between student behaviors and learning gains.

5.1 Predictive Modeling
We evaluate the performance of our predictive models, com-
paring single- and multi-view representations to assess their
effectiveness in disambiguating high-performing (Class 1)
and low-performing (Class 0) students. Table 3 shows the
average results of our predictive modeling approaches us-
ing extracted dialogue patterns. The results for the dia-
logue view indicate that the Explainable Boosting Machine
(EBM) outperforms the other models, achieving the high-
est accuracy (67.99%) and macro-F1 score (67.34%). EBM
maintains strong performance across both classes, with bal-
anced classification for Class 0 (68.07% macro-F1) and Class
1 (66.61% macro-F1). TabPFN and the Multi-View Neural
Network (MVNN) show similar performance in accuracy and
macro-F1, but MVNN has slightly better-balanced perfor-
mance across both classes. The GP model, while achieving
the highest Class 1 performance (68.83% macro-F1), strug-
gles significantly with Class 0 (52.86% macro-F1), leading to
the lowest macro-F1 score (60.84%). These results suggest
that EBM is the most effective model for the dialogue view,
providing both strong overall predictive power and class bal-
ance.

Table 3: Predictive modeling results for the dialogue view
(social) of students’ collaborative behaviors. Class 0 and
Class 1 refer to the macro-F1 scores for each class.

Dialogue View
Accuracy Macro-F1 Class 0 Class 1

TabPFN 64.00% 63.63% 62.20% 65.07%
EBM 67.99% 67.34% 68.07% 66.61%
GP 64.00% 60.84% 52.86% 68.83%
MVNN 65.33% 62.73% 63.41% 62.04%

For the game trace view (Table 4), both TabPFN
and MVNN achieve the highest accuracy (69.33%), with
MVNN slightly outperforming in macro-F1 score (68.72%vs.
68.26%). MVNN also demonstrates the best balance be-
tween Class 0 (67.06% macro-F1) and Class 1 (70.38%
macro-F1) performance, suggesting it is the most robust
model for this view. TabPFN performs similarly but has
a lower Class 0 performance (63.35 macro-F1%). EBM
follows closely with an accuracy of 66.66% and macro-F1
of 66.17%, maintaining a more balanced class performance
compared to GP. The GP model, while strong in Class 1
prediction (73.51% macro-F1), struggles significantly with
Class 0 (52.52% macro-F1), leading to the lowest macro-
F1 score (63.02%). These results highlight MVNN as the
best-performing model for the trace log view, with strong
generalization across both classes.

Finally, for the combined view (Table 5), MVNN outper-
forms all other models by a significant margin, achieving
the highest accuracy (72%) and macro-F1 score (71.62%).
It also maintains the best balance between Class 0 (69.43%
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Table 4: Predictive modeling results for the game trace view
(cognitive) of students’ collaborative behaviors. Class 0 and
Class 1 refer to individual macro-F1 scores.

Game Trace View
Accuracy Macro-F1 Class 0 Class 1

TabPFN 69.33% 68.26% 63.35% 73.17%
EBM 66.66% 66.17% 63.23% 69.11%
GP 66.60% 63.02% 52.52% 73.51%
MVNN 69.33% 68.72% 67.06% 70.38%

macro-F1) and Class 1 (73.81% macro-F1) performance, in-
dicating strong generalization across both classes. In con-
trast, the other models exhibit notably lower performance.
GP and EBM achieve identical accuracy (61.33%), but GP
slightly edges out in macro-F1 (60.05% vs. 59.14%), with
better Class 0 performance (57.59% macro-F1). EBM, while
stronger in Class 1 (66.66% macro-F1), struggles with Class
0 (51.62% macro-F1). TabPFN performs the worst, with
the lowest accuracy (60%) and macro-F1 (55.11%), showing
a strong bias toward Class 1 (64.88% macro-F1) at the ex-
pense of Class 0 (45.83% macro-F1). These results suggest
that MVNN is the most effective model when integrating
multiple views, benefiting from its ability to learn feature
associations across modalities.

Table 5: Predictive modeling results for combined dialogue
and game trace views of students’ collaborative behaviors.
Class 0 and Class 1 refer to individual macro-F1 scores.

Combined View
Accuracy Macro-F1 Class 0 Class 1

TabPFN 60.00% 55.11% 45.33% 64.88%
EBM 61.33% 59.14% 51.62% 66.66%
GP 61.33% 60.05% 57.59% 62.52%
MVNN 72.00% 71.62% 69.43% 73.81%

When compared to the raw input baselines (i.e., naive base-
lines), all of the proposed methods show a marked improve-
ment in predictive performance (Table 6). For example, the
dialogue view’s raw input baseline has an accuracy of 49.33%
and a macro-F1 of 39.64%. Yet, our predictive models, par-
ticularly the EBM, achieve much higher scores with balanced
performance across classes. Similarly, the game trace data
baseline’s very low Class 1 performance (0% macro-F1) con-
trasts sharply with the robust results obtained by MVNN
and other models, which deliver strong results for both
classes. Finally, the combined view significantly outper-
forms the naive baseline (accuracy of 53.33%), with MVNN
reaching an accuracy of 72% and a macro-F1 of 71.62%, un-
derscoring the benefits of integrating multiple data views.
When comparing the dialogue and game trace views, game
trace views generally deliver robust predictive performance
with higher overall accuracy and macro-F1 scores. While
the dialogue view achieves competitive results, it tends to
be slightly less consistent across both classes compared to
the game trace view, where models like MVNN demonstrate
a stronger balance between Class 0 and Class 1. This indi-
cates that game trace data may offer a more stable signal
for predicting student outcomes, highlighting its potential
as a valuable input when used alongside dialogue data in a
combined multi-view approach.

Table 6: Naive baseline implementations using either raw
input features or a simple majority classifier. Class 0 and
Class 1 refer to individual macro-F1 scores.

Raw Input
Accuracy Macro-F1 Class 0 Class 1

Game Trace 46.66% 31.81% 63.63% 0.00%
Dialogue 49.33% 39.64% 59.29% 20.00%
Majority 53.33% 34.78% 0.00% 69.56%

5.2 Causal Discovery
Figures (3a) and (3b) show the discovered causal graphs for
the dialogue and game trace logs, respectively. To reduce
noise in the extracted causal graphs we apply threshold-
ing to prune weak causal relationships. Thresholding edge
weights in the causal graphs helps remove irrelevant or weak
relationships, ensuring that only statistically significant and
meaningful causal connections (black lines) are retained for
clearer interpretation and more accurate modeling of the
underlying causal structure. Additionally, generated struc-
tures often contain many disconnected sub-graphs, so as an
additional post-processing step, we focus only on the largest
connected sub-graph. The Peter-Clark (PC) algorithm is
applied only to the input features and, therefore, has no
means of showing the connection between the extracted be-
havioral patterns and predictive modeling of student learn-
ing outcomes. To bridge this gap, we utilize feature impor-
tance scores (red and blue lines) to highlight the impact of
specific causal structures on predictive modeling decisions.
In the figures shown, we use the feature importance scores
from the MVNN model due to space limitations; however,
our framework is model agnostic, meaning that the feature
importance scores from any of the tested models can be sub-
stituted in place to maintain consistency and interpretabil-
ity across different approaches. Feature importance scores,
whether calculated directly or estimated through methods
like Integrated Gradients or SHAP, provide a model-agnostic
way to link discovered causal structures to predictive model-
ing decisions, as they offer a consistent framework for under-
standing which features influence the model’s predictions,
regardless of the underlying model or calculation method.
This flexibility allows for a unified interpretation of feature
relevance, bridging the gap between causal discovery and
predictive analysis.

6. DISCUSSION
Our findings highlight the importance of integrating cog-
nitive and social behavioral patterns to better understand
collaborative learning processes. We will discuss how these
findings address our research questions below.

6.1 Cognitive and Social Behavioral Patterns
The results demonstrate the effectiveness of constraint-based
sequential pattern mining (CSPM) in extracting behavioral
predictors of student learning outcomes (RQ1). To quan-
tify the contribution of CSPM-derived features, we define
it as the improvement in predictive performance compared
to models trained on raw, unstructured features. This im-
provement is measured by comparing evaluation metrics (ac-
curacy, macro F1-score) across the different feature sets.
Even in the single-view setting, all evaluated models showed
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(a) Causal structure for the dialogue view (social). (b) Causal structure for the game trace view (cognitive).

Figure 3: Causal graphs for student collaborative dialogue and collaborative problem-solving game trace logs. “EU” refers
to “Exploring and Understanding”, “RF” refers to “Representing & Formulating”, and “M” refers to “Monitoring” behaviors.
Subscripts denote the trace log type described in Table 1.

consistent performance gains over naive baselines, indicat-
ing that CSPM enables the discovery of structured behav-
ioral patterns that contribute meaningfully to prediction.
In the multi-view setting, performance improvements were
even more pronounced, suggesting that integrating behav-
ioral patterns from multiple views enhances the model’s abil-
ity to capture relationships between cognitive and social
CPS skills, which we further explore below (RQ2).

6.2 Effectiveness of Multi-View Learning
The effectiveness of multi-view learning is demonstrated by
its ability to integrate diverse data sources, leading to im-
proved predictive performance and a deeper understanding
of the relationships between student behaviors and learn-
ing outcomes. As exemplified in Tables 3-6, we can see
that overall, the MVNN model is the best-performing multi-
view model (Accuracy 72%) when compared to all other
approaches (RQ2). Notably, we see a drastic drop in predic-
tive performance for all other models when analyzing mul-
tiple views. Unlike the MVNN model, which learns both
single-view and multi-view relationships during the train-
ing process, all other models require an intermediate step to
combine views due to their inherent single-view nature. For
this step, we utilize Kernel Multiple Canonical Correlation
Analysis (KMCCA) to generate a combined representation
of multiple views of data. By leveraging kernel methods,
KMCCA can model non-linear relationships between views,
improving the alignment and integration of diverse data
sources for downstream prediction and analysis. The MVNN
may outperform models that utilize KMCCA because it is
able to learn complex, nonlinear relationships between dif-
ferent views directly from the data, offering greater flexibil-
ity in capturing interactions between features across views.
Additionally, KMCCA may face challenges when combining
binary matrices, as it assumes that the data within each
view is linearly correlated (in kernel space), which may not
hold true for binary representations where relationships are
often non-linear. The inherent sparsity and lack of continu-
ity in binary data can further complicate KMCCA’s ability
to find meaningful correlations, potentially limiting its effec-
tiveness in handling such views. These limitations could be
mitigated by using a neural network variant of CCA (Deep-
CCA). However, we argue that in such cases, employing
the MVNN model simplifies the framework while enabling a
data-driven, end-to-end learning approach.

The MVNN model’s ability to integrate interaction and dia-
logue data highlights its advantage in real-world educational
settings, where data often originates from heterogeneous
sources (e.g., text and in-game actions). Unlike approaches
that require intermediate steps for combining views, MVNN
provides a direct, end-to-end framework that learns shared
representations from raw inputs, simplifying the modeling
process while effectively capturing complex multi-view rela-
tionships (RQ2). To evaluate its effectiveness, we compare
the MVNN’s predictive performance against baseline mod-
els that use early fusion or traditional multi-view integration
methods, such as kernel multiple canonical correlation anal-
ysis (KMCCA). This comparison enables us to assess how
well the multi-view approach captures complementary be-
havioral signals across modalities. Our results suggest that
MVNN enables a more nuanced understanding of collab-
orative behaviors, supporting the development of adaptive
learning environments that can dynamically integrate multi-
ple data streams to deliver personalized, context-aware feed-
back and enhance student learning outcomes.

6.3 Causal Discovery in Multi-View Modeling
Figures (3a) and (3b) present the discovered causal graphs
for dialogue and game trace log information. These struc-
tures represent causal relationships between each of the ex-
tracted behavioral patterns by the black lines connecting
nodes. The PC algorithm constructs causal relationships
in the form of partially directed acyclic graphs where some
edges may be undirected, which we represent as two directed
edges. To link the generated causal structures with predic-
tive modeling decisions, we utilize feature importance coef-
ficients for arcs between nodes within the causal graph and
our model’s predictions of student learning gains. Specif-
ically, feature attribution can be performed in a model-
agnostic way, providing a means to explore the relationship
between model decisions and causal relationships. Our study
focuses on feature importance scores from the MVNN model
and their alignment with the extracted causal graphs; how-
ever, any model could be used, with only the specific node
relationships to learning gains varying.

6.3.1 Dialogue Causal Graph
Examining the causal graph of dialogue data reveals a few
key insights related to the MVNN’s predictive modeling de-
cisions. First, the model only found extracted dialogue pat-
terns (black nodes) that only included “Maintaining Com-
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munication”, “Negotiating Ideas”, and “Off-task” behaviors
to be particularly useful, while ignoring “Sharing Ideas” and
“Regulating Activities”. The exclusion of these features as
strong predictors of learning gains implies that there may
not be a strong direct relationship with learning gains in
patterns that include these features. Further, this highlights
that maintaining engagement, negotiating understanding,
and off-task behaviors play a more dominant role in dis-
tinguishing student outcomes. It should be noted that shar-
ing and regulation behaviors may contribute to predicting
learning outcomes; however, their effects may be diluted or
utilized more effectively by alternative modeling methods.
The patterns are predominantly negotiation cycles (“Nego-
tiating → . . . → Negotiating”), with three starting and
two ending in off-task behavior. Additionally, two nodes ex-
hibit communication maintenance cycles (“Maintaining →
. . . → Maintaining”), both overlapping with negotiation cy-
cles. These relationships highlight the role of negotiation
in collaboration, the persistence of off-task behaviors, and
the supporting role of communication maintenance in col-
laborative activities. The prevalence of negotiation cycles
implies that students frequently engage in refining and clar-
ifying their ideas, which may reflect productive collaborative
engagement. The fact that these cycles often begin or end
with off-task behaviors presents a more nuanced view. Nego-
tiation cycles that start or end with off-task behaviors raise
questions about whether these behaviors are always produc-
tive or if they indicate students are struggling to stay on
task.

Alternatively, off-task behaviors are not always considered
harmful to the collaborative process and could indicate
socio-emotional contributions meant to improve social rap-
port during group activities. The persistence of off-task be-
haviors appearing in many patterns may be an indication of
students having difficulty maintaining engagement during
open-ended discussions. These patterns may also be cap-
turing moments of periodic disengagement before students
return to the negotiation process. Finally, the fact that“Off-
task → Negotiating → Maintaining → Off-task → Main-
taining → Negotiating” has the highest positive feature im-
portance suggests that cycles incorporating both negotiation
and communication maintenance cycles may be beneficial for
learning outcomes. This could indicate that students who
engage in off-task behavior but ultimately reinforce group
cohesion through maintaining communication are able to
re-engage productively. Conversely, the lowest-scoring pat-
tern, “Off-task → Negotiating → Maintaining → Off-task
→ Negotiating”, lacks a communication maintenance cycle,
suggesting that when students disengage without a struc-
tured return to maintaining communication, the collabora-
tion may suffer. This highlights the potential importance of
mechanisms that help students re-engage meaningfully after
off-task moments, reinforcing the idea that off-task behav-
ior alone is not necessarily detrimental but must be balanced
with effective social and cognitive regulation (RQ3).

The structure of the causal graph suggests a strong inter-
connectedness among negotiation cycles, particularly those
that incorporate off-task behaviors. The presence of high-
weighted edges between these patterns implies that they fre-
quently co-occur or influence one another. Additionally, the
bidirectional influences among the negotiation cycles indi-

cate that these behaviors do not occur in isolation but are
part of an evolving collaborative dynamic, where off-task en-
gagement may sometimes serve as a transition point between
productive interactions rather than merely being disruptive.
The presence of intermediate nodes such as “Negotiating →
Maintaining→Off-task→Negotiating→Off-task”that me-
diate between other patterns suggests that certain behaviors
may act as transition points between productive and unpro-
ductive collaboration. Designing interventions that target
these intermediary stages could help redirect students to-
ward more effective collaboration sequences.

6.3.2 Game Trace Causal Graph
Causal graphs extracted from game trace data provide sev-
eral insights into students’ cognitive collaborative behaviors.
Many of the extracted patterns prominently feature social
interactions, indicating that communication plays a central
role in the learning process. This suggests that students fre-
quently discuss their exploration and problem-solving strate-
gies with peers while engaging in the game. We addition-
ally see exploration as a recurring element, appearing multi-
ple times across different behavioral patterns and often co-
occurring with representation and social behaviors. This
suggests that students repeatedly engage with the game en-
vironment before and after discussing their actions or an-
swering questions. Monitoring behaviors (M) appear in one
of the key sequences; however, it is inversely associated with
learning gains (-0.78). This could indicate that students who
rely too much on passive feedback from NPC conversations
may struggle to internalize key learning concepts if they are
not supplemented by actively engaging in exploration or dis-
cussion. We also see some variation in the frequency and
usage of “Representing and Formulating” behaviors (RF).
Some sequences include RF early in the pattern, such as
“EU1 → RF0 → Social1 → EU1 → Social1”, while others
include RF later or even omit it. This suggests differences
in students’ approaches where some students may engage
in early conceptualization before social interactions, while
others rely more on peer discussion before formulating re-
sponses. This variation may impact how effectively students
consolidate their understanding. Finally, the extracted pat-
terns reveal that exploration is a key driver of engagement
within the EcoJourneys learning environment. “Explo-
ration and Understanding” behaviors (EU) appear in every
major pattern, emphasizing that interaction with the game
environment is central to learning. The presence of EU mul-
tiple times within single sequences suggests that students
may iterate between exploration, receiving feedback, and
modifying their approach rather than progressing linearly.
This reinforces the importance of designing exploration-rich
learning environments where students are encouraged to test
hypotheses, seek additional information, and refine their un-
derstanding dynamically.

The structure of the game trace causal graph provides addi-
tional insights into the relationship between cognitive col-
laborative problem-solving behaviors. First, the bidirec-
tional associations suggest that students engage in an itera-
tive learning cycle where exploratory patterns often co-occur
with monitoring behaviors. This further supports the notion
that students often refine ideas through repeated interac-
tions rather than progressing linearly. The discovered causal
graph highlights two connections between cognitive behav-
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ioral patterns and student learning gains, with “EU1 →
RF0 → EU1 → Social1 → EU2” having a positive connec-
tion (0.23) to student learning outcomes. A strong negative
connection (-0.78) from “M0 → Social1 → EU1 → Social1”
to learning gains implies that certain types of monitoring be-
haviors may fail to support effective learning. Students may
be passively consuming feedback rather than actively inte-
grating it into their problem-solving processes. The presence
of both positive and negative influences on learning gain sug-
gests that a balance between exploration, representing and
formulating ideas, and communication is key. Too much
of any one behavior, especially repetitive social engagement
without deeper cognitive work, can lead to diminishing re-
turns. These findings underscore the importance of fostering
a balanced approach to collaborative problem solving, where
students are encouraged to engage in productive cycles of
exploration and reflection while avoiding unproductive be-
havioral loops.

7. LIMITATIONS
This work has two limitations. First, it only uses dialogue
and game trace information from 75 students, limiting the
generalizability of the current modeling approaches. Future
work should evaluate our predictive modeling and causal dis-
covery framework across a larger, diverse range of students.
Second, we chose the Peter-Clark algorithm for causal dis-
covery due to its well-established ability to infer causal re-
lationships in scenarios with a limited sample size. We omit
comparisons to alternative causal discovery methods; how-
ever, it would be important to evaluate how well these causal
relationships hold under different algorithmic assumptions
to improve the robustness of our derived insights.

8. CONCLUSION
Understanding how student behaviors influence learning
outcomes can aid in the development of effective collabora-
tive learning environments. However, this is challenging due
to the complex interplay between problem-solving actions
and dialogue, as well as the need for interpretable models.
Multi-view learning and causal modeling provide potential
avenues to address these challenges by integrating diverse
behavioral data sources and finding important collaboration
dynamics that drive learning outcomes. We have introduced
a multi-view predictive student modeling framework that
combines constraint-based sequential pattern mining with
causal discovery to extract interpretable behavioral features
from dialogue data and game-trace logs. By utilizing these
methods, we identify meaningful cognitive and social behav-
ioral patterns, improve predictive accuracy, and support the
interpretability of learning analytics models.

The results of empirical studies indicate that extracted be-
havioral patterns from cognitive and social data representa-
tions serve as effective predictors of student learning gains,
surpassing the predictive performance of a naive baseline
and models using raw data alone (RQ1). We also found that
game trace log information contains more effective predic-
tors of student learning gain than dialogue data. Moreover,
we find that multi-view modeling of student behaviors can
achieve improved performance over single-view approaches
when using deep learning models to more effectively iden-
tify cross-view relationships (RQ2). To better understand
the relationship between extracted behavioral artifacts and

student learning outcomes, we apply the Peter-Clark causal
discovery algorithm to provide a model-agnostic method to
find causal relationships from the data-generating process.
Extracted causal graphs identify key cognitive and social be-
havioral patterns that affect predictive modeling decisions
(RQ3). The causal graph analysis reveals that maintaining
communication, negotiating ideas, and managing off-task
behaviors are key predictors of learning outcomes, with off-
task behaviors potentially acting as transitional moments
in productive collaboration. The findings highlight the im-
portance of fostering learning environments that encourage
dynamic engagement and peer interactions. Additionally, a
balanced approach to collaborative problem solving, avoid-
ing unproductive behavioral loops, is essential for maximiz-
ing learning outcomes.

There are several promising directions for future work. First,
because the Peter-Clark algorithm may not fully capture the
complex and dynamic relationships between collaborative
behaviors and learning outcomes over time, extending the
causal discovery framework to incorporate temporal changes
in student behavior and contextual factors, such as time
spent on task or emotional states, could provide a deeper
understanding of how these relationships evolve. Second,
while dialogue and game trace data offer valuable insights,
integrating multimodal data, such as video data capturing
facial expressions, could offer a more holistic view of stu-
dent behavior and cognitive states. This would improve
the granularity of behavioral feature extraction and enhance
both predictive and causal modeling. Third, future research
should explore methods to improve model generalization,
such as using ensemble-based techniques or more effective
multi-view representation learning, particularly in the case
of multi-view neural networks (MVNN). Additionally, it will
be important to investigate how multi-view learning can be
used to uncover latent structures underlying collaborative
learning processes, offering educational researchers a power-
ful lens for examining the interplay between cognitive and
social dynamics. Finally, cross-view causal inference should
also be explored to determine how behaviors in one view,
such as gameplay patterns, influence or are influenced by
behaviors in another view, such as collaborative dialogue,
which can further improve causal discovery methods’ capa-
bilities to capture complex student collaborative problem-
solving dynamics.
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