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ABSTRACT
The aim of this paper is to provide tools to teachers for mon-
itoring student work and understanding practices in order to
help student and possibly adapt exercises in the future. In
the context of an online programming learning platform, we
propose to study the attempts (i.e., submitted programs)
of the students for each exercise by using trajectory visu-
alisation and clustering. To track the progress of students
while performing exercises, we build numerical representa-
tions (embeddings) of their programs, generate the trajecto-
ries of these attempts (i.e., the sequence of their attempts)
and provide an intuitive visualization of them. The advan-
tage of these representations is to capture syntactic and
semantic information that can be used to identify similar
practices. In order to describe these practices, we perform
a clustering of these attempts and generate a description of
each cluster based on the common instructions of the under-
lying programs. By studying a student’s trajectory for an
exercise, the teacher can detect if the student is in difficulty
and help him. Our approach can also highlight atypical so-
lutions such as alternative solutions or unwanted solutions.
In the experiments, we study the impact of using embed-
dings to identify common practices on two real datasets. We
also present a comparison of different dimension reduction
methods (PCA, t-SNE, and PaCMAP) for the purpose of
visualization. The experimental results show that code em-
beddings improve results compared to a classical approach,
and that PCA and t-SNE are the most suitable for visual-
ization.

Keywords
Programming learning environments, trajectories, code em-
beddings, clustering, visualization.

1. INTRODUCTION
In recent years, learning programming with online training
platforms has increased significantly [2, 3]. The context can
be online and massive or class-wide where students use the

same platform during classes. Students submit their pro-
grams to the platform which returns any syntactic or func-
tional errors based on test cases previously defined by the
teacher. The use of data from these platforms makes it pos-
sible to develop tools for monitoring and helping to learn
programming. There are a lot of works on the identification
and prediction of student dropout [7, 16], the prediction of
success (or failure) in exams [9], the management of hints
[22] and the analysis of pedagogical feedbacks [27]. The aim
of these tools is in particular to enable the teacher to be
more responsive and effective in their interventions.

In this context, our work aims to provide teachers with tools
for monitoring student work in order to help students as
early as possible and thus avoid the accumulation of gaps,
discouragement, and dropouts. We propose to follow stu-
dents as they complete exercises by analyzing their submit-
ted programs (i.e., attempts) for each exercise in term of
trajectory visualization and clustering.

To analyze the attempts, it is necessary to consider the se-
mantic aspect of the programs. To achieve this, we use
representation learning [6], approaches known to build se-
mantically rich representations of data. Initially developed
to capture semantic aspects in text, they have been adapted
to programs and other types of data. In our work, we con-
sider more particularly two approaches that generate numer-
ical vector representations of codes (embeddings) : Code-
BERT [15] and code2aes2vec [10]. We use these representa-
tions to visualize similar practices and generate the attempts
trajectories followed by students to solve an exercise. Three
trajectory representations are compared. The first one is
composed of the sequence of code embeddings represent-
ing each attempt submitted by the student. The second
one is a sequence of scores indicating the cosine similarity
between the submitted program and the teacher’s solution
based on the code embeddings. The last one is a more classi-
cal approach [23] that represents the student’s trajectory as
a sequence of scores based on the Levenshtein edit distance
between the submitted program and the solution using the
raw codes. In the experiments, we compare these represen-
tations on two real datasets. We also present a comparison
of different dimensionality reduction methods (t-SNE, PCA,
PaCMAP) [32] for visualization purposes.

In order to identify common practices of students to real-
ize an exercise, we also perform a clustering of attempts,
a clustering of trajectories and generate the description of
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each cluster based on the Abstract Syntax Trees (AST) of
the programs. The first clustering enables to identify similar
attempts. The keywords (”tokens”) common to programs in
a cluster are used to describe the cluster. The second clus-
tering of trajectories enables to highlight similar learning
paths. Thus, our approach allows to visualize and describe
the trajectories of students when solving an exercise, while
taking into account the semantics of the underlying code.

By studying a student’s trajectory for an exercise, we can
detect if the student is in difficulty so that the teacher can
intervene to help him. We also highlight atypical solutions
such as alternative solutions (correct solutions but not cor-
responding to the teacher’s) and unwanted solutions because
they do not correspond to what the teacher asked. These
detections can also lead the teacher to adapt an exercise
(precision of statements, addition of test cases, etc.).

The rest of the paper is organized as follows. Section 2
discusses related work. We present our method to analyse
students’ attempts in Section 3. We compare the proposed
representations of attempts and the dimensionality reduc-
tion methods in Section 4. We conclude and give some per-
spectives in Section 5.

2. RELATED WORK
2.1 Analysis of Learning Trajectories
The analysis of learning trajectories, or knowledge tracing,
is a growing area in AI for education, aiming to predict fu-
ture student knowledge based on past performance to enable
personalized interventions. In [1], the authors review vari-
ous methods, including traditional Bayesian models and ad-
vanced deep learning techniques such as memory networks
and attention-based models, to improve teaching strategy
adaptation.

In [30], the authors introduce a visualization approach com-
bining the t-SNE algorithm and Levenshtein distance. By
calculating a distance matrix between each student’s at-
tempt, they apply t-SNE to visualize students’ programming
progress and categorize their activities at the class level.
This interactive approach allows instructors to explore indi-
vidual attempts and observe how students converge towards
the expected final solution. They also developed a cluster-
ing algorithm based on Dynamic Time Warping (DTW) to
identify common coding strategies among students. How-
ever, their approach doesn’t consider semantic aspects of
codes.

In [23], similarity calculations and clustering techniques like
k-means and the silhouette method are used to analyze learn-
ing trajectories based on the Damerau-Levenshtein distance
between student attempts and instructor solutions. This
method categorizes students into three groups: those who
give up quickly, those who persist, and those who succeed
efficiently. However, this approach focuses again on syn-
tax, ignoring semantics, which limits the depth of trajectory
analysis and does not offer detailed insights into the meaning
of the clusters formed.

In [25], an initial approach for visualizing trajectories was
proposed, followed by clustering attempts. It describes the
students’ code status at different stages. This method sug-

gests clustering the attempts. However, with this represen-
tation, it is difficult to group similar trajectories. In our
work, we propose an additional visualization of the trajec-
tories, alongside clustering and descriptions of the attempts,
which allows for better clustering and characterization, ul-
timately leading to a deeper understanding of the data.

To the best of our knowledge, there are not many papers
that take the same approach as ours, but there are still some
that explore similar concepts. These works also emphasize
the importance of visualizing and characterizing trajecto-
ries to gain a better understanding of student behaviors and
performance. While our approach differs in certain aspects,
particularly in the integration of representation learning,
clustering and visualization for trajectory analysis, it shares
common goals with these studies, focusing on improving the
interpretability of learning patterns through advanced visual
techniques.

2.2 Representation Learning from Codes
To effectively analyze learning trajectories, capturing the
semantics of students’ programs is crucial. Recent stud-
ies have utilized representation learning to capture the se-
mantics, adapting methods designed for text to work with
code. These approaches aim to leverage the context in which
”words” (or ”tokens”) are used to create representations in
the form of n-dimensional vectors (embeddings). This abil-
ity of embeddings to capture both semantic and syntactic
aspects of code has been highlighted in [21]. In this work,
the authors propose a framework for evaluating embeddings
based on a 2D visualization of embeddings, a quantitative
assessment of how well programs are grouped (e.g. programs
are grouped by exercise), and an evaluation of the consis-
tency of the embedding space using semantic and syntactic
analogies.

One popular representation learning method is Doc2Vec [20],
which extends this principle to learn document representa-
tions simultaneously. A more specialized approach, Code-
BERT [15], adapts the BERT architecture, originally de-
signed for text, to source code. BERT’s bidirectional frame-
work enables it to capture contextual semantics effectively,
making it highly effective for natural language processing
tasks. CodeBERT modifies the tokenization method to han-
dle source code.

Another interesting model is code2aes2vec [10], which uses
both the execution trace and the Abstract Syntax Tree (AST)
of code to generate programs embeddings. Figure 2 illus-
trates a example of AST corresponding to the code presented
in Figure 1. Based on the Doc2Vec architecture, it captures
not only the syntactic aspects of code but also its logical
structure, providing a richer and more meaningful vector
representation.

Research on representation learning often employs dimen-
sionality reduction algorithms to visualize high-dimensional
embeddings (n-dimensional vectors) in a 2-dimensional space
[32]. Common algorithms used include t-SNE , PaCMAP,
and PCA.

PCA (Principal Component Analysis) [26] is a widely used
linear technique that reduces dimensionality by identifying
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Figure 1: An example of raw code.

Figure 2: The abstract syntax tree for the code of Figure 1.

the principal components, or directions of maximum vari-
ance, in the data. While PCA is effective in retaining the
most significant aspects of the data, it may struggle to cap-
ture complex nonlinear relationships compared to other meth-
ods. t-SNE (t-distributed Stochastic Neighbor Embedding)
[31] is a nonlinear dimensionality reduction technique, pri-
marily used for visualizing high-dimensional data. It aims
to preserve local structures by placing similar points close
together in the reduced space (usually 2 or 3 dimensions). t-
SNE minimizes the divergence between probability distribu-
tions in high and low dimensions to achieve this. PaCMAP
(Pairwise Controlled Manifold Approximation) [33] improves
on t-SNE by balancing the preservation of both local and
global structures. Unlike t-SNE, which focuses mainly on
local relationships, PaCMAP optimizes the preservation of
both short-range and long-range relationships, providing a
better representation of the overall data structure while main-
taining local coherence.

3. ANALYZING TRAJECTORIES OF STU-
DENTS’ ATTEMPTS

In this section, we present the proposed method to analyse
students’ attempts based on program representation learn-
ing. The general overview of the method is shown in Fig-
ure 3. We compute various embeddings from the data us-
ing different models, such as code2aes2vec and CodeBERT.

Table 1: Characteristics of the datasets
Dataset NC1014 NC5690 Dublin
Nb. programs 1,014 5,690 42,487
Avg nb. test cases

13.1 10.4 3.7
per program

Nb. correct programs 189 1,304 19,961
Nb. exercises 8 66 65

These embeddings enable us to construct trajectories using
different methods. To gain deeper insights into student be-
havior and their learning paths, we propose multiple visual-
izations. Additionally, we apply clustering techniques at two
levels. The first clustering groups coding attempts based on
their embeddings, allowing us to develop an algorithm that
categorizes attempts according to their coding patterns (e.g.,
a group predominantly using loops). The second clustering
is applied to trajectories, grouping similar learning paths to-
gether. By leveraging both the clustering of attempts and
trajectories, along with our proposed algorithm, we can ef-
fectively characterize students’ coding behaviors. The im-
plementation and the datasets corresponding to this work
are available on GitHub1.

3.1 Datasets
In this study, we utilized two real world datasets (cf. Ta-
ble 1). The first dataset is derived from the use of an online
platform for an introductory algorithm course at the Uni-
versity of New Caledonia [10]. This dataset, called NC5690,
comprises 5,690 student attempts from 56 students across
66 Python programming exercises, including instructor so-
lutions and unit tests. For our analysis, we used a smaller
version of this dataset, called NC1014, containing 1,014 at-
tempts across 8 exercises selected for their algorithmic di-
versity and balanced volume (with 100 to 150 programs per
exercise). The second dataset, called Dublin, corresponds
to student programs from the University of Dublin, from
2016 to 2019. While the original corpus contains nearly
600,000 Python and Bash programs, we used a subset that
has been semi-automatically enriched with test cases (not
initially provided). Each program has passed unit tests,
which are small, automated checks that verify the correct
functioning of individual pieces of code, such as functions or
methods, in isolation. The resulted dataset includes 42,487
student attempts, 65 exercises, and 508 students.

3.2 Code Embedding
A code embedding specifically represents programming code
as numerical vectors, aiming to encode its syntactic struc-
ture and semantic behavior. Examples include “tiny” mod-
els such that the code2aes2vec model, which learns em-
beddings from execution traces and abstract syntax trees
(ASTs) in the training platform, and “big” models such that
the CodeBERT model, pre-trained on large corpora of codes
(GitHub) and contextual information. In this study, we use
both code2aes2vec and CodeBERT to analyze and compare
the representations of students’ programming attempts. By
comparing the embeddings generated by these two methods,
we aim to explore the differences and similarities in how they
capture the key characteristics of students’ code.

1https://github.com/sidir13/Trajectory_student_
analysis
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Figure 3: General overview of the proposed method.

3.2.1 Visualization of Attempts
To visualize the embeddings, we use the t-SNE dimension-
ality reduction algorithm which project the 100-dimensional
vectors as points in a 2D space. Even if these two dimen-
sions are not directly explainable, this visualisation enables
to estimates the distance of the students programs from each
other, and their distance from the teacher’s solution. Since
this representation space captures the syntax and semantics
of programs, it is thus possible to see the different types of
attempts. For example, Figures 4 and 5 present the result
for code2aes2vec and CodeBERT, respectively. In Figure
4, we observe that the groups correspond to the different
exercises, which suggests that the representation learning
algorithm (code2aes2vec) has successfully captured the se-
mantics of the programs despite relatively different syntaxes.
In Figure 5, the results with CodeBERT are similar, but the
clusters are less distinct. In particular, the clusters corre-
sponding to the exercises are not as well-separated or defined
as those produced by code2aes2vec, aligning with previous
findings [10]. These observations emphasize the ability of
both models to capture the syntax and semantics of code
(as highlighted in the work of [21] discussed previously), val-
idating their usefulness for analyzing students’ trajectories
in detail.

3.2.2 Clustering of Attempts and Description of Clus-
ters

We perform clustering of the embeddings in order to iden-
tify common practices among the programs submitted for
the same exercise. To facilitate the use of this clustering
by instructors, we also propose a method to describe these
clusters based on their common instructions.

To perform the clustering, we use the Mean Shift algorithm
[11], a variant of K-Means. Mean Shift has the advantage
of not requiring the prior determination of the number of

Figure 4: t-SNE visualization of the embeddings computed
by code2aes2vec.

clusters, as it autonomously determines them. In addition,
we obtained more exploitable results compared to other al-
gorithms such as K-Means [17] or DBSCAN [14].

To describe a cluster, we exploit the AST of the programs
associated with it. The keywords of the language (if , while,
for, etc.) are extracted, along with the operators associated
with them (in, notin, =, etc.). For example, if a program
contains the statement if a > b, it will be characterized
by (if, >). Thus, each program is characterized by a set
of keywords corresponding to its statements. Then, each
cluster is described by the common statements shared by all
the programs it contains (by taking the intersection of the
sets of statements). This description of programs can easily
be extended to incorporate the frequency of occurrence of
statements in the code. For example, a program with two for
val in list loops could be represented as ((for, in), frequency:
2). This additional information provides the teacher with
more details about the code submitted by the student.
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Figure 5: t-SNE visualization of the embeddings computed
by CodeBERT.

Figure 6: MeanShift clustering on embeddings for the ”nb-
Syllables” exercise (t-SNE visualization).

By examining the common points between the attempts of
a given cluster, it is possible to gain insights into the ap-
proach followed by a group of students to solve an exercise.
Furthermore, it is common for a student to be associated
with different clusters during their various attempts to solve
the exercise. These changes in clusters are particularly in-
teresting as they may reflect different ways of approaching
the problem. Our approach allows us to capture this and
describe these potential methodological shifts.

Figure 6 highlights three types of attempts for the ”number
of syllables” exercise. The first group (orange, on the right)
is described by the instructions (’for’, ’range’), (’augas-
sign’, ’nonetype’), (’if ’, ’notin’), (’assign’, ’list’) and (’as-
sign’, ’subscript’). The second cluster (green, at the bottom)
corresponds to the teacher’s solution and includes some in-
structions like (’for’, ’name’), (’return’, ’nonetype’), (’if ’,
’eq’), (’assign’, ’binop’), (’assign’, ’constant’), (’if ’, ’in’) and
(’if ’, ’nonetype’). The third cluster (blue, on the left) lacks
distinctive features compared to the other groups. This sug-
gests two possibilities for the students in the third group: ei-
ther they solved the exercise without relying on the teacher’s
specific approach, resulting in atypical solutions, or they
are stuck at a certain level of understanding and failed to

identify features present in other clusters, especially the
teacher’s. Upon closer inspection, all students managed to
get at least one correct answer, so these could be considered
atypical solutions rather than indicative of a fundamental
misunderstanding. In the next section, another type of vi-
sualization allows us to detect these atypical solutions more
clearly.

3.3 Trajectories of Attempts
We generate the trajectories followed by students. A trajec-
tory is defined as a sequence of attempts for a student on a
particular exercise. We propose three strategies to construct
trajectories of attempts. The first type of trajectory corre-
sponds to a sequence of the embeddings of attempts (raw
embedding method). The second one is a sequence of the
cos2 distances between each attempt and the teacher’s solu-
tion using embeddings (cos2 method). The last one is a se-
quence of the Levenshtein distances applied to the attempts
and the solution using raw code (Levenshtein method). In
the construction of the trajectories, we focus on the order
of the attempts rather than their timing. This decision is
driven by the variability in submission dates, as students ac-
cess the platform both in-person and remotely. If exercises
had been completed within a more controlled time frame,
submission dates could have been used for analysis, as seen
in [23]. Our approach is generic and applicable to both se-
quences of embeddings and time series of embeddings.

3.3.1 Visualization of Attempts Trajectories
In order to guide teachers in analyzing students’ responses,
we propose two types of visualizations of learning trajecto-
ries.

The first one is inspired by the visualization proposed in
[23]. It highlights the similarity (using cos2 and Levenshtein
methods) between the student’s attempt and the teacher’s
solution, in the form of a time series (cf. Figure 7). The
second one shows the position in the embedding space of
the student’s attempt among all other attempts, along with
the solution (cf. Figure 8).

Contrary to [23], the similarity used between the attempt
and the solution is the cosine similarity between the two
embedding vectors, rather than the Levenshtein distance
between raw codes, which allows a better capture of both
syntactic and semantic similarity. We also display the cor-
rect and incorrect attempts of the student in different colors
(cf. Figure 7). In fact, several programs can be solutions
to the same exercise, even if the teacher only records a sin-
gle solution in the platform. These solutions from students
are determined by the unit tests designed by the teacher,
which are associated with each exercise. It is important to
have this information because the student may present al-
ternative solutions that are potentially far from the recorded
solution. These could be atypical solutions, solutions based
on poor practices, or incorrect solutions (if the unit tests
were poorly designed). The teacher can thus detect these
student solutions and study them in more detail. Let us
note that this visualization can also be significantly adapted
to highlight the distance from the closest solution, whether
it is provided by the teacher or another student.

Figure 7 demonstrates the first visualization type, revealing
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Figure 7: Cosine similarity between attempts and the solution
(correct attempts in blue, incorrect attempts in red).

Figure 8: Trajectories of students’ attempts on the ”nbSylla-
bles” exercise using PCA and code2aes2vec embeddings.

variations in similarity with several programs close to the
teacher’s solution. Notably, the student’s first attempt is
closest to the teacher’s solution, but subsequent attempts
deviate. Despite submitting three ”correct” programs that
pass unit tests (the blue points), these solutions are far from
the teacher’s solution, suggesting they may be atypical so-
lutions or due to poorly designed tests. This visualization
helps teachers analyze student progress and identify areas
where further support is needed.

We propose a second visualization in the form of a 2D map.
The goal is to provide an overview of the different attempts
made for a given exercise. It displays the embeddings of the
submitted programs (100-dimensional vectors in our exper-
iments) as points in a 2-dimensional space. To achieve this,
it is necessary to use dimensionality reduction techniques,
such as t-SNE, PCA, or PaCMAP [32]. These points are
then connected by arrows representing the successive sub-
missions of a student to solve an exercise (i.e., the trajec-
tory). This visualization allows the teacher to better un-
derstand how a student’s attempts evolve, how they may
approach or diverge from different solutions, and how they
position themselves (syntactically and semantically) in rela-
tion to the trajectories of other students. This methodical
and multidimensional approach enables the proposal of per-
sonalized support strategies based on a deep understanding
of the students’ learning trajectories.

Figure 8 illustrates the second visualization approach, show-
ing the trajectories of three students for the ”number of
syllables” exercise. The embedding trajectories highlight
how students progress towards the teacher’s solution, and
how a student changes his code over the course of attempts.
Points that appear in darker colors represent successful at-
tempts, while lighter-colored points indicate unsuccessful
ones. Only Student 18 arrives at a correct program after
being blocked between two relatively similar types of at-
tempts. Conversely, Student 15 first proposes several pro-
grams that are relatively far from the teacher’s solution,
then approaches the teacher’s solution, but does not reach
it. Student 6 submits several incorrect programs (which
are very similar) without progressing towards the solution.
These trajectories can suggest that Student 15 and Student
6 are engaged in trial-and-error learning, emphasizing the
need for targeted support to overcome final obstacles and
achieve a success. Figure 8 offers strong pedagogical value,
as it enables teachers to observe not only whether a stu-
dent succeeds or fails, but also how they progress—or fail to
progress—toward a solution. Rather than simply tracking
a sequence of right or wrong answers, it reveals the direc-
tion of the student’s movement within the semantic space of
the task. This allows for the identification of distinct learn-
ing profiles, such as students who experiment with various
strategies, those who remain stuck, and those who quickly
converge on the correct approach. Such insights are interest-
ing for adapting teaching interventions, providing targeted
support, and offering differentiated feedback. Moreover, the
visualization facilitates a more refined diagnosis of learning
difficulties; for instance, a student may appear close to the
solution yet eventually stagnate, signaling a critical need
for timely assistance—something that linear visualizations
often fail to capture.

The first visualization shows the progression of student’s
programs in relation to the teacher’s solution, focusing on
similarity, while the second illustrates the positioning of stu-
dent attempts within the overall space of all attempts for the
exercise.

3.3.2 Clustering of Attempts Trajectories
After obtaining the different trajectories using the methods
based on raw embeddings, cos2, and Levenshtein distance,
clusterings are performed to observe similarities across the
trajectories. Each clustering is done exercise by exercise,
rather than globally. The used clustering algorithm is Time-
SeriesKMeans [18]. Several algorithms have been tested
(MeanShift [11], K-Means [17], DBSCAN [14], etc.), but
they struggled to perform coherent grouping. Indeed, for an
exercise with, for example, 15 trajectories, we have obtained
more than ten different clusters, a problem that did not oc-
cur with TimeSeriesKMeans. Clustering trajectories helps
group similar sequences of student attempts to understand
how they succeed (or fail) in completing their exercises.

We performed clustering using the three methods (raw em-
beddings, cos2, and Levenshtein), as explained earlier. We
can first observe that, for the method based on Levenshtein
distance or cos2 similarity (cf. Figures 10 and 11), we find
exactly the same clustering of trajectories. However, the
clustering based on embeddings (cf. Figure 9) groups the
trajectories differently from the other methods. The method
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Figure 9: Clustering of trajectories based on embeddings us-
ing TimeSeriesKMeans (PCA visualization) on ”elemGeo”ex-
ercise.

Figure 10: Clustering of trajectories based on the cos2

method using TimeSeriesKMeans (PCA visualization) on ”el-
emGeo” exercise.

based only on embeddings thus offers a different perspective
compared to the other two methods. The key question is
whether it produces a more meaningful and accurate clus-
tering.

To address this, in the next section, we compare the methods
to find which method yields the most relevant clustering.

4. EXPERIMENTAL COMPARISON
4.1 Comparison of the Attempts Representa-

tions
After performing the clusterings, exercise by exercise, us-
ing trajectories based on raw embeddings, cos2 similarity
(based on embeddings), and Levenshtein distance (based on
raw code), we then compare these methods to observe which
one provides the most efficient grouping during the cluster-
ing. To do this, we use methods that calculate intra-cluster
and extra-cluster distances, such as the silhouette score [28],
the Davies-Bouldin index [12], and the Calinski-Harabasz in-
dex [8]. The silhouette score measures how similar an object

Figure 11: Clustering of trajectories based on the Levenshtein
method using TimeSeriesKMeans (PCA visualization) on ”el-
emGeo” exercise.

is to its own cluster compared to other clusters. It ranges
from -1 to +1, where a value closer to +1 indicates that the
object is well-clustered, while a value closer to -1 suggests
poor clustering. The Davies-Bouldin index evaluates the
average similarity between each cluster and its most similar
cluster, where lower values indicate better clustering results.
Lastly, the Calinski-Harabasz score (also known as the Vari-
ance Ratio Criterion) measures the ratio of between-cluster
dispersion to within-cluster dispersion. Higher values indi-
cate more distinct clusters, with well-separated and com-
pact clusters being preferred. We then compute the sum of
their scores (the total silhouette score for all exercises, the
total Davies-Bouldin index, and the total Calinski index).
A higher value for silhouette and Calinski scores indicates
better results, while a lower Davies-Bouldin index indicates
better clustering performance.

For trajectories based on cos2 similarity and Levenshtein
distance, no algorithm transformation is needed, as they are
directly taken into account. For the method using the em-
beddings, we have reprogrammed these different algorithms
to accept our embedding trajectories as input. Instead of
considering a trajectory as a vector for the cos2 and Leven-
shtein methods (where we simply have a list of scores), we
treat a trajectory as a matrix where each row corresponds to
an embedding (a single attempt). We thus implement these
different scoring methods using matrix distance for the em-
bedding trajectories.

As a baseline, we also created random embeddings. For
each existing embedding, we took the minimum and maxi-
mum values found. We then generated embeddings of length
100 with random values between the minimum and maxi-
mum. Afterward, we recomputed our methods using these
new random embeddings. We labeled the method using ran-
dom data as ”method random” in the tables presented the
results.

Each column in Table 2 represents a metric used to evalu-
ate the quality of the clustering. We can see in this table
with the first dataset (NC5690), the embeddings method
outperformed the other two methods, except for the Davies-
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Table 2: Clustering evaluation according to the different
methods on the NC5690 dataset and 10% of the Dublin
dataset (4,248 attempts, noted DB)

Method Silouhette Davies-Bouldin Calinski
Embedding NC 27.23 60.51 20,673.25
cos2 NC 2.21 127.56 417.15
Leveinshtein NC 24.73 37.17 1,521.52
Embedding DB 54.23 61.14 53,063.23
cos2 DB 64.91 27.72 22,800.53
Leveinshtein DB 61.61 33.37 70,965.99
Embedding random 20.74 112.13 562.97
cos2 random -0.75 160.32 55.74
Leveinshtein random 2.61 153.21 236.74

Figure 12: Silhouette score according to the percentage of
used data (number of attempts).

Bouldin index. This indicates that clustering using embed-
ding trajectories generally results in better groupings than
using raw code (i.e., Levenshtein). When testing on a second
dataset (10% of the Dublin dataset in Table 2), the cos2-
based method, which also incorporates embeddings, pro-
duced the best results, rather than raw embeddings. We can
observe that embeddings (pur embedding method or cos2

method) provide a significant contribution and differ from
raw code in their impact. This distinction becomes clear
when analyzing the results, as they demonstrate that the
use of embeddings leads to the formation of higher-quality
clusters. This improvement is particularly noticeable when
evaluating the different clustering scores presented, which
indicate a more structured and relevant grouping of data
compared to using raw code alone.

We also examined how clustering scores evolved based on the
number of attempts in the Dublin dataset (in Figures 13, 14
and 12). For the embeddings method, significant variation in
the Calinski-Harabasz index suggested that the addition of
new attempts might either introduce noise or improve clus-
tering by logically continuing distant attempts. The Davies-
Bouldin index increased while the Silhouette score decreased
as the dataset grew, indicating a decline in clustering qual-
ity.

For the cos2 method, the Calinski-Harabasz index dropped,
the Silhouette score remained stable, and the Davies-Bouldin
index sharply increased, suggesting a degradation in clus-
tering. The Levenshtein method showed similar trends to
the embeddings method, with stable Silhouette scores and a

Figure 13: Davies-Bouldin index according to the percentage
of used data (number of attempts).

Figure 14: Calinski-Harabasz index according to the percent-
age of used data (number of attempts).

modest increase in the Davies-Bouldin index. This degrada-
tion of the Calinski-Harabasz and Davies-Bouldin scores is
due to their higher sensitivity to intra-cluster variability. As
more data is added, the clusters become less compact and
more dispersed, increasing intra-cluster heterogeneity. This
results in a decrease in the Calinski-Harabasz index and an
increase in the Davies-Bouldin index, indicating a decline
in clustering quality. The additional data points introduce
greater variability within clusters, making them less well-
defined while also reducing the overall separation between
them.

Overall, embedding-based methods (raw embeddings and
cos2) outperformed the Levenshtein method in Silhouette
and Calinski scores. However, the Levenshtein method re-
mained superior for the Davies-Bouldin index, particularly
as the dataset size increased. Despite discrepancies caused
by multi-function attempts in the Dublin dataset, embed-
ding based methods consistently delivered superior results,
confirming that embeddings offer more valuable information
than raw code alone.

4.2 Comparison of the Dimensionality Reduc-
tion Algorithms

In this section, we study the visualization of high-dimensional
embeddings in two dimensions using three dimensionality re-
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Table 3: Scores obtained for t-SNE, PCA, and PaCMAP on
NC1014 (NC) and Dublin (DB) datasets

Method t-SNE PCA PaCMAP
Real embedding NC 3,299 3,130 3,458
Real embedding DB 42,480 39,050 46,024
Permutation NC 15,949 15,974 16,176
Permutation DB 215,483 215,535 216,109

duction algorithms: t-SNE, PCA, and PaCMAP. The main
challenge is the loss of information during reduction, which
is addressed by comparing the algorithms based on their
ability to minimize this loss.

The first method groups embeddings by exercise and calcu-
lates the similarity between each embedding and all others
within the same exercise, for both the original (before us-
ing dimensionality reduction algorithms) and reduced em-
beddings (after using dimensionality reduction algorithms).
The absolute difference in similarity scores is then summed
to generate an overall error score for each algorithm.

The second method (denoted ”Permutation” in Table 3) con-
siders the order of the neighbors of an attempt, rather than
their distance. For each exercise, it assigns random indices
to the different attempts. For a given attempt (an embed-
ding), it lists the closest attempts in the original embedding
space using the Euclidean distance. It then does the same in
the embedding space reduced by the different visualization
approaches. Then, it calculates the number of permutations
needed to go from the second sequence to the first. This
number represents the number of changes to be made to
correct the neighborhood of the attempt so that it matches
that of the original embedding space. Thus, fewer permu-
tations indicate better performance. This method will do
the same for all attempts and sum the number of permuta-
tions. For example, if for Attempt 7, the closest attempts
in the embedding space are the attempts 7, 1, 8, 9, 6, and
those in the visualization space (embedding space reduced
in 2 dimensions) are the attempts 7, 8, 1, 9, 6, then only one
permutation would be needed to align the two sequences.

Both methods aim to identify the algorithm that best pre-
serves the original data structure while reducing its dimen-
sions, with the least information loss being the key measure
of effectiveness. In summary, the lower the value is, the less
information is lost during the application of the dimension-
ality reduction algorithm.

Table 3 presents the results. For the first method, PaCMAP
achieves the highest score, significantly underperforming the
other two methods, which show similar results. This sug-
gests that PaCMAP might lose substantial information dur-
ing dimensionality reduction. Since PCA achieved the low-
est score, it suggests that it is the algorithm that lost the
least amount of information. The second method (permu-
tation) shows the same result for PaCMAP, being the one
of the three that loses the most information. However, sim-
ilar results are shown for PCA and t-SNE, although t-SNE
performs slightly better in this case.

It is difficult to conclude that PCA is better than t-SNE, or
vice versa, but based on the results from the first method,

where PCA achieves better scores, we may later favor PCA
as the dimensionality reduction algorithm. Further investi-
gation could be conducted on the results obtained from PCA
to gain a deeper understanding of its performance.

5. CONCLUSION
In this paper, we analyze programs submitted by students
on an online learning platform, by considering the sequences
of attempts as trajectories. We study how representation
learning and dimensionality reduction approaches can help
teachers in visualizing and understanding students’ learning
practices.

More precisely, we have considered three types of representa-
tions for attempts: the submitted program embedding (i.e.,
a vector representation), a score corresponding to the cosine
similarity between the submitted program and the teacher’s
solution using code embeddings, and a score indicating the
similarity with the teacher’s solution using raw codes and
the Levenshtein distance. Based on these representations,
we have performed clustering of attempts and trajectories
in order to capture similar practices between the students.
The experiments on two real datasets have shown that us-
ing embeddings (”raw embeddings” or ”cos2-based”) give the
best results.

For trajectory analysis, we also have proposed several types
of visualization allowing the teacher to follow the progress
of a student when carrying out an exercise. These visual-
izations can allow the teacher to detect if a student is in
difficulty (like a blocked situation) so that he can help him.
They can also highlight atypical solutions such as alterna-
tive solutions (correct solutions but not corresponding to the
teacher’s solution) and unwanted solutions because they do
not correspond to what the teacher asked. These atypical
solutions can lead the teacher to refine an exercise (preci-
sion of the statements, addition of test cases, ...). On the
studied datasets, we have also compared several dimension
reduction algorithms (PCA, t-SNE, and PaCMAP) for visu-
alization purposes. We have observed that PCA and t-SNE
are the most suitable.

These visualizations lay the groundwork for developing tools
that support pedagogical analysis. Eventually, such visual-
izations could be integrated into a teacher dashboard, of-
fering features such as individual or group trajectory views,
automatic indicators of stagnation or atypical solutions, and
suggestions for grouping students based on their strategies or
error types. The aim is to assess the readability and usabil-
ity of these visualizations for teachers who are not experts in
visual analytics, to evaluate their impact on teaching prac-
tices and student learning, and to refine the visualizations
based on user feedback.

A major perspective of this work is to provide teachers
explainable embeddings’ dimensions, and trajectories. Ex-
plainability is an important topic actually in AI [5, 19, 13,
4] since current neural network based approaches are mainly
black boxes. For this, an idea is to adapt the works of [24,
29] to provide explainable dimensions by generating non-
negative sparse embeddings. Using such approach, we could
propose an interactive visualization where the two dimen-
sions of analysis displayed on the graph would be chosen by
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the teacher according to the aspects he wishes to analyze.
We will also work on adapting time series classification al-
gorithms to detect students on ”wrong” trajectories early,
and integrating data on the student profile in the analysis.
We will create other datasets in order to extend the field of
application, for example, to other programming languages.
We will integrate our propositions into a online learning plat-
form to provide decision support tools for teachers and to
enable real-time interventions.
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