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ABSTRACT

In an educational setting, an estimate of the difficulty of
Multiple-Choice Questions (MCQs), a commonly used strat-
egy to assess learning progress, constitutes very useful infor-
mation for both teachers and students. Since human assess-
ment is costly from multiple points of view, automatic ap-
proaches to MCQ item difficulty estimation are investigated,
yielding however mixed success until now. Our approach
to this problem takes a different angle from previous work:
asking various Large Language Models to tackle the ques-
tions included in three different MC(Q datasets, we leverage
model uncertainty to estimate item difficulty. By using both
model uncertainty features as well as textual features in a
Random Forest regressor, we show that uncertainty features
contribute substantially to difficulty prediction, where dif-
ficulty is inversely proportional to the number of students
who can correctly answer a question. In addition to show-
ing the value of our approach, we also observe that our
model achieves state-of-the-art results on the USMLE and
CMCQRD publicly available datasets.
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1. INTRODUCTION

Multiple-Choice Questions (MCQs) are commonly used as
a form of assessment across educational levels. This is not
surprising, as they are trivial to grade and can effectively as-
sess a student’s knowledge, as long as they are designed well
[6]. Naturally, an aspect that significantly affects an MCQ’s
quality is its difficulty (broadly determined by the students’
success answering the question item). Intuitively, items that
are too easy do not sufficiently challenge students, while
very difficult items lead to frustration and demotivation im-
pairing the learning process [17]. However, estimating an
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Figure 1: Approach overview: Predicting difficulty of
Multiple-Choice Question items using textual features and
uncertainty of LLM test-takers.

<0.51,..,0.23>

item’s difficulty is not trivial. In fact, students, and espe-
cially teachers, are not great at estimating how many of the
test-takers will select the correct answer, given a question
[30]. While field-testing question items is a viable solution,
it is usually expensive, both in terms of time and resources.

Computational methods, including Large Language Models
(LLMSs), have had some success in assessing the difficulty of
MCQs [1]. At the same time, the task remains challenging,
as shown by a recent shared task on automated difficulty
prediction for MCQs [36], where most submitted systems
performed barely above some simple baselines. The goal of
the current work is to tackle the task of item difficulty esti-
mation using a minimal experimental setup showcasing the
usefulness of model uncertainty for this task. We do this
by obtaining a score for the uncertainty LLMs exhibit when
answering a variety of MCQs and use it, in combination
with basic text and semantic features, to train a regressor
model. This expands on previous findings which showed a
correlation between model and student perceived difficulty
[40], paired with the intuition that both syntactic and se-
mantic features are integral to this task [1]. We focus on
factual MCQs, as they provide more objective assessment
than open-ended questions, while still offering more com-
plexity than True/False questions where the a baseline ran-
dom chance is 50%. In contrast, MCQs can follow various
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formulations and the incorrect choices play a significant role.
Lastly, this choice is also motivated by dataset availability,
as explained in Section 3.

It is worthwhile explicitly mentioning that in the current
work, the term “uncertainty” is used to encompass both
1st Token Probability and Choice-Order Probability metrics
(see Section 4.2 for details.) These measures are taken to
broadly represent the inverse of model confidence. While ac-
curately determining the uncertainty of an LLM is an open
field of research, previous research suggests that both 1st
Token Probability [22] and Choice-Order Probability [40]
correlate well with model correctness in the MCQ setup.
These findings also hold in the current experimental setup,
as shown in Appendix A.

Our Contribution. The contribution of our work is twofold.
First, thanks to extensive experiments with a variety of
LLMs and feature analysis using a regressor model (Ran-
dom Forest Regressor), we showcase that model uncertainty
is a useful proxy for item difficulty estimation on three dif-
ferent question sets assessing both factual knowledge and
reading comprehension. Second, as a byproduct of our ex-
periments investigating model uncertainty we yield a model
which achieves best results to date on the BEA 2024 Shared
Task dataset as well as the CMCQRD dataset. This model,
together with all experimental code, is made available to
the community for replicability and future extensions. We
believe that our conceptual insight (model uncertainty as a
useful signal for item difficulty), as well as our practical con-
tribution in terms of an existing modular system, will foster
further improvements in the task of MCQ automatic diffi-
culty estimation, which is core in the educational setting.'

2. RELATED WORK

The task of estimating the difficulty of MCQ items has been
explored from various viewpoints in the literature [1]. Most
commonly this task is tackled by training a model on a set
of syntactic [20, 8] and/or semantic features [34, 10]. Fur-
thermore, the majority of studies focus on the field of Lan-
guage learning [3, 9] which is inherently different to factual
knowledge or reading comprehension examinations. While
the task of difficulty estimation has been widely explored,
it remains challenging as was also seen in the recent “Build-
ing Educational Applications” (BEA) shared task on “Au-
tomated Prediction of Item Difficulty and Item Response
Time”, where simple baselines were overall only marginally
beaten [36]. In this task, a variety of approaches were ex-
plored with the focus ranging from architectural changes to
data augmentation techniques. Notably, the best perform-
ing team (EduTec) used a combination of model optimisa-
tion techniques, namely scalar mixing, rational activation
and multi-task learning (leveraging the provided response
time measurements also provided in the USMLE dataset)

ul

Most similar to our work is the study by Loginova et al.
[12], who also explore the use of confidence of language
models to estimate question difficulty. While similarities

!Code available at: https://github.com/LeonidasZotos/
Are-You-Doubtful-Oh-It-Might-Be-Difficult-Then.
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exist, the current research deviates considerably from this
study. Whereas Loginova et al. focus on training and cal-
ibrating Encoder-Only Question-Answering models, we in-
stead examine “off-the-shelf” Decoder-Only models, which
inherently incorporate a greater amount of factual knowl-
edge as a byproduct of their language modeling objective
[37]. Additionally, we broaden the research scope beyond
language comprehension to include factual knowledge un-
derstanding, through the use of three datasets that assess
knowledge across different education levels. Finally, rather
than relying on proxied comparative assessments — where as-
sessors classify questions as “easy” or “difficult” — we leverage
fine-grained, continuous difficulty labels, such as the propor-
tion of students answering a question correctly.

More broadly, there is an emerging “LLM-as-a-judge” field of
research, which, in general terms, explores the possibility of
using powerful LLMs as a substitute for human annotation
[39, 16]. For the task of question difficulty estimation, this
paradigm has been explored in the context of language com-
prehension by with some success [23]. More recently Raina
et al. achieved good results in the USMLE and CMCQRD
datasets through comparative assessments (i.e., given two
question items, the LLM’s task is to determine which is more
difficult) [24].

The present work is also influenced by the work by Zotos et
al., where a variety of analyses showed a weak, but statis-
tically significant, correlation between human and machine
perceived difficulty [40]. We take this one step further, by
testing a battery of different LLMs on item difficulty esti-
mation using their uncertainty as a signal, focusing on three
distinct question sets assessing both factual knowledge and
reading comprehension.

3. DATA

The three MCQ datasets that we use in our experiments are
described more in detail in the following subsections. The
first is a dataset on the domain of Biopsychology that is
not publicly available. The second is the publicly available
dataset used in the BEA 2024 Shared Task [36]. Lastly, we
also use the “Cambridge Multiple-Choice Questions Read-
ing Dataset” [15]. For brevity, we refer to the “Biopsy-
chology”, “USMLE” and “CMCQRD?” datasets respectively.
Our choice is driven by the requirement of having question-
sets along with students selection rates (serving as proxies
for item difficulty scores). Considering that, to the best of
our knowledge, the USMLE and CMCQRD datasets are the
only publicly available resources satisfying this requirement.
Additionally, we use a non-publicly available dataset as a
complement. This choice is in line with the observation by
AlKhuzaey et al., who note that most studies tackling this
task resort to using private datasets [1].

As will be explained in Sections 3.1 through 3.3, the three
datasets vary in multiple aspects, for example question for-
mulation, number of incorrect choices (also known as dis-
tractors) and knowledge specificity. Furthermore, to fa-
cilitate comparison with the findings from the BEA 2024
Shared Task, we use the train/test split as provided in the
shared task itself (70% training and 30% test samples). The
same proportions are also used for the Biopsychology and
CMCQRD datasets, as shown in Table 2.



Table 1: Examples questions from the Biopsychology, USMLE and CMCQRD datasets. Correct answer in green. Two examples

are given from the Biopsychology dataset to illustrate the phrasing variability.

Dataset

Question

Choices

Biopsychology

Biopsychology

USMLE

CMCQRD

Homeostasis is to ... as allostasis is to ...

If a drug has high affinity and low efficacy, what effect does it have
on the postsynaptic neuron?

A 65-year-old woman comes to the physician for a follow-up exami-
nation after blood pressure measurements were 175/105 mm Hg and
185/110 mm Hg 1 and 3 weeks ago, respectively. She has well-
controlled type 2 diabetes mellitus. Her blood pressure now is 175/110
mm Hg. Physical examination shows no other abnormalities. Antihy-
pertensive therapy is started, but her blood pressure remains elevated
at her next visit 3 weeks later. Laboratory studies show increased
plasma renin activity; the erythrocyte sedimentation rate and serum
electrolytes are within the reference ranges. Angiography shows a
high-grade stenosis of the proximal right renal artery; the left renal
artery appears normal. Which of the following is the most likely di-
agnosis?

Mum caught Jess by the arm. ‘Come with me,” she said. Jess followed
her through to the study and there on the table, propped against the
wall, was an unframed painting, unmistakably one of Grandpa’s, yet
unlike anything he had done before, and clearly nowhere near finished.
‘Do you know anything about this?’ said Mum. Jess shook her head.
‘I’ve never seen it before. I didn’t know he was working on anything.’
[...] And it was hard to imagine anyone, even a goddess, having any
influence over someone as wilful as Grandpa. ‘He doesn’t need me to
inspire him,” she said. ‘He’s been painting all his life.’

What impression is given of Jess’s grandfather in the final paragraph?

® constant; variable
® constant; decreasing
(© variable; constant

(@ agonistic
® antagonistic
© proactive
@ destructive

@ Atherosclerosis

® Congenital renal artery
hypoplasia

© Fibromuscular dysplasia
@ Takayasu arteritis

(® Temporal arteritis

® He lacks confidence in his
ability.

® He values Jess’s opinions.
(© He has a strong character.
@ He finds it hard to concen-
trate.

Table 2: Train and Test splits as used in our experiments. For
USMLE, we use the splits as provided in the competition [36].
For the Biopsychology and CMCQRD datasets, we randomly
sampled the questions, keeping the same percentage of train-
ing/testing samples as in USMLE. For the CMCQRD, we also
ensured that text passages present in the train set were not
present in the test set.

Dataset Train Test Total Public?
Biopsychology 573 246 819 b 4
USMLE 466 201 667 4
CMCQRD 552 241 793 4
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The item difficulty labels differ between the three datasets.
In the Biopsychology and CMCQRD datasets, difficulty is
measured by the proportion of students who answered cor-
rectly (a higher value indicates an easier question). This
measure is commonly known as the p-value of a question
item [30]. In contrast, the USMLE dataset originally uses
the inverse difficulty measurement, where a higher difficulty
label signifies that fewer students answered correctly. Addi-
tionally, a linear transformation is also applied on the target
labels of the USMLE dataset. While this difference does not
affect our approach, as in both cases difficulty is conceptu-
ally expressed by cumulative student performance, to allow
easier interpretation of our results we have transformed the
USMLE difficulty scores to their complements such that they
also reflect the proportion of correct responses per question.

Finally, CMCQRD is also equipped with an Item Response
Theory (IRT)-based metric, specifically scaled single pa-
rameter Rasch Model difficulty estimates. To the best of
our knowledge, while previous results exist using this IRT-
based metric [24], no prior work has attempted to estimate
p-values for this dataset. In this work, we conduct exper-
iments independently estimating both the p-value and the
IRT-based metric, achieving state-of-the-art results with the
latter, where prior results are also available.
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Figure 2: Distribution of question difficulty, based on the
proportion of students answering each question correctly. For
the USMLE dataset, only transformed p-values are available.

Figure 2 illustrates the distribution of difficulty across the
three datasets (focusing on the p-value for the CMCQRD
and not the IRT metric). As shown, while the datasets con-
tain questions of varying difficulty levels, they are generally
skewed toward easier questions. This trend is particularly
evident in the Biopsychology dataset, where 81% of ques-
tions were answered correctly by at least 60% of the student
population.

3.1 Biopsychology

The Biopsychology dataset originates from a course taught
in the 1st year of the Psychology undergraduate degree at
the Social Sciences Faculty of the University of Groningen,
covering content from the classic textbook “Biological Psy-
chology” by Kalat [11]. The dataset comprises of 819 MCQs
in total, of which 451 and 368 have two and three distractors
respectively. The data was collected from fifteen examina-
tions with an average of 261 examinees (Standard Deviation
of 184). This dataset has not been previously made public,
minimising the risk of data contamination (ensuring that
the LLMs used have not encountered the question set dur-
ing training). An important feature of this question set is
its high textual variability, with questions ranging from “Fill
two gaps” to “Wh-questions”. Two example questions are re-
ported in Table 1. Given that LLMs demonstrate sensitiv-
ity to input formulation [4], the presence of such variability
in the data improves generalisation of our method across
datasets.

3.2 USMLE

The United States Medical Licensing Examination (USMLE)
question set was developed by the National Board of Medical
Examiners (NBME) and Federation of State Medical Boards
(FSMB) [36]. It consists of 667 MCQs, each answered by
more than 300 medical school students. In contrast to the
Biopsychology dataset, the questions follow strict guidelines
(e.g., fixed structure, absence of misleading or redundant in-
formation in the question) and are presented with up to nine
distractor choices, with the majority of the questions having
five (525 items) or six distractors (71 items). An example
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instance is provided in Table 1. As can be seen, questions
of this dataset are longer (755 characters compared to 103
characters for the Biopsychology set) and are of technical
nature.

3.3 CMCQRD

The Cambridge Multiple-Choice Questions Reading Dataset
(CMCQRD) consists of 120 text passages, each accompanied
with a number of MCQs (total of 793 question items) aiming
at evaluating the student’s language comprehension abili-
ties. While the questions target various Common European
Framework of Reference for Languages (CEFR) proficiency
levels (B1 to C2), we do not leverage this additional infor-
mation in our experiments. Furthermore, compared to the
Biopsychology and USMLE datasets, question items in the
CMCQRD are the longest, with an average of 3,618 char-
acters per item.

4. APPROACH

Given an MCQ), the task is to predict its difficulty mea-
sured by the proportion of students that select the cor-
rect choice (in addition to the IRT-based metric available
for the CMCQRD dataset). An MCQ item consists of the
stem/question, a single correct choice/answer and a number
of incorrect choices/distractors (also known as “foils”).

Figure 1 illustrates our approach to this task. Our design is
centered around a simple Random Forest Regressor? which
receives as input a vectorised representation of the MCQ), as
well the uncertainty of multiple LLMs answering the same
MCQ?. We opted for a relatively simple Random Forest Re-
gressor, as it allows for analysis using explainability meth-
ods (through SHAP post-hoc analysis), while still effectively
demonstrating the usefulness of model uncertainty in this
context. As features, we use Textual Features and Model
Uncertainty, as described in sections 4.1 and 4.2. We fur-
ther supplement this basic system using higher-level textual
features namely Linguistic Features and Choice Similarity,
described in section 4.3.

4.1 Textual Features

Intuitively, extracting the semantic content of the question
item is integral to assess its difficulty. To accomplish that,
we use two fundamentally different methods — Term Fre-
quency - Inverse Document Frequency (TF-IDF) Scores and
Semantic Embeddings — to encode the question and answer
choices as numerical vectors.

TF-IDF Scores. TF-IDF Scores capture how important a
word is to a document within a collection by balancing its
frequency in that specific document against its rarity across
all documents [27]. In the current context, we consider each
question item (along with its choices) as a single document.
To capture multi-word technical terms, such as “interstitial
fibrosis”, our analysis considers both individual words (uni-
grams) and two-word combinations (bigrams). Furthermore,

2As provided by the Scikit-Learn Library, using the default
hyper-parameters [18].

3Simple vector concatenation is used to combine the text
and uncertainty features.



we disregard terms that appear in more than 75% of docu-
ments, and only use the 1000 most important features (as
determined by the TF-IDF values) to increase efficiency.

Semantic Embeddings. Word embeddings are a technique
whereby words are encoded as dense vectors in a continu-
ous vector space, capturing semantic relationships between
words. We evaluate two embedding approaches: General
BERT Embeddings [5] and domain-specific Bioclinical BERT
Embeddings [2]. The Bioclinical BERT Embeddings, previ-
ously also employed by team ITEC in the BEA 2024 shared
task [29], offer specialized medical domain text encoding
that potentially encapsulates more accurately the seman-
tic content of each question item. Both techniques yield a
768-dimensional vector representation. In our experiments,
Bioclinical BERT embeddings consistently yielded poorer
results, so we omit them here for brevity.

4.2 Model Uncertainty

The current approach is founded on the premise that model
uncertainty correlates with student performance and thus,
by extension, offers a useful signal when estimating the diffi-
culty of a question item. To explore this hypothesis, we have
conducted experiments using two metrics that are shown to
correlate well with model correctness (as discussed in Ap-
pendix A): Ist Token Probability and Choice-Order Sensi-
tivity. These uncertainty scores are obtained for each LLM
separately and concatenated into a single vector, to which
any additionally textual, linguistic or choice similarity fea-
tures are (optionally) also added. This vector is then fed to
the regressor.

1st Token Probability. The first method to measure model
uncertainty is by inspecting the softmax probability of the
1st token to be generated as the answer to the given MCQ
question, (e.g., probability of generating token “B”), in com-
parison to the probabilities of the alternatives (e.g., prob-
ability of generating token “A” or “C”). As the 1st Token
Probabilities can be influenced by the order in which the
choices are provided in the problem set [33, 31, 32, 38], we
create ten random different orderings for each question and
let the model answer each MCQ ten times*. This way, we
calculate the average probability per MCQ choice. We then
consider the average probability for the correct answer as
the uncertainty metric of the LLM.

Furthermore, as different tokens might be generated to rep-
resent the same answer (e.g., “A”, “ A”, “a 7, see details
on prompting and answer elicitation in Section 4.4 below)
and different models might attribute higher likelihood for
specific tokens, the token representing each choice with the
highest probability is selected. For example if for a given
model the probability of generating token “C” is higher than
the probability of token “c”, the former is considered for that
model. Lastly, the three extracted mean probabilities of all
orderings are normalised in the range of 0 to 1.

4For questions with only 3 choices, we instead consider all
six different choice orderings.
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Choice-Order Sensitivity. Pezeshkpour and Hruschka [21]
observed that Choice-Order Sensitivity correlates with error
rate. In other words, when LLMs consistently select a choice
regardless of its position, that choice is more likely to be
the correct answer. Based on this observation, we leverage
this correlation to measure uncertainty. Specifically, for all
evaluated choice orderings, we measure the probability of
the correct choice being selected. Thus, this probability is
not based on token probabilities but rather on the eventual
choice.

4.3 Additional Features

We also conduct experiments with two additional feature
sets: linguistic and choice similarity features. First, based
on the work of Ha et al. [8], we extract 17 higher-level
linguistic features from each question item. These features
vary in complexity, ranging from the number of sentences to
the occurrence of additive connectives. Moreover, we also
develop a simple baseline that uses these linguistic features
along with word2vec embeddings [14], similar to the work
by Yaneva et al. [35]°.

In the current work we also explore the use of choice sim-
ilarity defined (per MCQ) as the average cosine similarity
between each distractor and the correct answer choice, sim-
ilar to the approach by Susanti et al. [28]. This is opera-
tionalised using the Sentence Transformer library [25] with
one of two models: all-MinilM-L6-v2° (general embed-
dings) and S-PubMedBert-MS-MARCO” (medical/health text
domain embeddings). The two setups are henceforth re-
ferred to as “General Similarity” and “Medical Similarity”
respectively.

4.4 Choice of Models and Prompting

In this work, we focus on Decoder-Only models, as they are
considered to have incorporated greater amounts of factual
knowledge as a byproduct of their language modeling ob-
jective [37], compared to Encoder-Only or Encoder-Decoder
models. Moreover, as the internal logit probabilities of the
1st token to be generated are needed to measure the uncer-
tainty of each model, we focus on nine open-sourced mod-
els of different parameter sizes and families. Additionally,
we use the models’ instruction-tuned (also known as “chat”)
variant and experiment with both default precision and 4-bit
quantised models. This comparison is important because,
although quantized models are more efficient (albeit slightly
less capable), it is unclear whether they are also more mis-
calibrated®. To adapt them for the task of MCQ answering,
we use the instruction prompt in Figure 3 based on the ex-
perimental setup of Plaut et al. [22] as well as Zotos et al.
[40].

°Tt is worth noting that in contrast to Yaneva et al. [35],
we do not use readability metrics as some question items do
not meet the 100 word requirement for these metrics to be
computed.
Shttps://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2.
"https://huggingface.co/pritamdeka/
S-PubMedBert-MS-MARCO.

8Details of the models used are in Table 3.



Table 3: Default precision and quantised LLMs used in the experiments. All models can be found at the HuggingFace Hub.

Model Name Default Precision

4-bit Quantisation

phi3_5-chat
Llama3_2-3b-chat
Qwen2_5-3b-chat
Llama3_1-8b-chat
Qwen2_5-14b-chat
Qwen2_5-32b-chat
Yi-34b-chat
Llama3_1-70b-chat
Qwen2_5-72b-chat

Qwen/Qwen2.5-3B-Instruct
Qwen/Qwen2.5-14B-Instruct
Qwen/Qwen2.5-32B-Instruct
01-ai/Yi-34B-Chat

Qwen/Qwen2.5-72B-Instruct

microsoft/Phi-3.5-mini-instruct
meta-llama/Llama-3.2-3B-Instruct

meta-llama/Llama-3.1-8B-Instruct

meta-llama/Llama-3.1-70B-Instruct

unsloth/Phi-3.5-mini-instruct-bnb-4bit
unsloth/Llama-3.2-3B-Instruct-bnb-4bit
unsloth/Qwen2.5-3B-Instruct-bnb-4bit
unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
unsloth/Qwen2.5-14B-Instruct-bnb-4bit
unsloth/Qwen2.5-32B-Instruct-bnb-4bit
unsloth/yi-34b-chat-bnb-4bit
unsloth/Meta-Llama-3.1-70B-Instruct-bnb-4bit
unsloth/Qwen2.5-72B-Instruct-bnb-4bit

Table 4: Root Mean Squared Error (RMSE, the lower the better) on the test set using different sets of features. Lowest achieved
RMSE per dataset is shown in boldface. Best overall results are highlighted in light green. All results are averaged over ten

repetitions, with the standard deviation not exceeding 0.002.

Method Biopsychology USMLE CMCQRD CMCQRD_IRT
Baselines
Dummy Regressor 0.1667 0.3110 0.1833 9.7568
Best Literature Result [24] - 0.291 - 8.5
Only Text
TF-IDF 0.1479 0.3092 0.1843 9.2531
BERT Embeddings 0.1498 0.3066 0.1843 8.9347
Only Uncertainty
1st Token Probabilities 0.1473 0.3041 0.1770 9.4161
Choice-Order Sensitivity 0.1543 0.3155 0.1788 9.9787
Both Uncertainty Features 0.1460 0.3034 0.1754 9.3705
Text and Uncertainty

TF-IDF BERT , TF-IDF BERT , TF-IDF BERT , TF-IDF BERT
First Token Probability 0.1361  0.1362 : 0.3037  0.2868 : 0.1668  0.1669 : 8.5661  8.2763
Choice-Order Sensitivity 0.1378  0.1409 , 0.310  0.2906 , 0.1658 0.1676 , 8.6663  8.4204
Both Uncertainty Features  0.1359  0.1365 ' 0.3044  0.2864 ' 0.1654 0.1669 ' 8.5933  8.3009

Instruction Prompt for the LLM

Below is a multiple-choice question. Choose the
letter which best answers the question. Keep your
response as brief as possible; just state the letter
corresponding to your answer with no explanation.

Question:
[Question Text]
Response:

Figure 3: Instruction phrasing used for all models and ex-
periments. [Question Text] is replaced by the item stem
followed by the answer choices, each prepended with the cor-
responding letter A to J.

S. RESULTS

Our experiments are aimed at evaluating the usefulness of
model uncertainty as a signal for MCQ item difficulty as
well as discovering which specific textual and uncertainty
features are most relevant for our trained Regressor. We
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first focus on the performance of our setup using text and
model uncertainty feature sets (Section 5.1), followed by an
exploration of the effect of additional features (Section 5.2).
We conclude with a post-hoc analysis of our system using
SHAP explanations (Section 5.3). While the following sec-
tions present only the relevant results, Appendix B provides
an overview of the results for all experiments. All experi-
ments were conducted using two Nvidia A100 GPUs.

5.1 Performance on Difficulty Estimation

To evaluate the performance of our trained models we use
the Root Mean Squared Error (RMSE) metric from Python’s
Scikit-learn library [18], as used in the BEA 2024 Shared
task. As previously mentioned, we use a Random Forest
Regressor tasked to predict the difficulty of a question item,
given as input a vectorised representation of the MCQ as
well as the uncertainty of multiple LLMs answering the same
MCQ. This creates a modular setup that allows easy ma-
nipulation of the input feature set. We present the feature
sets along with their performance on the three datasets in
Table 4. Similarly, Table 4 presents the performance of
the default precision variants of the models, while the re-
sults for the quantised models are reported in Appendix B.
Lastly, for CMCQRD, we report the performance on pre-



Table 5: Root Mean Squared Error (RMSE, the lower the better) on the test set using additional features. Lowest achieved
RMSE per dataset is shown in boldface. Best overall results, also in comparison to those presented in Table 4, are additionally
highlighted in light green. All results are averaged over ten repetitions, with the standard deviation not exceeding 0.002.

Method Biopsychology USMLE CMCQRD CMCQRD_IRT
Baselines

Dummy Regressor 0.1667 0.3110 0.1833 9.7568
Best Literature Result [24] - 0.291 - 8.5
Linguistic Features Baseline [8] 0.1544 0.3147 0.1852 9.3335
Only Choice Similarity

General (all-MiniLM-L6-v2) 0.1895 0.3567 0.2226 12.2829
Medical (S-PubMedBert-MS-MARCO) 0.1883 0.3432 0.2146 11.4768

TF-IDF BERT . TF-IDF

Text, Both Uncertainties & Choice Similarity

BERT TF-IDF BERT TF-IDF BERT

General Similarity 0.1372  0.1367 , 0.2835 0.2862 , 0.1651 0.1669 , 8.5934 8.2956
Medical Similarity 0.1376  0.1361 1 0.2836 0.2853 | 0.1651 0.1664 | 8.5999  8.2325
Both Similarities 0.1378  0.1365 ' 0.2847 0.2862 ' 0.1653 0.1676 ' 8.5694 8.2817
Text, Both Uncertainties, Both Sim & Linguistic Features

0.1393 0.1362  0.2817 0.2857 = 0.1652 0.1673 85490 8.6575

dicting both p-values and the IRT-based metric.

An important first observation is that the RMSE difference
between experiments is minimal. This is in-line with the
findings from the BEA 2024 shared task, where the lowest
achieved RMSE was only 0.012 lower than the baseline, and
the achieved RMSE scores of the top 10 approaches were
within 0.009. Even so, there are consistent differences be-
tween the experimental setups. Most importantly for this re-
search, incorporating model uncertainty alongside text fea-
tures significantly reduces RMSE across all datasets, outper-
forming the best scores in previous literature. Even lower
RMSE is achieved for the USMLE and CMCQRD datasets
when additional features are included (see Section 5.2). Fur-
thermore, our exploration revealed that 1st Token Probabil-
ity consistently serves as a more useful signal for the task
than Choice-Order Sensitivity. However, combining both
yields the best results. Regarding the two text vectorization
methods, we find no significant differences between them,
except for the USMLE dataset, where BERT Embeddings
outperform TF-IDF scores.

5.2 Effect of Additional Features

Naturally, additional features of an MCQ might capture as-
pects that make the question easier or more challenging. Ta-
ble 5 explores the effect of higher-level linguistic features and
the similarity between choices (as described in Section 4.3).
Expectedly, using choice similarity as the only feature yields
poor results on the task. Similarly, the baseline that focuses
on linguistic features only marginally beats the Mean Re-
gressor baseline for two of the four experiments. However,
combining either, or both, of these features with text and
model uncertainty features further improves our best results
for all but the Biopsychology experiments (where the best re-
sult is still achieved without the additional features). More-
over, we observe that there is no clear advantage between
the General or Medical Similarity, with the latter also seem-
ingly being useful in the non-medical domain (CMCQRD
dataset). These experiments highlight that while model un-
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certainty and basic text encodings (such as BERT or TF-
IDF scores) capture certain aspects of difficulty, other fac-
tors should still be utilized for this task.

5.3 Feature Importance

In order to better understand which features drive the pre-
dictions of the Random Forest Regressor, we use Shapley ad-
ditive explanations as provided by the SHAP Python library
[13]. To maintain conciseness, we present SHAP summary
plots for a selected subset of experiments that we found to
be the most insightful.

Effect of Top Features on Predicting Student Success
(Only TF-IDF Features)

High

"visual" c e . ..*
o B

"hippocampus" csesee ® o0 *
"following statements"” .o mee . «' 3
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"receptors" o eee ee -—.} 5
"following" —_ 8

"stimulation" .o . - * .o
"contraction" . ce . '
"glutamate” . . . se .+

Low

-0.20 -0.15 -0.10 -0.05 0.00 0.05
Impact on Random Forest Prediction

Figure 4: Biopsychology Dataset. Shapley summary plot
showing the contribution of the top ten uni/bi-gram features
to the Random Forest’s predictions, highlighting their im-
portance and impact direction. Features are ranked by their
average influence, with dots representing individual question
items and colour indicating TF-IDF scores. Results averaged
over ten repetitions.

Before exploring the analysis regarding model uncertainty,
we examine the contribution of the most impactful uni/bi-
grams from the text-only experiment using the Biopsychol-
ogy dataset. This is useful because it allows us to gain an
overview of the influence of lexical features before introduc-
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Figure 5: Shapley summary plots for the three datasets show-
ing the contribution of the top ten features to the Random
Forest’s predictions. Higher First Token Probability and Or-
der Probability metrics indicate greater model certainty. Re-
sults averaged over ten repetitions.

ing model uncertainty, while also highlighting any features
that unexpectedly influence question difficulty (e.g., inter-
rogative words).

This analysis relies on TF-IDF scores, as BERT Embeddings
cannot directly be traced back to individual words. Figure 4
shows the ten most impactful features, along with their effect
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on the Regressors’ prediction for each MCQ item. High TF-
IDF scores are highlighted in red and broadly represent the
presence of the word in an item. Furthermore, the impact
on the Regressor’s prediction is either positive or negative,
meaning that a feature can either lower or increase the pre-
dicted difficulty score. As can be seen, the presence of cer-
tain terms (e.g., “visual”, “hippocampus”) lead the Regressor
to predict higher difficulty. Interestingly, this analysis also
demonstrates that questions where a gap (represented by
an underscore “_”) needs to be filled (e.g., “fill-the-gap” or
sentence completion) are predicted to be easier.

While this analysis shows that the presence of certain words
can steer the Regressor towards predicting a higher or lower
difficulty, we are mostly interested in the contribution of fea-
tures related to model uncertainty. Figures 5a, 5b and 5c
present the effect of the most impactful features for the
feature sets that lead to the best performance (using TF-
IDF scores for the text encoding and model uncertainty) for
the Biopsychology, USMLE and CMCQRD datasets, respec-
tively. It is worth noting that for the CMCQRD dataset, we
focus on the prediction of the number of students selecting
the correct rate (p-value), instead of the IRT-based metric.

In all instances, the Random Forest Regressor heavily relies
on model uncertainties to predict item difficulty. As hypoth-
esised, the higher the model certainty (in terms of either 1st
Token or Choice-Order Probability) the more students are
predicted to answer the question correctly. In each configu-
ration, the uncertainty of different models has the greatest
influence. Notably, the uncertainty of Qwen models consis-
tently serves as a strong indicator of difficulty. Furthermore,
this analysis hints towards model size being important, espe-
cially when comparing the Biopsychology and the USMLE
results: For the latter, the confidence of larger models is
more influential in the Regressor’s prediction of question dif-
ficulty. This observation also highlights the core challenge
of our approach: having a model that is sufficiently capable
of answering the MCQs but not so complex that it answers
them with complete confidence. In our work, this challenge
is partially addressed using an ensemble of models, leaving
it up to the Random Forest Regressor to determine their
usefulness.

6. DISCUSSION AND CONCLUSION

We explored how model uncertainty can be leveraged for

the task of question item difficulty estimation using three

MCQ datasets focusing on factual knowledge and language

comprehension. We demonstrate, in experimental setups of

varying complexity, that while both textual features (e.g.,

encoding using TF-IDF Scores or BERT Embeddings) and

model uncertainty features are useful for the task, the trained

Random Forest Regressor performed significantly better when
model uncertainty features were included.

Our results suggest that aspects of a question item that chal-
lenge students similarly impact LLMs. A factor that could
explain this alignment is representation: Knowledge that is
well represented in an LLM’s training data is likely to be
more foundational (e.g., “What is a neuron”), compared to
specialised knowledge (e.g., a medical diagnosis). By exten-
sion, using model uncertainty for this task requires a model
of appropriate size/capabilities. Additionally, our results



suggest that an LLM’s uncertainty does not fully account
for certain aspects of item difficulty, such as linguistic com-
plexity?®.

Our methodological design is intentionally simple, serving
as a proof of concept for this approach. This simplicity
stems from various design choices. Firstly, we use a vari-
ety of LLMs without placing great emphasis on their un-
certainty behaviour. Specifically, while we ensure that the
measured model uncertainty aligns with model correctness
(as shown in Appendix A), we do not focus on calibrating
the LLMs. Instead, we rely on the Random Forest Regressor
to select and weight the uncertainties of the various mod-
els. Secondly, we conducted a series of experiments using
features of varying complexity to demonstrate that, while
incorporating additional features (e.g., average cosine simi-
larity between each distractor and the correct answer choice)
can improve task performance, the improvements are often
marginal compared to relying solely on a simple text encod-
ing combined with model uncertainty.

Shifting into a broader perspective, our findings suggest that
there are similarities between the way LLMs and students
process educational material. While caution is necessary,
we see potential for future research to leverage LLMs for
student and cohort modeling.

Limitations

Indisputably, the central limitation of our approach is the
reliance on (un)certain LLMs. As seen in Section 5, model
uncertainty is beneficial only when the model can answer
the question without being overly confident. Naturally, this
limits the usefulness of our approach, especially given the
rapid development of LLMs in terms of their capabilities.
We hypothesise that this limitation can at least partially be
resolved by using calibrated LLMs, which we leave for future
work.

Similarly, our approach is not expected to perform as well
on MCQs designed to test knowledge at lower education
levels (e.g., primary school geography exams), as even small
LLMs are now capable of confidently answering such ques-
tions. At the same time, using less proficient LLMs intro-
duces different challenges, particularly regarding linguistic
ability: Smaller LLMs are more strongly affected by linguis-
tic perturbations (e.g., question formulation, choice-order)
and have greater limitations in instruction-following capa-
bilities [4, 26].

Lastly, due to dataset availability, we evaluated our ap-
proach solely on three examinations. It remains unclear
whether model uncertainty could also help assess the dif-
ficulty of exams in other skill sets, such as mathematical
reasoning.
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APPENDIX
A. MODEL CORRECTNESS AND UNCER-
TAINTY

Table 6 presents the performance of each model on the three
question sets, as well as the relation between model certainty
and model correctness. In line with the results of Plaut et al.
[22], it is clear that both tested metrics correlate well with
model correctness: On average, the mean certainty for the
chosen option is higher for the correctly answered question
items. This suggests that the two metrics indeed capture
an aspect of model certainty. Lastly, we can see that this
trend persists despite quantisation, although quantised mod-
els generally exhibit lower performance compared to their
default precision counterparts.

Table 6: Model correctness and answer probability in terms of Mean 1st Token and Choice-Order Probability in the Biopsy-
chology, USMLE and CMCQRD question sets. “Overall Correctness” indicates the proportion of correctly answered questions,
while the probabilities in blue and red indicate the mean model certainty for the model’s choice for correctly and incorrectly
answered questions respectively. As can be seen, on average, model certainty is higher when questions are answered correctly,
especially for larger LLMs.

Default Precision 4-bit Quantisation

Mean Probability Mean Probability

Dataset Model Correctness Correctness
1st Token Choice-Order 1st Token Choice-Order
phi3_5 0.821 0.921 / 0.696 0.940 / 0.743 0.288 0.418 / 0.397  0.494 / 0.455
Llama3_2-3b 0.740 0.747 / 0.541  0.849 / 0.676 0.714 0.735 / 0.509 0.855 / 0.652
Qwen2_5-3b 0.772 0.830 / 0.609 0.856 / 0.641 0.797 0.857 / 0.610 0.874 / 0.642
Llama3_1-8b 0.817 0.641 / 0.445 0.863 / 0.648 0.832 0.677 / 0.455 0.847 / 0.596
Biopsychology  Qwen2_5-14b 0.896 0.968 / 0.790 0.972 / 0.823 0.897 0.971 / 0.777 0.973 / 0.800
Qwen2_5-32b 0.934 0.972 / 0.759  0.981 / 0.802 0.933 0.968 / 0.750 0.978 / 0.792
Yi-34b 0.880 0.888 / 0.629 0.917 / 0.681 0.874 0.868 / 0.582 0.896 / 0.615
Llama3_1-70b 0.933 0.938 / 0.649 0.975 / 0.794 0.935 0.945 / 0.690 0.977 / 0.811
Qwen2_5-72b 0.941 0.971 / 0.808 0.981 / 0.875 0.939 0.962 / 0.750 0.982 / 0.815
phi3_5 0.571 0.781 / 0.612 0.838 / 0.703 0.189 0.319 / 0.306 0.363 / 0.372
Llama3_2-3b 0.634 0.618 / 0.428 0.785 / 0.614 0.658 0.596 / 0.407 0.767 / 0.572
Qwen2_5-3b 0.477 0.670 / 0.563 0.740 / 0.648 0.514 0.663 / 0.529 0.740 / 0.630
Llama3_1-8b 0.627 0.371 / 0.290 0.637 / 0.507 0.679 0.431 / 0.325 0.730 / 0.585
USMLE Qwen2_5-14b 0.744 0.897 / 0.699 0.911 / 0.750 0.732 0.898 / 0.690 0.906 / 0.739
Qwen2_5-32b 0.811 0.898 / 0.659 0.923 / 0.744 0.816 0.906 / 0.661 0.931 / 0.744
Yi-34b 0.652 0.777 / 0.575 0.831 / 0.666 0.652 0.726 / 0.513  0.781 / 0.572
Llama3_1-70b 0.885 0.849 / 0.493 0.946 / 0.679 0.886 0.841 / 0.485 0.941 / 0.666
Qwen2_5-72b 0.849 0.930 / 0.668 0.948 / 0.726 0.858 0.909 / 0.645 0.939 / 0.729
phi3_5 0.706 0.818 / 0.664 0.845 / 0.712 0.246 0.374 / 0.369 0.397 / 0.417
Llama3_2-3b 0.666 0.671 / 0.493 0.806 / 0.635 0.705 0.688 / 0.518 0.829 / 0.679
Qwen2_5-3b 0.662 0.791 / 0.622 0.816 / 0.659 0.744 0.864 / 0.673 0.884 / 0.704
Llama3_1-8b 0.752 0.583 / 0.415 0.800 / 0.602 0.781 0.650 / 0.454 0.828 / 0.628
CMCQRD Qwen2_5-14b 0.888 0.950 / 0.737  0.958 / 0.747 0.894 0.951 / 0.740  0.957 / 0.770
Qwen2_5-32b 0.908 0.954 / 0.728 0.970 / 0.785 0.912 0.949 / 0.743 0.969 / 0.813
Yi-34b 0.841 0.873 / 0.624 0.900 / 0.668 0.831 0.794 / 0.546  0.831 / 0.582
Llama3_1-70b 0.917 0.926 / 0.684 0.973 / 0.809 0.912 0.912 / 0.617 0.972 / 0.789
Qwen2_5-72b 0.914 0.962 / 0.737 0.971 / 0.766 0.912 0.955 / 0.739  0.973 / 0.793
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B. RESULTS OVERVIEW

Table 7 presents an overview of the results of all experiments.

Table 7: Root Mean Squared Error (RMSE, the lower the better) on the test set using different sets of features. Best overall
results are highlighted in light green. All results are averaged over ten repetitions, with the standard deviation not exceeding
0.002.

Method Biopsychology USMLE CMCQRD CMCQRD_IRT
Baselines

Dummy Regressor 0.1667 0.3110 0.1833 9.7568
Best Literature Result [24] - 0.291 - 8.5
Linguistic Features Baseline [8] 0.1544 0.3147 0.1852 9.3335
Only Text

TF-IDF 0.1479 0.3092 0.1843 9.2531
BERT Embeddings 0.1498 0.3066 0.1843 8.9347

Only Uncertainty

Default 4-bit Default 4-bit Default 4-bit Default 4-bit

I I I
1st Token Probabilities 0.1473  0.1539 : 0.3041  0.2960 : 0.1770  0.1752 : 9.4161  9.5385
Choice-Order Sensitivity 0.1543  0.1582 , 0.3155 0.3178 , 0.1788 0.1880 , 9.9787  9.8563
Both Uncertainty Features 0.1460  0.1538 ' 0.3034 0.2968 ' 0.1754 0.1761 ' 9.3705  9.4899
Only Choice Similarity
General (all-MiniLM-L6-v2) 0.1895 0.3567 0.2226 12.2829
Medical (S-PubMedBert-MS-MARCO) 0.1883 0.3432 0.2146 11.4768

TF-IDF BERT  TF-IDF BERT TF-IDF BERT TF-IDF BERT
Text and Uncertainty
First Token Probability (Default) 0.1361  0.1362
Choice-Order Sensitivity (Default) 0.1378  0.1409
Both Uncertainty Features (Default) 0.1359  0.1365

0.3037  0.2868
0.3100  0.2906
0.3044  0.2864

0.1668  0.1669
0.1658  0.1676
0.1654  0.1669

8.5661  8.2763
8.6663  8.4204
8.5933  8.3009

First Token Probability (4-bit) 0.1365 0.1385 ' 0.2851 0.2854 ' 0.1680 0.1675 ' 8.5392  8.3322
Choice-Order Sensitivity (4-bit) 0.1309 0.1411 , 0.2951 0.2961 , 0.1671 0.1672 |, 8.6218  8.3459
Both Uncertainty Features (4-bit) 0.1371 0.1388 ' 0.2856 0.2846 ' 0.1685 0.1670 ' 8.5587  8.3728
Text, Both Uncertainties & Choice Similarity

General Sim. (Default) 0.1372  0.1367 ; 0.2835  0.2862 ; 0.1651  0.1669 ; 8.5934  8.2956
Medical Sim. (Default) 0.1376  0.1361 : 0.2836  0.2853 : 0.1651 0.1664 : 8.5999  8.2325
Both Sim. (Default) 0.1378  0.1365 , 0.2847 0.2862 , 0.1653 0.1676 , 8.5694  8.2817
General Sim. (4-bit) 0.1386  0.1389 : 0.2850  0.2841 : 0.1674  0.1659 : 8.5696  8.3338
Medical Sim. (4-bit) 0.1378 0.1381 , 0.2856 0.2844 , 0.1676 0.1660 , 8.5204  8.2801
Both Sim. (4-bit) 0.1397  0.1412 ' 0.2860 0.2850 ' 0.1673 0.1659 ' 8.5475  8.2820
Text, Both Uncertainties, Both Sim & Linguistic Features

Default 0.1393  0.1362 , 0.2817 0.2857 , 0.1652 0.1673 , 8.5490  8.6575
4-bit 0.1411  0.1410 ' 0.2853 0.2844 ' 0.1677 0.1660 ' 8.4966  8.5907
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