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ABSTRACT

Knowledge tracing (KT) models predict how students will
perform on future interactions, given a sequence of prior
responses. Modern approaches to KT leverage deep learn-
ing techniques to produce more accurate predictions, poten-
tially making personalized learning paths more efficacious
for learners. Many papers on the topic of KT focus primar-
ily on model performance and do not discuss the practical
challenges of implementation. However, understanding the
practical aspects of how these models behave is just as im-
portant as their predictive performance. Using data from
over 500,000 students and over 100 million interactions, we
evaluated two deep KT models, a long short-term mem-
ory (LSTM) and a self-attentive knowledge tracing (SAKT)
model. While global performance metrics for both LSTM
and SAKT models are impressive, they also hide important
practical flaws. We found significant limitations in their abil-
ity to predict responses for new students (i.e., cold start),
detect incorrect responses, and maintain sensible predictions
independent of question order. Further refinement of the
models is needed in these areas in order to enhance their
ability to guide a real student’s learning path.
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1. INTRODUCTION

Knowledge tracing (KT) models are designed to track the
progression of students’ predicted performance as they re-
spond to questions on digital learning platforms[4]. These
models have the potential to improve the efficacy of person-
alized learning by providing real-time insights into what a

Bogdan Yamkovenko, Charles Hogg, Maya Miller-Vedam, Phillip
Grimaldi, and Walt Wells. Practical Evaluation of Deep Knowl-
edge Tracing Models for use in Learning Platforms. In Caitlin Mills,
Giora Alexandron, Davide Taibi, Giosu¢ Lo Bosco, and Luc Paquette
(eds.) Proceedings of the 18th International Conference on Educa-
tional Data Mining, Palermo, Italy, July, 2025, pp. 673-679. Inter-
national Educational Data Mining Society (2025).

© 2025 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.15870149

Charlie A R Hogg
Khan Academy

charleshogg@
khanacademy.org

673

Maya Miller-Vedam
Khan Academy
mayavedam@
khanacademy.org

Walt Wells
Khan Academy
walt@
khanacademy.org

student knows and doesn’t know. In recent years, a new ap-
proach to KT has emerged that makes use of neural network
architectures — known as deep knowledge tracing (DKT).
DKT models are capable of learning complex, non-linear
patterns that contribute to student performance. Their key
advantage is their flexibility for implementation — once
trained, a DKT model can take a sequence of student re-
sponses and immediately make predictions without any ad-
ditional retraining or updating.

The majority of research into DKT centers around predictive
performance, measured by area under the receiver operator
curve (AUC) [1, 7]. However, over-emphasis on aggregate
predictive performance carries the risk of overlooking practi-
cal, real-world issues that are equally important to consider.
For example, if a student needs to submit a large number of
responses before the model can provide them with accurate
predictions, then the model has lower practical utility than
its aggregate performance metrics might suggest. In another
example, previous research has demonstrated that LSTMs
can be detrimentally “impacted by the relative ordering of
skills presented”, but posed the suggestion that attention
based models might “better capture long range skill depen-
dencies”[5]. Thus, having a better understanding of how a
model behaves under different practical conditions makes it
easier to decide when it is appropriate to use such a model.
The purpose of this study is to conduct a practical eval-
uation of DKT models when they are applied in learning
platforms at scale.

We specifically examine two DKT models — long short
term memory (LSTM) and self-attentive knowledge tracing
(SAKT). LSTM is based on recurrent neural networks [9],
while SAKT uses the attention mechanism of transformer
networks [7]. The attention mechanism computes a set of
similarity (attention) weights between tokens in the input
sequence [10]. A notable difference between SAKT and
LSTM is that the whole sequence of questions and responses
is available to the transformer, rather than a hidden state
being iterated with each new token. This may give SAKT a
better ability to uncover features which give it more predic-
tive power.

Our paper is structured as follows. We start in section 2
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by comparing standard performance metrics of LSTM and
SAKT, and benchmark them against a widely used item re-
sponse theory (IRT) model. We then move on to our prac-
tical evaluations. In section 3.1 we investigate the ability
of LSTM and SAKT to predict incorrect responses and the
reasons that they struggle with this task. In section 3.2 we
investigate how many student responses a model needs to
receive before it can generate useful predictions. In section
3.3 we show how sensitive the models are to input noise at
different points in the student sequence, such as a student
mistakenly clicking on the wrong button. Finally, in sec-
tion 3.4 we show the impact of changing the order of the
questions asked of a student.

2. OVERALL PERFORMANCE

We conducted two evaluations of overall predictive perfor-
mance. Evaluation 1 compared LSTM and SAKT models
on a validation set held back during training. Evaluation
2 compared the performance of LSTM and SAKT to a 1-
parameter IRT model[3]. Briefly, IRT models the probabil-
ity of a correct response as the difference between a global
students ability parameter and the difficulty of an individ-
ual question. The IRT models, unlike KT models, do not
account for a progression in the student’s knowledge as the
answer sequence continues. Instead they assume that the
student’s ability is described by a single static parameter.
This makes them more appropriate for evaluating a student
at a single point in time rather than ongoing progress during
learning. Previous work has made comparisons between IRT
and DKT models [1, 9]. We chose to use IRT instead of other
KT models, such as Bayesian Knowledge Tracing (BKT),
due to the difficulty in adapting BKT to this evaluation.
In particular, BKT learns a students ability on each skill
separately, meaning we could not use student responses on
one skill to predict performance on another without adding
advanced architecture. A simple one-dimensional IRT can
easily make predictions for all possible questions, because it
only estimates a global student ability, instead of on a skill-
by-skill basis. Extensions to the basic one-dimensional IRT
model, such as multi-dimensional IRT (MIRT) would face
similar constraints as the BKT model.

In training both DKT models, we used a binary cross en-
tropy loss function. Models were trained using an Adam
optimisation routine on up to 50 epochs, with an early stop-
ping criteria if the test-set loss increased for 3 iterations.

The data used to train and test the models came from real
student response data to a 6th-grade math course on a large
education technology platform in the US. Due to privacy
reasons, the data is not publicly available. The data took
the form of a chronologically ordered sequences of responses
to practice questions given by each student. Responses were
coded as 1 for correct and 0 for incorrect, and question indi-
cators were coded as categorical values. In order to ensure
the data were representative of typical student usage on the
platform, we filtered the data to students who: 1) responded
to more than 16 questions, 2) worked on more than 4 skills,
3) had less than 90% correct on all questions, 4) responded to
at least 75% of the questions in the order they are presented
in the course, and 5) did not respond to a single question
more than 20 times or for more than 10% of their responses.
Our primary focus is to help students’ learning during the
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Table 1: Summary statistics for dataset used in Evaluation 1.

Training Validation
N Students 563,954 140,989
N Interactions 114,412,371 28,797,499
Prop. Correct 0.71 0.71
Avg. Seq. Length 203 204
Avg. items per student 162 163
Avg. skills per student 22 22
Med. Sec. per attempt 21 21

Table 2: Evaluation 1 comparison of SAKT and LSTM per-
formance on validation set.

Model AUC Recall Specificity
SAKT 0.81 0.89 0.49
LSTM 0.81 0.90 0.48

course. For this reason, we exclude the atypical students
who get over 90% correct. Whilst this may introduce some
bias into the model, we prefer this to better focus the model
on students who are more typical of the stakeholders we are
most interested in. Moreover, we removed any response that
took less than 2 or more than 2000 seconds.

For Evaluation 1, we split the data such that a random 80%
of the students were included in the training set, and the
remaining 20% were included in a validation set. A summary
of the training and validation data are provided in Table 1.

The model performance on the validation set for SAKT and
LSTM are shown on Table 2. The metrics are calculated
from all item predictions for students in the validation set.
Specificity and recall are calculated as defined in [6]. The
AUC, which is equivalent to the Wilcoxon test of ranks, was
calculated from these data using the sci-kit learn implemen-
tation [8]. As seen in the table, the two models performed
almost identically, suggesting that the alternative architec-
ture in the SAKT model did not produce substantial differ-
ences in predictive performance in this context. Both models
performed at comparable levels of AUC as other reports [1],
though slightly smaller than the .85 initially reported for
LSTM [9].

We now turn to Evaluation 2, which used a modified ap-
proach to accommodate comparison of SAKT and LSTM
to the IRT model. In general, IRT models must first esti-
mate the ability parameter for each student before they can
be used to make predictions. Thus, the training/validation
split used in Evaluation 1 would not work, because the IRT
model needs to see some of the data for students in the test
set in order to estimate their student ability parameter. To
handle this constraint of IRT, we first randomly selected
75% of the students to use as a training set, and the re-
maining 25% were used as a validation set. However, rather
than evaluate performance on the entire sequence in the val-
idation set, we only used the last 25% of observations. We
trained the IRT model on the training set and the first 75%
of observations in the validation set, allowing the IRT model
to estimate ability parameters for the students in the vali-



Table 3: Summary of subsample data used in Evaluation 2.

Training  Validation
N Students 14,713 4,881
N Interactions 7,485,983 2,453,380
Avg. Seq. Length 509 503
Proportion Correct
Overall 0.71 0.71
First 75% 0.70 0.70
Last 25% 0.74 0.74

Table 4: Evaluation 2 comparison of SAKT, LSTM, and IRT
performance on the last 25% of validation set.

Model AUC Recall Specificity
SAKT 7 .92 .36
LSTM .79 .92 .39
IRT .74 .90 .34

dation set. Conversely, the SAKT and LSTM models were
trained on the training set and predicted the entire vali-
dation sequence as before, but we only considered the last
25% of observations for computing validation performance
metrics to be compared to those of the IRT model.

In addition to the procedural differences described above,
we used a subsample of the data set used in Evaluation 1.
We first filtered to include only students with sequences that
were at least 200 attempts long. This was done to ensure
there was sufficient training data for each student in the
validation split. From that subset of students, we then sub-
sampled down to 10% of students. This step was performed
for pragmatic reasons, as we found training of the IRT model
to be time consuming and resource intensive. A summary
of the subsample used in this evaluation is shown on Table
3.

Table 4 shows the model performance metrics for Evaluation
2. As seen on the table, SAKT and LSTM performed better
than IRT on all three metrics. Having established that the
two DKT models have a good performance relative to the
widely used IRT benchmark and achieve similar values of
AUC to those reported in other studies [9], we now turn
to the evaluation of the aspects of these models that are
relevant to real-world implementation.

3. PRACTICAL EVALUATIONS
FOR IMPLEMENTATION

Here and in the rest of this paper we use a test dataset
of students that were not part of the previous training or
validation datasets. The students in this test set used the
platform in a similar way to the students in the training
data, but were part of U.S. school districts that paid for a
license to use the platform. A summary of this test dataset
is shown on Table 5.

3.1 Can the models identify incorrect
responses?
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Table 5: Summary statistics for test dataset.

N Students 2,773
N Interactions 474,496
Prop. Correct 0.72
Avg. Seq. Length 171
Avg. items per student 132
Avg. skills per student 18
Med. Sec. per attempt 21

A notable shortcoming of SAKT and LSTM is their low
specificity (see Table 2 & Table 4). Low specificity is prob-
lematic because the model is inappropriately predicting a
large number of questions that would be answered correctly
when they were in fact answered incorrectly. In practice, this
would mean that student learning gaps would go undetected
by the model. Of course, the specificity of these models can
be improved by raising the classification threshold of 0.5
applied to the predicted probability correct. However, this
comes at the expense of recall performance, and is therefore
a trade-off that must be considered. Thus, we sought to un-
derstand what factors contribute to the underlying inability
to identify incorrect responses.

We first examined the distribution of SAKT model predic-
tions for correct and incorrect responses in Figure 1. Very
similar distributions were also produced by the LSTM model.
For correct responses, the distribution is skewed towards 1
with a mean greater than 0.5 — indicating that the model
is able to identify these relatively well. In contrast for in-
correct responses, the distribution is nearly uniform with a
mean near to 0.5 — indicating that the model struggles to
identify incorrect responses.

To check whether this difference in predictions of correct and
incorrect responses was caused by the imbalanced classes in
the training data, we retrained the model on a training set
with correct answers downsampled such that the proportion
correct reduced from 71% to 50%. The difference between
the predictions for correct and incorrect answers persisted
similar to that in Figure 1, showing that the difference was
not caused by the data imbalance.
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Figure 1: Distribution of SAKT model outputs (predicted
probability correct) separated into cases where student re-
sponses were actually correct and incorrect.

Next, we attempted to determine the features of incorrect
responses that make them harder to identify. One hypoth-



esized feature was that isolated incorrect responses were
harder to identify than incorrect responses that occurred
together in a streak. To examine this, we created a sim-
ple metric I, which captures the degree to which incorrect
responses tended to occur in streaks or in isolation for a stu-
dent’s sequence. I was defined as the proportion of incorrect
responses that were preceded by a correct response. To illus-
trate, a sequence [1,0,1,0] has an I value of 1 and a sequence
[1,1,0,0] has an I value of 0.5. Thus, sequences where in-
correct responses tend to occur in isolation had a higher I
value. Figure 2 shows that there was a strong inverse rela-
tionship between I and specificity calculated over a single
student’s response sequence (r = -0.78). Note that the re-
ported results are for LSTM, but similar results were found
for SAKT. This finding indicates that the DKT models had
more trouble predicting incorrect responses produced in iso-
lation compared to those that occurred in streaks. We also
found that relationship was not simply an artifact of overall
correct rates, as the relationship was observed even when
stratifying the students by proportion correct.
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Figure 2: Relationship between specificity and degree of isola-
tion of incorrect responses. Each point represents a student.

It is possible that using higher capacity models or adding
other input features to the model would uncover some fea-
tures that make these incorrect responses more predictable.
To this end, we experimented with various approaches, such
as increasing the number of layers in the models, or adding
new features such as question text embeddings. None of
these achieved the goal of improving prediction on incorrect
responses.

A possibility worth considering is that isolated incorrect re-
sponses are primarily the result of randomly occurring mo-
mentary slips or distractions from an otherwise capable stu-
dent. Such incorrect responses would be inherently unpre-
dictable. If so, then it may be the case that these models
simply cannot be improved beyond their current state.

3.2 How many responses does a student need

to make to initialize a model?
Another important issue to consider is the quality of pre-
dictions for students who are new to the platform or who
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have a short history of responses — commonly known as a
‘cold start’ problem [2]. To illustrate, IRT can technically
make predictions for students with no prior data by setting
their ability parameter to 0. However, these predictions
would simply reflect overall average student performance,
and would not take into account any new responses until
the model is retrained. In contrast, an advantage of DKT
models is that they do not have an ability parameter, and
can update its predictions for a student with each additional
observation without retraining. However, it is important to
evaluate the quality of the predictions when the history is
short, and the number of responses needed before the models
achieve top predictive performance.

Model performance metrics over the first 100 steps in the
response sequence, averaged across students, are shown on
Figure 3. We focus on AUC and specificity because these
metrics clearly show how model performance changes over
the sequence steps. For both metrics, performance starts
relatively low and increases rapidly over the first approx-
imately 10 to 20 responses. Noise in this trend makes a
strict threshold hard to identify. This trend indicates that
the models need a minimum amount of data from a stu-
dent before peak predictive performance is reached. After
the initial rapid increase the metrics for both models level
off. In practice, this means that a student would need to
complete at least 10 to 20 responses before a model pre-
diction should be used. However, as we’ll see in the next
section, the models are sensitive to noise beyond the first 10
to 20 responses, so even more data should be collected to
be prudent. For high-stakes applications, more analysis is
required, such as how the time needed to initialize a model
varies with different question types.
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sequence

3.3 When are models sensitive to noisy

response inputs?
Student response data is often noisy due to factors like mis-
reading questions, accidental clicks, guessing, or submitting
random responses out of boredom. When used on a learn-
ing platform, the model should be robust to noise like this
and not overly rely on single responses that might not truly
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Figure 4: Absolute change in the probability of a correct
response after swapping the learner’s previous response.

reflect a student’s ability.

To examine how robust the models are in handling noisy in-
put data, we examined model predictions at all points of the
response sequence after intentionally injecting noise into the
data. For this analysis, we removed students with sequence
lengths less than 250 responses to ensure that the popula-
tion of students was the same as we varied the step in the
sequence that was being analysed. Specifically, when pre-
dicting performance on step ¢ in the sequence, we inverted
the outcome of step ¢ — 1. For example, consider a stu-
dent sequence [1,0,0,1,0] on steps 1-5. When predicting the
response on step 5, we instead gave the model the altered
sequence [1,0,0,0], then compared the predicted probability
correct to predictions from unaltered data (i.e., [1,0,0,1]).

The results are shown on Figure 4, which plots the median
of the absolute values of the change in the prediction of the
following response. As seen in Figure 4, the impact of noise
injection varies depending on where in the response sequence
it occurs. Noise that occurs early in the sequence has a much
bigger impact than noise that occurs later in the sequence.
Moreover, the impact of noise tapers off to a steady decrease
later in the sequence. This pattern is likely due to the fact
that the models have fewer observations from each student
earlier in the sequence, so individual responses are propor-
tionally more meaningful, and therefore have a larger impact
on the model predictions. After about 50 steps (which is a
typical unit in a course), injected noise starts to have more
of a modest absolute impact on the prediction (~0.06 - 0.1).
Broadly, this indicates that the models become more stable
and less sensitive to random perturbations as they accumu-
late more observations. This is a similar behavior to the
previous section on the cold start problem, where the model
needs to receive enough responses from a new student to
become appropriately initialized.

3.4 Does the order of questions impact model

predictions?
Student behavior, adaptive test mechanics, and a variety of
other reasons can lead to students answering the same ques-
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tions in different orders. However, teachers and students of-
ten have the common-sense expectation that if two students
give the same responses to the same questions, the students
should be interpreted to have the same ability, independent
of the order of those questions. Given this expectation, and
the intrinsic nature of order of training in DKT models, it
is important to evaluate how DKT model respond to differ-
ences in question order.

To address this, we prepared two response sequences from
two synthetic students (Student A and Student B) respond-
ing to questions from two unrelated skills within the course
("ratios using tape diagrams” and "negative symbol as oppo-
site”, referred to as Skill 1 and Skill 2). Both students always
responded correctly on questions from Skill 1 and incorrectly
on questions from Skill 2. The only difference between the
students was the order in which they responded. Student A
responded to 7 questions on Skill 1 followed by 7 question
on Skill 2 and Student B responded to 7 questions on Skill
2 followed by 7 questions on Skill 1. We then generated pre-
dictions for all questions for Skill 1 using SAKT at each step
in the sequence. The average of those predictions are shown
on Figure 5. Note that we also ran the analysis with the
LSTM model and found similar results.

As seen on Figure 5, SAKT’s predictions for Student A
(blue line) dropped after the 7th question when they started
giving incorrect responses to Skill 2. For Student B (orange
line), the predicted probability for Skill 1 dropped while giv-
ing incorrect responses to Skill 2 and then sharply increased
when they began to give correct responses to Skill 1. Inter-
estingly, by the end of the sequence, the predicted probabil-
ity for Skill 1 for Student A and B differed by more than
.10, despite having responded to the exact same questions
identically, just in a different order. To confirm the general
validity of this result, we repeated the analysis across all
possible pairings of 38 exercises in 3 different units. The
mean difference in the final predicted probabilities between
the two differently ordered sequences was .28.

These results show that the order in which questions are an-
swered has a profound impact on the DKT model’s predic-
tions for a student. A streak of incorrect responses, even to
unrelated questions, reduces the model’s predicted probabil-
ity of correct responses to questions which have previously
only been responded to correctly. We believe that this is
caused by the model’s over reliance on whether recent an-
swers are correct or incorrect rather than any real student
behavior. In applications where the model is being used to
give an assessment of a student’s knowledge across a wide
variety of topics, this is an unwanted model behavior. This
could potentially be addressed by altering the loss function
so that it does not only provide feedback information about
the single question that a student is responding to. Other
researchers [11] have found that altering the loss to include
the next response to all questions at each step helps to stabi-
lize the model predictions. This approach could also be ex-
tended so that the loss also includes the previous responses
given to each question, but further research is needed here.

4. DISCUSSION AND CONCLUSIONS
In this study, we evaluated two DKT models, SAKT and
LSTM, with an emphasis on practical considerations. Across
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all comparisons, we found that LSTM and SAKT performed
similarly enough to be functionally equivalent. Thus, model
performance does not appear to be a reason to choose be-
tween these two models. It is worth noting that the low
specificities (below 0.5 in all cases) found in this study sug-
gests that these models should not be used in high-stakes
applications, where important impacts arise from identifying
students who do not understand particular concepts. While
both DKT models showed better overall predictive perfor-
mance than IRT, our evaluations also highlighted a number
of undesirable behaviors from the DKT models that could
present challenges for their practical implementation.

One issue is that the DKT models are inherently better at
identifying correct responses than incorrect ones. This is
despite the fact that the data has a sufficient number of in-
correct responses to draw from (nearly 30% of all responses
in the training set). As noted previously, we were unable
to improve this issue by adding additional layers or features
to the models. Until this issue can be resolved, the only re-
course may be altering the classification threshold to reduce
false negatives at the cost of more false positives. Whether
it is even possible to improve performance is also an open
question, as our finding that lower specificity predictions
tended to come from students with isolated incorrect re-
sponses suggests a degree of unpredictability. Regardless,
this shortcoming of the DKT models is problematic, as it
means the models will have limited utility in helping to iden-
tify learning gaps for individual students.

A second issue is that the DKT models do not perform
at their best until they have received a sufficient number
of responses from a student (approximately 10 to 50 re-
sponses). This is true both in terms of predictive perfor-
mance and robustness to input noise. To deal with this,
applications can use alternative systems during the initial
stages, for example using a fixed set of initial questions or
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an IRT based computer adaptive test mechanism to select
appropriate questions until the DKT model is initialized.
Unfortunately, these extra systems add complexity. An al-
ternate route would be further research into how to control
the prior expectations for a student in a DKT model. In
a simple model such as IRT, a single ability parameter can
be adjusted based on prior expectations about the student.
This is harder to do in the more complex, high dimensional
DKT models.

Finally, we found that the order in which a student responds
to questions has a significant impact on how the DKT mod-
els predict that student’s performance. This is similar to the
result found in [5], however we further find that the use of an
attention mechanism in the SAKT model does not improve
the model’s ability to capture long term skill dependencies.
This order-dependent result makes the DK'T models partic-
ularly unsuitable in applications where the model is used to
assess the student’s overall knowledge over a large sequence
of skills.

4.1 Example Applications

While we have identified several shortcomings of DKT mod-
els in the previous section, this does not necessarily disqual-
ify them from use in practical environments. Indeed, the
degree of impact ultimately depends on how they are used.
To illustrate, we will consider two example use cases, the
second being more impacted by the shortcomings of DKT
than the first.

In the first use case, we can imagine a platform in which
students practice skills from a course in a predefined or-
der, and must respond to a minimum number of questions
in each skill. The DKT model estimates the probability of
correctly responding to questions from each skill as practice
unfolds, and decides when students have reached a sufficient
threshold of understanding to move on, or if they need to
respond to additional practice questions. In this use case,
the risk of the model misidentifying student knowledge gaps
would be mitigated by the fact that the student must demon-
strate their knowledge on at least one question in each skill.
None of the limitations of the model performance would be
critically problematic because the model is only given lim-
ited control, with guardrails of a minimum number of ques-
tions being asked so that skills with a knowledge gap are not
skipped entirely.

In a second use case, we can imagine the same type of plat-
form as the previous example, but students can practice the
skills in any order. A DKT model uses available responses
from each student to make predictions for all skills in the
course as way to represent their knowledge state. Given
that the order of the questions can have large impacts on
the model’s estimates, this implementation could be prob-
lematic. A student who did poorly on the most recent ques-
tions would see their estimates across all skills drop — even
skills on which they were successful. Conversely, a student
who responded with a streak of correct responses would in-
crease all estimates. These situations could erroneously in-
flate or deflate estimates for a student, potentially leading
to poor self-regulated learning decisions or interventions by
the teacher.



These examples demonstrate the the utility of evaluating KT
models from a practical perspective. By having a more nu-
anced understanding of model performance, we can establish
necessary guard rails and more readily determine whether a
model is appropriate for a specific use case.
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