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ABSTRACT
Ensuring the integrity of results in online learning and as-
sessment tools is a challenge, due to the lack of direct super-
vision increasing the risk of fraud. We propose and evalu-
ate a machine learning-based method for detecting anoma-
lous behaviour in an online retrieval practice task, using an
XGBoost classifier trained on keystroke dynamics and task
performance features to distinguish between genuine and
fraudulent responses. The classifier requires only a modest
amount of training data—approximately 100 short-answer
responses, typically collected within 10 minutes of practice—
and maintains good performance when not all feature types
are available. This method enhances the reliability of online
learning and assessment by identifying anomalous response
behaviour in a way that preserves learners’ privacy.
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1. INTRODUCTION
Online tools for learning and assessment offer benefits like
adaptivity and immediate feedback, but also create new chal-
lenges for an educational sector that is rapidly integrating
these tools into its curricula. A key issue is that of academic
dishonesty: when learners are completing exercises outside
the classroom, and are therefore not under the direct super-
vision of an instructor, how can we ensure that they are not
looking up answers, engaging in plagiarism, or receiving help
from others?

Preserving the integrity of online learning and assessment
requires a cohesive set of methods to both prevent cheating
in the first place, and to detect cheating when it does hap-
pen [13]. Systems can make specific forms of cheating more
difficult through technological measures, such as authenticat-
ing a learner’s identity through a password or biometrics, or
monitoring their behaviour using proctoring tools [1]. Meth-

ods to preserve integrity can also include understanding why
students engage in undesirable behaviour (e.g., because there
are usability issues, or because the material is seen as low-
quality, irrelevant, or too easy or difficult) and changing the
learning environment accordingly [2, 28]. In addition, stu-
dents may be explicitly dissuaded from dishonest behaviour,
for instance by warning them about the consequences of
being caught [9]. Within this wider framework, we focus
on a specific aspect of preserving integrity in the context of
an online retrieval practice environment: authenticating a
learner’s identity during the task through distinct patterns
in their typing behaviour on short-form text answers and in
their practice performance.

1.1 Related work
Previous work has demonstrated how authenticating a lear-
ner’s identity can extend to behavioural or biometric authen-
tication, typically using a machine learning classifier trained
on measurements of the learner’s behavioural traits during
the online task. Such behavioural biometrics reflect traits
that are inherent to learners, and therefore difficult to fake by
others. In tasks that involve typing, the frequency and tim-
ing information pertaining to particular (sets of) keystrokes,
keystroke dynamics, can be very informative for distinguish-
ing between learners. Keystroke dynamics have been used to
determine whether text input was typed by the same person
or not, both with specific phrases [25, 27] and with longer
free-written texts [11, 6]. In addition, keystroke features can
be used to identify particular task behaviours, like subpro-
cesses in an essay writing task [34]. As such, they can also
provide insight into other forms of academic dishonesty, for
instance by detecting copying or reproduction from another
source [18, 10]. For this kind of application of keystroke
dynamics, typing behaviour in a trial or session is generally
captured in a vector of features that serves as input for a
classifier. Classification by machine learning methods, like
neural networks and decision tree-based methods [6, 27, 18,
10], tends to outperform computationally simpler methods
(e.g., cosine correlation [11]).

The current study explores the practical application of a
method for biometric authentication in a specific context:
short-answer online retrieval practice of declarative knowl-
edge. This context poses several practical constraints. In
retrieval practice, learners typically provide short answers of
one or two words in response to retrieval cues that differ from
trial to trial, such as vocabulary in a second language, or the
name of a place indicated on a map. No other text input

680

Maarten van der Velde, Malte Krambeer, and Hedderik van Rijn. Pre-
serving the integrity of study behaviour in online retrieval practice us-
ing quantified learner dynamics. In Caitlin Mills, Giora Alexandron,
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is collected from learners. As such, there is relatively little
keystroke data by which a learner might be identified. In
addition, to protect learners’ privacy, no additional privacy-
sensitive information (e.g., audiovisual data [20]) is available.
The retrieval practice task also provides a different kind of
higher-level behavioural data that may be used for identi-
fying learners: measures of retrieval performance. There
are reliable individual differences in memory performance
that can be measured through such a task [30], and in other
contexts, performance-related features have been successfully
used in detecting abnormal response behaviour [24].

We demonstrate a machine learning approach for learner
authentication in the retrieval practice task, using a combi-
nation of keystroke features and task performance features
(Figure 1), evaluating its performance in a realistic setting.

2. METHODS
2.1 Data
We use data sampled from secondary school students in
the Netherlands studying German vocabulary items in Slim-
Stampen, an online retrieval practice application designed by
MemoryLab and made available to students through the edu-
cational publisher Noordhoff. Each practice session consists
of trials in which the learner sees a prompt on screen (e.g.,
a Dutch word), types a response into a textbox (e.g., the
German translation), and then receives corrective feedback
(Figure 1A). Practice sessions are variable in the number of
vocabulary items and overall length, but on average contain
about 20 trials. All students included in the sample had
completed at least 3 sessions and typed at least 10 distinct
bigrams (i.e., pairs of letters) in each session. In total, the
data contained 131,819 trials across 5,765 sessions from 513
students. We operated under the assumption that there
was no identity fraud in this sample, so that the student’s
unique user identifier could be taken as the ground truth.
The data were fully anonymised and contained only a unique,
non-identifiable user identifier. As a result, it was not pos-
sible to obtain informed consent from individual students.
The analysis was conducted in accordance with a data usage
agreement between Noordhoff and MemoryLab.

2.2 Features
We extracted two types of trial-level feature from the data:
keystroke dynamics and task performance features (see Fig-
ure 1B and Figure 3).

2.2.1 Keystroke dynamics
From the timing information of individual keystrokes, we
computed several common measures capturing aspects of
typing speed, including duration or hold time, press-release
or flight time, and press-press or inter-key delay (IKD). We
also included 95th-percentile IKD as a measure of pausing,
and mean absolute deviation in IKD as a measure of speed
variability [21]. In addition, we computed bigram-specific
median IKDs for the 40 most frequently occurring bigrams.
Users may differ widely in their average typing speed for
specific bigrams as a result of particular typing habits, such
as hand positioning or strongly learned sequences. By cap-
turing information on the timing of keystroke combinations,
we therefore hope to allow for more user-specific adaptation.
A similar approach has previously been used by e.g., [27],

Figure 1: Diagram of the model training and classification
process. A. Retrieval practice sessions consist of a sequence
of trials in which learners type short answers to retrieval cues.
B. Task-related and keystroke-related features are extracted
from each response. C. A model is trained to identify the
learner U1 from their responses. D. After training, the model
decides whether each new response is from learner U1. It also
makes a session-level classification based on majority voting.

showing the informative value of bigram-specific data. We
chose to include only the 40 most frequently occurring bi-
grams for considerations of model size and data sparsity.
In addition to improving the model’s chances of picking
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up on user-specific patterns in relatively rare bigrams, we
expect that including more bigram-specific timing features
will strengthen performance of the model when applied to
practice sessions of different languages and materials. For
example, a fairly common English bigram like U S appears
relatively infrequently in the current response data, but could
become an important feature when the same Dutch student
practising German also starts practising English.

2.2.2 Retrieval practice performance
Trial-level performance on the retrieval practice task was
measured in terms of response accuracy (correct or incor-
rect), response time (duration from trial onset to the first
keypress of the answer), and Speed of Forgetting, a continuous
parameter estimated by the learning system that captures
the difficulty of a specific item for a specific learner (details on
how this parameter is estimated are provided in [33]). While
the Speed of Forgetting parameter is specific to the current
application, other adaptive learning systems include compa-
rable parameters to capture individual differences in ability
or difficulty that could similarly serve as performance-related
features in a classifier.

2.3 Procedure
For each user, we trained an individual XGBoost model to
classify new trials as being from the same user or from a dif-
ferent user [3]. The XGBoost model is based on the gradient
tree boosting framework, which sequentially builds an ensem-
ble of decision trees. It goes beyond methods such as random
forests, while benefitting from the same low computational
cost, interpretability, and ability to handle inhomogeneous
features [12]. In binary classification, each new tree is trained
to reduce the classification error by fitting to the gradient
of the loss function, based on the predictions of the current
ensemble. This process ensures that the model improves
iteratively, focusing on hard-to-predict data. XGBoost is
particularly suitable for this context, since it can handle
missing values and complex, non-linear relationships in the
data very well. Furthermore, XGBoost provides built-in reg-
ularization, helping to prevent overfitting, which is crucial
when dealing with potentially noisy or sparse data [3].

A separate classifier was trained for each student, as illus-
trated in Figure 1. Retrieval practice trials were grouped by
session and each session’s trials were assigned to either the
training set or the test set. To address class imbalance, the
training set was downsampled to contain an even ratio of tri-
als from the same user and trials from other users. For each
trial, we extracted task-related performance features and
keystroke-related features from the response of the learner
(Figure 1B), resulting in a numeric vector of 51 feature values
(3 performance features, 8 general keystroke features, and 40
bigram-specific keystroke features; see Figure 3). Since indi-
vidual bigram-specific features are only available on trials in
which the keystroke data contains those bigrams, the feature
vector had missing values for absent bigrams.

Classifications were made on the test set at the individual
trial level: each trial was classified as being from the same
user or from a different user. Since in educational practice,
we typically care about integrity at the session level, we also
computed a session-level classification using majority voting:
if more than half of all trials in a session are classified as

being from the same user, the session as a whole is classified
as being from the same user.

2.3.1 Performance evaluation
We evaluated classification performance on the test set through
sensitivity, specificity, and ROC AUC. Sensitivity and speci-
ficity focus on positive or negative errors in classification,
while ROC AUC serves as a measure of classification perfor-
mance irrespective of a fixed decision threshold.

Sensitivity quantifies the probability that a new trial or
session from the same learner is correctly identified as being
from that learner. A high sensitivity means that the model
is unlikely to incorrectly flag new data from the same user
as coming from somebody else (i.e., false negatives). For the
model to be practically useful, it is important that sensitivity
is high, since falsely accusing learners of fraud is problematic.

The classifier’s specificity describes the probability that a new
trial or session from a different learner is correctly identified
as being from a different learner. A high specificity means
that the model is likely to catch impersonation of the learner
by somebody else (i.e., false positives). In practice, the higher
the specificity, the fewer cases of fraud will go unidentified.
However, for our purposes, we would rather miss genuine
fraud than make false accusations of fraud.

Sensitivity and specificity quantify performance given a de-
fault decision threshold of 0.5 (i.e., a higher than 50% esti-
mated probability of a single response being from the same
user, or a majority of responses within a session being classi-
fied as coming from the same user). The receiver operating
characteristic (ROC) curve captures changes in sensitivity
and specificity as the decision threshold changes. The area
under this curve (AUC) therefore summarises the classifier’s
overall ability to discriminate between classes, independent
of the specific threshold that is chosen.

2.3.2 Model variants
In addition to the full model, which included general and
bigram-specific features along with features related to task
performance, we also explored several variants with fewer
features. To represent a scenario in which there is little to
no overlap between specific bigrams in the training set and
the testing set (e.g., because the learner is answering in a
different language), we fitted a model using only general
bigram-agnostic keystroke features along with task perfor-
mance features. Furthermore, we assessed the added value of
using learning task performance features by fitting a model
with only keystroke features and no performance features.
Finally, we also fitted a model to only learning task-related
features, simulating a scenario in which the learner is an-
swering multiple-choice questions and therefore generating
no keystrokes at all.

2.4 Code and data
Feature extraction and model fitting and evaluation were
done in R [29]. We used the xgboost package [4] together
with tidymodels [22] for modelling, and the vip package [15]
to visualise variable importance. The R code and feature
data are available at https://github.com/SlimStampen/q

uantified-learner-dynamics.
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3. RESULTS
3.1 Classification performance
The classification performance of all full models is sum-
marised in Figure 2A and in the first row of Table 1.

3.1.1 Sensitivity
As Figure 2A and Table 1 show, trial-level sensitivity is
reasonably high, with a median of 82.8% and an interquartile
range of 16.7 percentage points. This means that on average
about 1 in every 5 responses will still be incorrectly marked
as coming from a different user. Session-level sensitivity is
substantially better, with a median of 100%: in the vast
majority of cases, there are no false negatives at all.

3.1.2 Specificity
Trial-level specificity is quite good but not perfect: the me-
dian of 80.9% means that about 4 out of every 5 responses
from other users are identified as such by the classifier. As
we would expect, session-level specificity is better, with a
median of 89.7%: about 9 out of every 10 sessions from other
users are caught.

3.1.3 ROC AUC
The difference in sensitivity and specificity at both the trial-
level and the session-level suggests that the classifier is some-
what conservative in both cases, and that a higher threshold
might result in better overall performance. The ROC AUC is
high when classifying individual trials (median: 89.6%) and
even higher when classifying entire sessions (median: 97.1%).

3.1.4 Intermediate summary
Across metrics, we observe a consistent pattern: performance
is higher when the classification is made for a session, rather
than for an individual response. This aligns with our expecta-
tions, both when it comes to correctly identifying the learner
and when it comes to detecting anomalous behaviour that
could indicate fraud. Since individual responses are short,
typically only consisting of one or two words, it is quite possi-
ble that a momentary distraction or slip causes the response
as a whole to deviate from a learner’s norm. Provided that
such anomalies occur in a minority of responses within a
session, the model can still correctly identify a learner at the
session level. Similarly, while individual fraudulent responses
might not be distinctive enough to cause suspicion, it is more
difficult for entire sessions of anomalous responses to slip
through undetected.

3.2 Effect of training set size
Since the training set for the model consists entirely of re-
sponses made in the retrieval practice task, training set size
can be a limiting factor. We evaluated how the number of
available trials from a learner in the training set impacted
classification performance. Figure 2B shows that, as ex-
pected, performance generally improves as the training set
size grows. For session-level classification, improvement ap-
pears to reach a plateau once there are around 100 training
trials from the target learner. For most learners, that would
mean that stable classification performance can already be
reached within the first 10 minutes of practice.

Figure 2: Performance of the XGBoost model, by classification
level. Each point represents a separate model trained to
identify a single learner. A. Overall performance. Labelled
black points show the median. B. Performance as a function of
the number of trials from the target learner in the training set.
The fitted curves are generalised additive models (GAMs).

3.3 Variable importance
To identify the features with the strongest contribution to the
classification, we computed variable importance per feature,
based on the total gain of splits in the decision trees associ-
ated with that feature. Figure 3 shows how each feature’s
variable importance is distributed across all of the full models.
Many of the most important features are general keystroke
features, such as the median hold time and flight time.

In addition, several features related to the retrieval practice
task rate quite highly, particularly the Speed of Forgetting
and reaction time. The Speed of Forgetting summarises a
learner’s overall memory performance and is typically quite
a consistent and distinctive feature of a learner [30, 33].
The relatively high importance of this feature in the current
classification confirms it to be a useful feature by which to
identify a learner in this context, too. Similarly, reaction time
can capture individual differences in processing speed (e.g.,
the time needed to read the retrieval cue on the screen [32]),
which makes it a relevant feature in the classification.
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Table 1: Median and interquartile range (in parentheses) of performance metrics of the model variants.

Model
Sensitivity Specificity ROC AUC

Trial-level Session-level Trial-level Session-level Trial-level Session-level

Full .828 (.167) 1.000 (.000) .809 (.092) .897 (.075) .896 (.096) .971 (.048)
Bigram-agnostic .795 (.192) 1.000 (.000) .760 (.114) .848 (.109) .848 (.128) .951 (.069)
No performance .828 (.163) 1.000 (.000) .804 (.092) .894 (.075) .894 (.098) .970 (.046)
No keystrokes .557 (.175) .600 (.667) .582 (.075) .680 (.170) .597 (.117) .709 (.286)

Finally, a number of bigram-specific features have relatively
high importance, such as the median IKD for the Space Shift
bigram and for the E R and E N bigrams. Unlike features
based on general keystroke dynamics and task performance,
which are available for every response, bigram-specific fea-
tures are only available if the response happens to contain
a given bigram. Higher-importance bigram-specific features
tend to be associated with higher-frequency bigrams. While
specific low-frequency bigrams might be highly informative in
individual cases, as the scattered points in Figure 3 indicate,
their overall importance is limited.

3.4 Model variants
The analysis of variable importance indicated that general
keystroke features, bigram-specific features and task perfor-
mance features all contributed to the classification of the
full model. Figure 4 compares performance of the full model
with performance of models with fewer features.

A model that does not include bigram-specific information
still maintains most of the performance of the full model, sug-
gesting that having overlap in the specific bigrams available
in the training data and those present in new practice sessions
is not critical for learner authentication. Linear mixed-effects
regression models fitted to the session-level metrics indicated
that, compared to the full model, there was no significant
drop in sensitivity (β = −0.027, t = −2.039, p > .05), a small
but significant drop in specificity (β = −0.048, t = −11.474,
p < .001), and a small but significant drop in ROC AUC
(β = −0.026, t = −3.867, p < .001).

Similarly, a model that does not have access to task per-
formance features achieves similar performance to the full
model, which suggests that good classification is still possible
if performance features are not available (e.g., in cold-start
situations when Speed of Forgetting estimates for new ma-
terials are not yet available [33], or in cases when response
times are uninterpretable due to distraction). Linear mixed-
effects regression models indicated no significant drop in
session-level sensitivity (β = −0.003; t = −0.248, p > .05),
specificity (β = −0.005; t = −1.252, p > .05), or ROC AUC
(β = −0.002; t = −0.308, p > .05), compared to the full
model. While Speed of Forgetting and response time were
found to be relatively important features in the full model,
other features appear to be able to compensate for their
omission here.

Finally, a model that does not have access to any keystroke
features but bases its classification on learning performance
features alone, performs much worse, although still above
chance level. Linear mixed-effects regression models con-
firmed a significant decrease relative to the full model in

session-level sensitivity (β = −0.337; t = −25.448, p < .001),
specificity (β = −0.207; t = −50.007, p < .001), and ROC
AUC (β = −0.269; t = −40.528, p < .001).

Together, these analyses suggest that while all features con-
tain information that is helpful for classification, there is
some redundancy among them. Among the different types
of features, general keystroke dynamics appear to provide
the most important information for learner authentication.

Figure 3: Variable importance across models, coloured by fea-
ture type. Each point represents a separate model trained to
identify a single learner. The percentage of retrieval practice
responses in which a feature is available is listed on the right.

684



Figure 4: Performance of variants of the XGBoost model with
different features, by classification level. Each point represents
a separate model trained to identify a single learner. Labelled
black points show the median. Full: all features; Bigram-
agnostic: no bigram-specific features; No performance: only
keystroke features; No keystrokes: only task performance
features.

4. DISCUSSION
It is important to emphasise that this method for learner
authentication focuses on addressing a particular component
of academic fraud. For instance, it is still unclear to what
extent a method like this could identify a learner reproducing
an answer from another source. While keystroke-based classi-
fiers have been shown to be able to identify such behaviour in
longer-form text [18], it remains to be seen whether the same
holds for the short-form answers in typical retrieval practice
tasks. In general, ensuring integrity in an online learning
tool requires a comprehensive approach towards prevention
and detection of fraud, of which the current method can be
an important component [13].

A factor that was not considered in the current evaluation
of the method, but is worth exploring in future work, is that
learners’ behaviour can change over time. The performance
of a classifier that was trained once on typing behaviour in
an initial set of practice trials may deteriorate as a learner be-

comes a more proficient typist [26], or as their fluency in the
target language increases [16]. In addition, metrics related
to memory performance may also shift as a learner’s knowl-
edge of the material changes [8]. To ensure that a classifier
maintains its performance over time, it can be periodically
retrained as new practice data becomes available [19].

In addition, implementation of the method in practice re-
quires careful consideration of how classifications are commu-
nicated to students and/or their instructors, in a way that
includes instructors in any decisions informed by automated
classifications, and that does not disempower students [7, 31].
While the decision-making process of this kind of model is
complex, analysing the contribution of specific features to
the classification process (through variable importance, as in
Figure 3, or through a method like Shapley Additive Expla-
nations [23]) can help instructors and students understand
why a particular classification was made. It is also important
to critically evaluate the fairness and possible biases of such
an automated method [18], to ensure that application of the
method does not disproportionally affect specific (groups of)
students.

Our findings suggest that the current approach is insufficient
for learning or assessment tasks with multiple-choice ques-
tions (MCQs). The comparison of model variants revealed
that classification performance relies heavily on keystroke dy-
namics: when the only information available to the model is
task performance-related, performance is substantially worse.
Future work may explore whether it is possible to engineer
additional features specific to a multiple-choice task, such as
features related to specific error patterns or response pref-
erences. Alternatively, occasional typing prompts could be
inserted into an MCQ task to provide keystroke informa-
tion [14].

In general, performance of the classifier might be further
optimised by including additional features related to click-
stream or navigation data throughout the application [17],
or features related to cutting, pasting, edits involving jumps
through the answer [6]. In addition, since there is a degree
of collinearity between features, a dimensionality reduction
technique like principal component analysis (PCA) may be
used to increase training efficiency. Finally, a comparison
to other classification algorithms (e.g., twin neural networks
that learn embeddings per user and use a similarity function
for classification [5]) would provide insight into the model’s
relative performance.

5. CONCLUSION
We have demonstrated a method for identifying anomalous
behaviour in an online retrieval practice task that may in-
dicate fraud, using an XGBoost classifier trained on both
keystroke dynamics and performance features specific to the
learning task. The method shows good performance, with
high sensitivity and specificity, particularly when classifica-
tions are aggregated at the level of a practice session. The
classifier requires only a modest amount of training data:
about 100 short answer responses, which can normally be
obtained from fewer than 10 minutes of practice. In addi-
tion, the method appears quite robust to missing features:
good classification performance is maintained when bigram-
specific features or learning performance features are not
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available. These findings mean that the method is suitable
for application in practice, enabling online learning and as-
sessment tools in which learners provide short text answers
to automatically flag irregular behaviour, while preserving
learners’ privacy.
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