
KC-Finder: Automated Knowledge Component Discovery
for Programming Problems

Yang Shi1, Robin Schmucker2, Min Chi1, Tiffany Barnes1, Thomas Price1

1North Carolina State University
2Carnegie Mellon University

yshi26@ncsu.edu, rschmuck@andrew.cmu.edu, {mchi, tmbarnes, twprice}@ncsu.edu

ABSTRACT
Knowledge components (KCs) have many applications. In
computing education, knowing the demonstration of specific
KCs has been challenging. This paper introduces an entirely
data-driven approach for (i) discovering KCs and (ii) demon-
strating KCs, using students’ actual code submissions. Our
system is based on two expected properties of KCs: (i) gen-
erate learning curves following the power law of practice, and
(ii) are predictive of response correctness. We train a neural
architecture (named KC-Finder) that classifies the correct-
ness of student code submissions and captures problem-KC
relationships. Our evaluation on data from 351 students
in an introductory Java course shows that the learned KCs
can generate reasonable learning curves and predict code
submission correctness. At the same time, some KCs can be
interpreted to identify programming skills. We compare the
learning curves described by our model to four baselines,
showing that (i) identifying KCs with naive methods is a
difficult task and (ii) our learning curves exhibit a substan-
tially better curve fit. Our work represents a first step in
solving the data-driven KC discovery problem in computing
education.

Keywords
Computing Education, Knowledge Component, Interpretable
Deep Learning, Neural Network, Code Analysis, Learning
Representation

1. INTRODUCTION
Modeling new learning domains is a common task for re-
searchers and educators [44, 23] which often involves identi-
fying a set of domain-relevant skills1, and determining when
(e.g., in which problems) students practice each individual
skill. Multiple data-driven approaches have been proposed

1Skills and knowledge components are used interchangeably
in this paper. Knowledge components (KCs) are defined
in [23] and introduced in Section 2.1.

to either improve existing learning domain models or to dis-
cover fully new models automatically using student log data.
The benefit of such approaches is that they can alleviate
the need for expert authoring (e.g., via cognitive task analy-
sis [11]), and can reveal skills and problem relationships that
may be counter-intuitive to the domain experts (e.g., due to
blind spots [32]). Traditionally, these methods (e.g. [7, 9,
38, 24, 8, 15, 25, 34, 33]) output a Q-matrix, which maps
the discovered skills to individual practice problems. With
a defined Q-matrix, researchers and educators can leverage
student modeling techniques such as knowledge tracing [13]
to assess what exact skills the student knows and doesn’t
know and can provide personalized problems recommenda-
tions that target the student’s specific knowledge gaps [7].

However, in domains such as programming where there ex-
ists heterogeneity in viable solution paths, simply knowing
which skills are relevant to a given problem is often insuffi-
cient – we also want to know when each of those individual
skills is successfully demonstrated in student practice, and
when it is not. For example, if a student attempts a problem
that requires the use of multiple skills (e.g. conditionals,
iteration, logic, etc.), it is helpful to know which of these
skills they have demonstrated successfully. This can aid us
(i) better understand how students struggle and learn, and
(ii) adapt teaching to individual student’s needs by offering
personalized help and instruction. In other words, rather
than viewing success on a problem as a binary outcome (cor-
rect/incorrect), it would be helpful if a model could detect
how successful a student’s attempt is along the dimensions
of each of the problem-relevant skills (e.g., loop correctness,
iteration correctness, etc.). In domains like programming,
many problems require students to apply multiple skills, and
it is difficult to break problems down into single-skill sub-
steps. Doing so requires making use not only of binary cor-
rectness information, as in prior work [9, 24, 38], but also in-
formation from students’ actual code submissions. Note that
this goal is distinct from that of predictive student modeling
(i.e., knowledge tracing [13]), which in programming tasks
predicts students’ binary submission correctness (such has
been done in [49]); instead, we are concerned with detecting
more fine-grained evidence of knowledge being demonstrated
during practice (i.e. successful or unsuccessful demonstra-
tion of multiple skills, rather than a whole problem).

As a first step towards this goal, this work explores how well
a data-driven approach can discover candidate KCs (skills)
that (i) can be detected automatically from student code

Y. Shi, R. Schmucker, M. Chi, T. Barnes, and T. Price. Kc-finder:
Automated knowledge component discovery for programming prob-
lems. In M. Feng, T. Käser, and P. Talukdar, editors, Proceedings
of the 16th International Conference on Educational Data Mining,
pages 28–39, Bengaluru, India, July 2023. International Educational
Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115671

https://doi.org/10.5281/zenodo.8115671

submissions – allowing us to track when students success-
fully demonstrate each of them, and that (ii) conform to the
learning theoretic properties of KCs suggested in prior liter-
ature [23]. For (ii) specifically, we attempt to discover can-
didate KCs that fit idealized learning curves [53] – meaning
that students get better as they practice individual skills,
quickly at first and then more slowly. The student error
rate reduction over time is assumed to follow a power law
(namely the power law of practice) [53]. KCs are also ex-
pected to be informative for predictions of students’ suc-
cess on the current problem [13]. Our goal in this work is
to first understand how well the discovered candidate KCs
meet these criteria, and then to explore how they can in-
form our understanding of student learning. We propose
the KC-Finder algorithm which takes as input sequence data
describing students’ code submissions on a series of practice
problems, and that outputs: (i) a set of candidate KCs; (ii)
a Q-matrix mapping these KCs to individual practice prob-
lems where they are relevant; and (iii) a detector that can
estimate, for a given student attempt on a problem, con-
fidence values describing which of the relevant KCs were
demonstrated correctly, allowing us to reason about why an
incorrect attempt was made. We introduce a loss function
inspired by learning curve analysis to train a deep learn-
ing model whose predictions conform to idealized learning
curve [9]. We evaluate our approach by answering two re-
search questions (RQs) using data from 351 undergraduate
students in an introductory Java course:

• RQ1: To what degree do the discovered candidate KCs
conform to the learning theoretical properties of KCs?

• RQ2: What kind of patterns have we discovered as
KCs in students’ code and how do they inform our
understanding of student learning?

For RQ1 we evaluate the candidate KCs by calculating a loss
describing the fit to expected learning curves. For RQ2, we
conduct a case study analysing concepts and skills tracked in
student submissions. Our findings suggest that the KCs dis-
covered by our data-driven approach induce learning curves
conforming to the power law of practice. The discovered
KCs are sometimes (but not always) meaningful and non-
obvious to domain experts. However, we also found that
the discovered KCs were no more predictive of student suc-
cess than random, laying the groundwork to explore how to
satisfy both learning theory and predictive performance.

2. RELATED WORK
2.1 Knowledge Components
We use “knowledge component” (KC) as a term to describe
the skills students learn by practicing a set of program-
ming problems in the computing education domain. The
concept of KCs was introduced in the Knowledge-Learning-
Instruction (KLI) framework by Koedinger et al. [23]. The
KLI framework connects teaching and assessment via ob-
servable and unobservable events in the student learning pro-
cess: instructional events, assessment events, and learning
events. Learning events are defined as cognitive (or from
a biological view, brain) changes occurring when students
learn. While learning events cannot be directly observed
or controlled, they are caused by instructional events such

as explanations and lectures which are observable. Assess-
ment events (exams, discussions, etc.) are used to probe the
student’s knowledge state which on its own is not directly
observable. The framework defines the knowledge students
learn through unobservable learning events as KCs which are
a concept that builds the bridge between learning events and
assessment events. In the general KLI framework, KCs can
also refer to other terms (e.g. concept, principle, or fact). In
this specific paper, we refer to KCs as skills, and by knowing
a skill, we mean knowing certain concepts/principles/facts
and how/when to use them. While there may be different
kinds of skills (procedural, declarative, etc.), we do not dis-
tinguish these since this paper’s focus is to find any skills rel-
evant to programming tasks regardless of their nature. KCs
can have different levels of granularity: for example, in pro-
gramming, “knowing how to write iterations” is a skill, how-
ever, a more fine-granular KC can be “knowing how to use
for correctly”. Problem-KC relationships enable us to track
students’ knowledge mastery as they work through a set of
problems [1] via knowledge tracing algorithms. Well-defined
KCs and problem-KC relationships are essential for knowl-
edge tracing algorithms such as Bayesian knowledge tracing
(BKT) [13], AFM [9], PFA [37] and DKT [39] which esti-
mate a student’s mastery of skills based on the correctness
of their responses to previous practice questions. The mod-
eling of student knowledge states enables intelligent tutoring
systems (ITSs) to adapt the workflow to individual students.
For example, SE-COACH [12] uses KC-driven models to de-
cide steps that need explanations, and Salden et al. [45] used
KC-based student models to examine the process of study-
ing worked examples and how knowledge is transfered when
solving problems. In our work, KC-Finder automatically
discovers candidate KCs from student code submissions for
these systems to work in the CS education discipline.

2.2 KC Discovery & Data-Driven Refinement
Many student modeling tasks require the definition of KCs
and problem-KC relationships. The task of identifying a set
of suitable KCs and assigning them to individual practice
problems is complex and requires substantial effort from do-
main experts and techniques such as cognitive task analysis
(CTA) [11]. Even then the resulting KCs can suffer from bi-
ases and blind spot effect [32] inducing a need for additional
refinement techniques (e.g., [7, 9, 16]). Further, the design of
detectors that determine when a KC is demonstrated when a
student attempts a certain practice problem is highly labor-
intensive [24]. Data-driven techniques that leverage student
log data have been proposed to refine existing expert Q-
matrices (e.g., [7, 9, 24, 16, 34]) and to discover new KCs
(e.g., [38, 8, 25, 34, 33]). These approaches demand less ef-
fort from human experts and can mitigate blind spot effects,
but they may lead to less interpretable KCs.

One common method to evaluate KCs is learning curve (LC)
analysis [9]. When evaluating KCs one hypothesis underly-
ing LC analysis is that the collective error rate of a popu-
lation of students in a KC decreases as they practice more.
This trend is assumed to follow an exponential curve (e.g.,
the power law of practice [53]). Multiple methods have been
proposed to improve the domain-specific Q-matrix using LC
analysis. For example, learning factors analysis (LFA) [9]
combines the additive factors model (AFM) with A* search
to refine an expert Q-matrix, and relies on learning curve fit

as optimization criterion. In this paper, our idea is similar to
LFA. We also use learning curves to guide the optimization
process, but differences exist. The biggest difference is that
we do not require initially defined KCs and Q-matrix, and
our main output is a set of discovered KCs. In addition to us-
ing learning curves in our loss function and evaluation met-
rics, inspired by performance predictions approaches (such
as BKT [13] and DKT [39], and newer models that use learn-
ing curves in knowledge tracing [55]), we also add response
correctness and actual student code submission information
into the model optimization process to discover KCs suitable
for performance predictions. This is similar to the work by
Shi et al. [49] who incorporated code information into DKT.
Shi et al. [49] also worked on a deep learning model, but the
key difference is that we propose to discover KCs, while they
focus solely on predicting student performance.

2.3 Student Modeling in CS Education
Student modeling in computer science education has its own
challenges which set it apart from other domains such as
math and science education. For example, open program-
ming problems are hard to perform knowledge tracing on
due to the inherent complexity of the individual problems
and the heterogeneity of viable solutions. Some prior works
aimed at finding KCs suitable for CS education. While the
Lisp tutor [3] introduces KCs with the tutor’s design, it does
not allow students to write code freely, which greatly con-
strains the space of possible student code submission. It
is difficult for teachers to perform CTA for open coding
problems and to find suitable KCs. Gusukuma et al. [21]
proposed a framework to identify misconceptions and find
KCs accordingly, but the approach still requires substantial
effort from domain experts, and the KCs they discovered
have not yet been evaluated quantitatively. Rivers et al. [44]
proposed using normalized nodes from abstract syntax tree
(AST) representations of student code as KCs, and evalu-
ated them with learning curve analysis. However, some KCs
discovered by their model did result in learning curves not
conforming to the power law of practice. One can hypoth-
esize that this might be due to limitations of canonicaliza-
tion algorithms (the process of converting student code into
a standardized format). We look at this problem from a
different point of view and hypothesize that the guidance
of learning curves in the KC discovery process can help re-
cover better fitting learning curves. We use a neural network
structure subjected to a constraint inspired by ideal learning
curves to identify KCs that warrant well-fitting representa-
tions. There is also related work with focus on applications
of student models in CS education. Yudelson et al. [56]
extracted student code features and used them for code rec-
ommendation; finding KCs can also help us attribute errors
from student code, and thus may aid in subgoal detection
tasks [31] and may enable better feedback [40] and hints [43]
to students. Some recent works focused on student perfor-
mance prediction [30, 28, 22, 58] by leveraging code submis-
sions (though using experts or data-driven code features).
Finding suitable KCs may help such models make more ac-
curate predictions. Discovering KCs is still a key mission in
CS education to improve many of these applications.

2.4 Deep Code Learning for CS Education
The advancement of deep learning and big data analysis
algorithms has significant impacts in diverse domains in-

cluding code analysis [2, 57, 10]. Many related techniques
have found application in the CS education domain due to
the increasing size of available datasets [26]. A frequently
applied model is code2vec [2], which has been used to de-
tect bugs and misconceptions from student code [50, 52, 51],
and recent extensions also approach student performance
prediction tasks [49, 29]. Other research used code2vec for
general classifications of educational code in a block-based
setting [19]. The recent Codex model (and the related CoPi-
lot tool [10]) caught the attention of many CS educators.
Codex is widely used for code auto-generation tasks, and
has also achieved promising resulting when used to gener-
ate student code explanations [46]. While deep learning-
based approaches often yield high predictive performance,
they tend to be less interpretable then traditional modeling
approaches (despite the effort from [17]) and it is difficulty
to extract insights into the learning process that can be ex-
plained to students and teachers. Our approach leverages
learning curve analysis to guide the model training process
and aims to build a more trustworthy and explainable deep
learning model for student modeling tasks in CS education.

3. METHOD
Our target is to discover KC candidates using constraints
inspired by learning theory. Suitable KCs are expected to be
informative in student performance predictions and should
induce learning curves that follow the power law of practice.
Overall, there are four assumptions about KCs made in our
work to build the KC discovery model. They are introduced
below along with the theoretical rationales behind them.

3.1 Assumptions
The assumptions underlying the model design are A1: The
collective error rate of students on a given KC decreases with
subsequent opportunities to practice that KC. This decreas-
ing trend is assumed to follow the power law of practice [9,
53]. A2: The demonstration of KCs in a problem solution
attempt should be predictive of the attempt’s correctness.
A3: KCs are detectable from a student’s current code sub-
mission. A4: All problems have a fixed set of KCs, meaning
that the related KCs for a problem are fixed, independent of
the submissions from students. A5: All KCs have the same
initial error rate and learning rate.

A1 states that observations from students practicing KCs
should induce learning curves that conform to the power
law of practice. It is natural to assume that when practicing
KCs, as students practice more, they become more proficient
in these KCs, and thus make fewer mistakes. The power
law of practice postulates that the collective error rate from
all students decreases as students practice more following
a power function (Y = aX−b). This assumption has been
made by multiple prior student modeling approaches [9, 44].

A2 assumes that if a student knows all KCs relevant to a
problem, it indicates they are likely to answer the problem
correctly. When incorporating this assumption into a data-
driven model, it implies that the demonstration of KCs rele-
vant to a problem in a solution attempt should be predictive
of attempt correctness. For example, if a problem requires
the application of KCs A and B, a successful demonstration
of KC A should suggest an increased likelihood of getting
the problem right. This assumption has been used in many

knowledge tracing models [13, 6, 35, 47] that make predic-
tions on future submissions with a focus on domains with
closed and structured questions. However, for open-ended,
free-form computer science problems, the complexity and in-
tertwinedness of individual KCs may cause more difficulty
in performance prediction. We thus limit our assumption to
the current submission correctness.

A3 postulates that KCs are observable and detectable from
students’ code submissions. We only have access to the code
submissions, and in this work we only focus on KCs that
can be extracted from code submissions. While some KCs
may exist that are not directly observable through code sub-
missions (for example, reading skills are also required when
students try to solve programming tasks specified by text
requirements), various KCs can be observed in code submis-
sions. For example, Rivers et al. [44] extracted various KCs
represented by AST nodes derived from code submissions.

A4 and A5 are assumptions specifically made in the design
process of our current model. They may not necessarily be
true, but we use them to facilitate the creation and training
of the KC-Finder model. Future work can focus on loosen-
ing these assumptions. A4 as a limitation, states that the
number of practiced KCs is fixed for each problem. In many
cases this is true, but whether students practice certain KCs
can also be affected by the code they write and the solution
path they choose. For example, in an open-ended program-
ming problem, the instructor may expect students to solve
the problem by using nested if conditions, but some stu-
dents may choose more complex logic operations to avoid
nested if. Under this assumption, we assume that the stu-
dent did not demonstrate a correct practice of the required
KC “nested if”, while the student actually indeed correctly
practiced the KC “complex logic operations” and “nested
if” is not required by the problem. We use this assump-
tion to allow the usage of the Q-matrix since if KCs are de-
pendent on submissions, one Q-matrix cannot represent the
KC-problem relationship since the relationship varies across
different submissions. In A5, we have an assumption that
requires all candidate KCs we discover to have the same
starting error rate (a) and learning rate (b) in the power
function for their learning curves. We set this assumption
as a start for using properties of the power law curve, and
save the automatic fitting of more specific learning curve pa-
rameters for later work. Our experiments show that we can
still discover meaningful KCs under this assumption.

3.2 KC-Finder Model
Under the guidance of these theoretical properties, we define
the KC-Finder model structure below. Figure 1 provides an
overview of the model. We show a single student and their
T code submissions {S1,S2, ...,ST } for a course as example
to illustrate the process of the model. The output of the
model is specified in orange in the figure, where the current
submission correctness is indicated as {y1,y2, ...,yT }.

In a submission St, two types of information are available to
the model for the correctness classification task: the problem
ID pt and the actual code submission ct. While both can-
not be immediately processed by a mathematical model, we
separately represent the problem ID and code submission in-
formation as real-valued vectors. For the problem ID, we use

one-hot vectors to represent the IDs as vectors, using a vec-
tor xt to represent pt, where the length of the vector equals
the number of problems in the dataset, with all elements as-
signed as 0, except the element associated with the problem
assigned as 1. Note that this setting is similar but different
to typical knowledge tracing tasks [39, 49, 4] which also use
one-hot representations for problem IDs. Knowledge trac-
ing includes the correctness information in the task of the
next submission performance prediction (which is denoted as
yt+1). In contrast, we do not include the correctness infor-
mation since our task is to classify the correctness of the cur-
rent submission yt, and to discover KCs through the model
learned from this task. Code submissions ct are embedded
through a code2vec model [2], which has been recently in-
troduced to educational analytics in multiple tasks [51, 19].
The code2vec model can embed a code snippet ct into a
vector zt. This part of the model updates parameters in the
training process, along with other layers in the model.

Neural networks have a common structure. Linear layers
(also called fully-connected layers) are defined by weight
matrices and apply linear transformations to vector inputs.
The product of these multiplications is often followed by
non-linear functions such as sigmoid or tanh to introduce
non-linearity into the model. In the KC-Finder model, all
linear layers (WKC ,Wc and Wp) have the same mathemat-
ical operations (with different weights), which first multiply
with the input vectors and then apply the sigmoid function
(denoted as ϕ(·)) to every element to compute the output.
For example, when a code vector zt passes through the linear
layer Wc, the equation for this process is ht = ϕ(Wczt).

The vector ht is of dimension L, where L is the total num-
ber of KCs. We intend to interpret ht as the error rate of
students practicing KCs {l = 1, 2, ...L}, but there are some
challenges. First, not all problems practice all KCs, and
our model needs to learn problem-KC relationships. To this
end, we leverage the one-hot problem embeddings xt to infer
weights and represent the KCs corresponding to the current
problem. We use linear layer WKC to learn a relationship
between potential KCs and problems, and use a sigmoid
function to scale the output of layer m to the [0, 1] range.
The layer-m weights then multiply with the values of ht and
generate a vector kt. The intuition behind this is that every
problem can have a probability of practicing certain KCs,
and we use m as this probability and multiply the ht vec-
tor to represent the selected KC values. The output kt is a
masked representation of the knowledge status of a student.
When using an ideal learning curve to force the distribu-
tion of the representations across students in a batch, it can
readily be interpreted as the error rate of students practic-
ing KCs as we expect it to follow the power law of practice.
For a batch of students’ submissions that practiced a KC,
cumulatively they should also follow the power law of prac-
tice, and preserve their ability to predict the submission’s
correctness. These two properties lead to the design of the
loss function which is used to train the KC-Finder model:

L = α(
1

N

∑
N

H(y, ŷ))+(1−α)(
∑
T,L

| 1
N

∑
N

kn,t,l−k̂t,l|)+γ(||WKC ||1).

(1)
In Equation 1, the loss when the model has a batch of N stu-
dent submissions comes from three sources. The first part

zt

z2

zT

z1

...
Linear
Layer
Wc

...

Code
Vector

ht

h2

hT

h1

...

...

Prediction
Mastery of KCs

Opportunity

Error
Rate

Linear
Layer Wp

 yt

y2

yT

y1

...

...

Classification
Current Problem Correctness

Fit
Exponential

Curve

xt

x2

xT

x1

...

...

Linear
Layer
WKC

 mt

m2

mT

m1

...

...

Sigmoid

Masking

kt

k2

kT

k1

...

...

Learning Curve Fitting

Problem
Vector

Code2vec

...

T Problem
Submissions

Student

Figure 1: KC-Finder Model structure, where blue nodes are vectors, and green blocks represent neural network structures.

H(·) is the binary cross-entropy [14] of the classified results
y and the ground truth correctness ŷ, leading the model to
learn weights that produce a low submission correctness pre-
diction error. The second part is the loss for the fitness of the
learning curve to encourage predictions that conform to the
power law of practice. Since the learning curve is calculated
through a batch of students, we first average the error rate of
practiced KCs for every student in the batch. For a certain
knowledge component l, we calculate the assumed learning
curve, where k̂t = at−b. In the equation, a stands for the
starting error rate for students when they have not practiced
a skill, while b denotes the learning rate. Because we cannot
estimate KC-specific a, b parameters a priori without em-
ploying additional information or assumptions, we assume
all KCs have the same a, b parameters. This learning curve
fitness loss is optimized so that the model produces k vectors
that can be interpreted as the error rate of practiced KCs.
We use an α hyperparameter to control the importance of
the classification loss and the fitness loss. The last part of
the loss is an L1-norm regularization term weighted by hy-
perparameter γ which ensures sparsity in the WKC weights
and thus creates a more sparse masks m, allowing KCs to be
removed from unrelated problems. While the output of this
classification is a binary label describing whether a student
succeeds in their submission, the key product of the work
is the Q-matrix specified in m and the learning curves k on
the corresponding knowledge components.

4. EXPERIMENT
4.1 Dataset
Our experiments use the publicly available CodeWorkout
dataset2. The dataset is collected from an introductory Java
course at Virginia Tech in Spring 2019. The dataset is stored
in ProgSnap2 [42] format and is released to the public in the
2nd CSEDM data challenge3. No identifiable information

2https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
3https://sites.google.com/ncsu.edu/csedm-dc-2021/home

(such as geographical information, GPA, etc) on individual
students is released, and the dataset has been anonymized
for ethical considerations. The dataset includes submissions
from 410 students for 50 programming problems, which are
grouped into 5 assignments according to the topics. For
example, the first assignment mainly focuses on the if con-
ditions, while a later assignment has more problems on for

loops. The typical length of the student code submissions is
10 to 20 lines and 41.86 tokens, submitted to the CodeWork-
out [18] platform, and tested by pre-defined test cases. The
unknown tokens are specifically assigned as a unique identi-
fier [unk] in the model. To avoid overfitting to the problems,
user-defined variables and strings are also normalized to a
fixed string in students’ code. On average, 23.68% of all
submissions (from all students) are correct, meaning they
passed all test cases. Our model involves training, valida-
tion, and testing phases. We split the dataset according to
students by a ratio of 3:1:1 for each of the three phases. We
train the model with training data, use the validation set to
tune hyperparameters, and test and evaluate the model on
the testing set. The results are averaged through 5 times
repeated sampling to ensure the result are reliable.

4.2 Data Preprocessing
Code submissions are complex, and we only use the first at-
tempts of students on each problem for potential KC discov-
ery. One reason is that it has been common for knowledge
tracing tasks to only consider the first submissions for prob-
lems [48, 4], as students practice skills when they first see the
problem and have not received any feedback on the specific
problems. Another reason is that for code submissions, stu-
dents tend to debug on their later submissions. This process
involves more complicated behavior, which may not be fully
explainable by conventional knowledge component model-
ing. Sometimes students even get intimidated by problems
in case of repeated incorrect submissions, only to click the
submit button multiple times and thus make invalid sub-
missions that do not show what they know and don’t know.

Therefore, as it would be a non-trivial task to evaluate can-
didate KCs for multiple submission situations, we only use
the first submissions from students for every problem. This
is also different from other analyses such as “learning tra-
jectory analysis” [54], as we only focus on the submissions
when students practice skills for the first time.

Some students may also have exhibit cheating behavior in
the dataset (since the system used to collect data don’t have
a detector for cheating, unfortunately). We also observed
students submitting partial code as their first submission or
potential cheating. For example, some students struggled
with easier problems, but suddenly are able to make correct
submissions on their first try after a certain problem, and
those later problems are generally more complicated than
the ones they failed many times before.

We added preliminary filters to keep only the first attempt
submissions from students and avoid students with possible
cheating behavior. To only keep the first submissions, we im-
plemented a filter to detect the first submissions that are not
too short (longer than 3 lines of code) and only kept these
first submissions. We also implemented a filter to remove
students with sudden changes in their submission patterns.
Out of 410, we finally kept 351 students in the dataset for
the KC discovery task.

4.3 Hyperparameter Tuning
We used validation sets for hyperparameter tuning. Specifi-
cally, we applied grid search to find hyperparameters yield-
ing the highest classification AUC scores on validation sets
for model evaluations. This process is repeated 5 times to
reduce the risk of overfitting. We selected the learning rate
for the model as 0.005 through space of 0.001, 0.003, 0.005,
and the training epochs are selected as 80 through the early-
stopping process. We also tuned the α parameter (specified
in Equation 1) and used a value of 0.97 (in a range of 0.03
through 0.97). At the same time, the lower weight on learn-
ing curve fitting loss does not have a significant effect on the
potential KCs discovered (they still produce good learning
curves even if set low). Still, a higher weight on classification
loss is needed for the classification task. The γ parameter
controls the speed of removing potential KCs from unrelated
problems and is set to a low value of 3e−5. The other model
hyperparameters are kept the same as the default ones in the
settings of the code2vec and DKT models [2, 39]. We did not
tune on the different combinations of the a and b parameters
of the expected learning curves of the KCs since it is hard
to evaluate the quality of potential KCs quantitatively, as
in real applications, it is also feasible to try different a and
b parameters and check the quality of potential KCs found
under various combinations. In our experiments, we used
the values a = 0.7, b = 0.6. We also assumed that L = 30
potential KCs exist in the dataset, and while the model is
able to reduce the number by learning a candidate KC not
practiced in any problem, the number is an educated guess
by the authors after checking through the problems. Future
experiments can be introduced to evaluate more value com-
binations. We kept these values since there is no direct way
to quantitatively evaluate the quality of programming skills
or misconceptions discovered by the models. The model is
trained with a computer equipped with an Nvidia GeForce
RTX 2080 Ti GPU. A single run of the training takes less

than 10 minutes, and inference of a single batch of students
takes seconds of computation. The code is implemented in
PyTorch [36] and publicly available4.

4.4 Baseline KC Models
We compared the KC discovered by our model with four
baseline methods. One can argue that topics of the prob-
lems can be extracted and assigned as the KCs in each
question. As the first baseline in our experiment, one of
the authors manually examined the problem requirements
and code solutions, identified a set of 15 Topic KCs, and
manually tagged each problem with a set of relevant KCs.
The second baseline used an alternative way to extract KCs
that examines the student code submissions and extracts
the most frequently used code components (show up in more
than 20% of all solutions) in correct submissions as KCs for
certain problems. This is a simplified KC model compared
to [44], as we do not have an automatic hint generator for
Java compared to their work for Python programs. We im-
plemented this method to extract the nodes from the AST
representation of student code, and filtered nodes that show
up in more than 20% of correct submissions as KCs required
by the problem, resulting in 21 Node KCs. Textual and nu-
merical leaf nodes of ASTs were removed from KCs since
they vary among problems. Lastly, we considered two stan-
dard baselines from prior work [37] one which uses a single
KC for all problems (i.e., general programming knowledge),
and another that defines a separate KC for each problem
(i.e., each problem is its own KC). We compared our discov-
ered candidate KCs with the four baselines using the fitness
errors of the induced learning curves.

5. RESULTS
5.1 Learning Curves
We first show three example learning curves generated from
our model using the testing dataset shown in Figure 2. To
evaluate the fitness of the learning curves of each of the po-
tential KCs, we calculated an average absolute error e =
1
T

∑
T |kt− k̂t| to compare the curves to the expected curves

under the exponential curve k̂t = at−b, where the a and
b parameters are automatically fitted. Note that for each
KC candidate, only problems practicing the KC are counted
when calculating the error e. For example, the KC candi-
date #5 is practiced in almost all problems. The KCs shown
in Figure 2 all have a relatively low error compared with the
assumed exponential curve. KC candidate #5 has an er-
ror of 0.037, KC candidate #4 has an error of 0.026, and
KC candidate #2 has an error of 0.032 All KCs candidates
we extracted have a e < 0.1, and the mean error is 0.034,
showing that the learning curves of the potential KCs are
generally consistent to the learning curve, and follow the
power law of practice. On the other hand, the baseline KCs
do not create KCs that fit the expected exponential learn-
ing curve. We show four learning curves created from the
baseline Topic KCs and the node KCs in Figure 3. The two
learning curves on the left represent the error rate of the
submissions when certain Topic KCs are practiced, and the
right side shows learning curves when node KCs are prac-
ticed. We can clearly see that neither KC models on the

4Code Repository:
https://github.com/YangAzure/KC-finder

https://github.com/YangAzure/KC-finder

KC #5 KC #4 KC #2

Opportunities Opportunities Opportunities

Error
Rate

Error
Rate

Error
Rate

Figure 2: Learning curves of different KC candidates generated from students in test set.

Opportunities Opportunities

Error
Rate

Error
RateExpert KC: If/Else Node KC: If Statement

Expert KC: For loop Node KC: For Control

Opportunities

Error
Rate

Opportunities

Error
Rate

Figure 3: Learning curve examples of Topic KCs and Node
KCs on concepts of if and for statements.

if or for statements show an exponential, or even decreas-
ing trend in error rates. When calculating their fit to the
assumed exponential learning curve for the model (with au-
tomatically fit parameters), we show in Table 1 that both
KCs have very high fitness errors. Only a small subset of
the KCs has a valid learning rate factor (b), presenting Topic
KCs and node KCs cannot generate learning curves fitting
the exponential curve with a fixed set of parameters. When
looking at more learning curves generated from both KCs,
they are similar to the examples in Figure 3 and do not have
a decreasing trend over opportunities. The learning curves
for Topic KCs and node KCs are similar to each other for a
certain concept (for example the first two learning curves for
if concept), which confirms that the expert extracted KCs
are represented in code submissions as well. However, one
limitation here is that the correctness may not directly rep-
resent the correct practice of certain KCs. The correctness
metric represents students practicing all KCs in a certain
problem correctly, but not on certain KCs. We use the cor-
rectness of the submissions to validate these two KC extrac-
tion methods as an approximation, which shows that our
work can represent the learning curve for certain KCs with-
out the need for a specifically designed partial evaluation of
the submissions – only if we can explain the potential KCs
discovered by the model.

5.2 KC Interpretation
Our model discovers KC candidates represented as vectors
that generate reasonable learning curves, and we show the
interpretability of the KC candidates in this section. We
manually examined the code and their corresponding KC
values and found that we could find meaningful and inter-
pretable KCs from these automatically discovered KC can-
didates. We manually inspected the discovered KCs across
multiple problems, and show one example for the presenta-
tion purpose. In Figure 4, we show an example case of a KC
candidate (KC #4) and explain what has been tracked in
this KC in one problem. The problem requires students to
use if conditions with logic operators, and one typical and
non-obvious error from students is to use the order wrongly
and return incorrect values that cause test cases to fail. It
should be noted that the values do not indicate whether the
KCs are practiced or not in certain problems. A low KC
value means a failed demonstration of the candidate KC.
Code A submission is correct, with a high KC value on KC
candidate #4. Code C has a wrong order and has a low
KC value on the same KC. While other reasons could cause
the difference in KC values, Code C is incorrect due to the
wrong order. This KC could possibly track bracket usage, as
the only difference between Code A and Code B is bracket
usage. Using brackets led to a lower KC value for Code B.

We also found some other concepts associated with KC can-
didate #4, for example, in one problem, all students who
have an error in using = as comparison operator == got lower
KC values. One KC may not represent a clearly defined con-
cept by experts. The KC candidates are almost certainly
amalgamations of different concepts, and no single behavior
seems to explain the KC itself. Some of these concepts are
consistent through different problems, as the example shows
are all related to the if condition, and some of the concepts
are problem-specific. As we do not have any specific design
in the mode, KCs can be conceptual and can be distinct
when they tend to improve together. Some candidate KCs
are meaningful and important skills for the problem (e.g. the
sequence of if conditions as shown in 4), which instructors
might not have intuited; however

5.3 Code Classification
In our experiments, we report the classification results through
5 times running and calculate the average of the runs to get
the classification results. KCs should be informative to pre-
dict the correctness of the code submission. To serve as
a sanity check, before we evaluate the discovered potential

Figure 4: Comparison of code submissions and their corresponding scores of KC #4. Frames show the possible code difference
that triggered the KC value difference.

Table 1: Fitness error of Topic KCs, Node KCs, and KCs
discovered by our model. The Valid LCs column indicates
the number of LCs with a positive learning rate parameter
(b > 0). A negative learning rate indicates a degenerate KC
(students get worse with practice).

KC Error Valid LCs
Topic KC 0.0663 1
Node KC 0.0785 5
Model KC 0.0342 30

Table 2: AIC, BIC of Topic KCs, node KCs, one KC, all KCs,
and KCs discovered by this model.

KC Model AIC BIC
One KC 3223.92 3651.62
All KC 3179.95 4189.79

Topic KC 3220.99 3672.45
Node KC 3214.84 3678.18

Random KC 3076.08 3848.31
Model KC 3081.44 3853.67

KCs, we evaluated an average of running the model on dif-
ferent splits of training and validation sets five times and
reached an average AUC score of 77.26%. Considering that
no correctness information is given to the model, and only
discovered KCs are used for making the classification, the
potential KCs can be used to classify the code correctness,
showing the necessity of using the correctness information
in the loss function.

5.4 Q-Matrix Analysis

We present the Q-matrix we found from the testing dataset,
ranked by the number of problems in Figure 5, and compare
the corresponding AIC and BIC scores in Table 2 to eval-
uate how well the discovered and baseline KCs predict stu-
dent performance/correctness, following prior methods [9].
These metrics are frequently used to evaluate the goodness
of fit. More detailed equations for the metrics can be found
in prior works (e.g. [9]). The Q-matrix shows that the KCs
are relatively evenly distributed through all problems with
good sparsity. In the comparison results, the model scores
are similar to a random KC model. It would be unsur-
prising to have this result, as the model learned KC candi-
dates that were amalgamations of different and overlapping
micro-concepts; therefore, it makes sense that a Q-matrix
involving these KCs would not be meaningful. While our
KC model does not generate better AIC/BIC scores than
random KC, the other baseline models (even manually de-
fined KC models). This shows that it is difficult to create
a predictive KC model with the dataset. Furthermore, it
suggests that fitting a learning curve itself is sufficient to
discover KCs for domain modeling. We did not manually
inspect the baselines’ KC quality since they are specifically
designed to represent different levels of KCs. For example,
one KC and all KC are naive baselines that any domain
could use, while the remaining baselines are expert-defined,
and thus already fit to expert understanding of KCs. One
direction for future work would be to seed the model with an
expert-authored Q-matrix and allow the model to discover
KC candidates which match the pre-specified pattern. This
KC-refinement task has been explored by various works (e.g.
[24]). However, doing so with our approach would help to
address the challenge of figuring out which relevant KC a
student is struggling with when they get a problem wrong.

6. DISCUSSION
6.1 Expected Properties
We first answer RQ1 in this discussion section: How closely
do the candidate KCs detect match the expected properties
of KCs?

Our goal was to discover candidate KCs that matched two
important properties of high-quality KCs. First, students
should be more successful at demonstrating KCs as they
practice them, following the power law of practice [9, 24].
Second, a student’s success on a given problem should be
predicted by how successfully they demonstrated relevant
KCs for that problem [13, 47]. To address this, we trained
a model to detect candidate KCs and then evaluated those
KCs on a separate dataset. Our findings suggest that the
discovered KCs largely meet these two goals, much more so
than the four baselines we compare with (see Section 4.4).

First, the resulting learning curves appear high quality, fit-
ting well to a power law curve. By contrast, none of our
baselines produced viable learning curves, suggesting that
naive approaches for defining KCs are ineffective with our
dataset. Similarly, prior work [44] has found that learn-
ing curves in programming often fail to align with learning
curves. This result suggests that our model could detect
patterns in student code that become more frequent as stu-
dents practice – quickly at first and then slower with time –
as suggested by the power law of practice [9]. As we discuss
below, some of these patterns likely correspond to skills that
students develop over time, such as the usage of if condi-
tions, or (the absence of) misconceptions that become rare
over time, such as using an assignment operator (=) instead
of comparison (==) inside of a conditional statement. How-
ever, some of these patterns may simply correspond to code
constructs that are used more frequently as the semester
progresses (e.g. variables, which are rare in early assign-
ments), and thus naturally increase in frequency, without in
reality having much to do with practice. Matching learning
curves is not itself enough to say a KC is meaningful, but
it does suggest that some of the discovered KC candidates
may correspond to learned skills.

Second, we found that, for a given problem, the relevant KC
candidates were, collectively, predictive of students’ correct-
ness on programming practice problems (AUC = 77.26%).
These results suggest that whether a student successfully
demonstrates a candidate KC discovered by our model gives
insight into whether they will succeed at the current prob-
lem. In other words, the code patterns underlying these
candidate KCs are also important code patterns for solving
the programming problems in our dataset.

Overall, these results suggest that the candidate KCs we dis-
covered do match the expected properties of idealized KCs in
these two dimensions. Importantly, the results we presented
were from a hold-out test dataset with unseen students, sug-
gesting that KC candidates can generalize across different
students within a course. However, while these criteria are
necessary, they are not sufficient, and we will explore the
limitations of the discovered KCs below.

6.2 Skill Tracking

KC#

Problem

Figure 5: Q-Matrix representation of KCs and problems,
where yellow cells represent a presence of the KCs in a prob-
lem, and dark cells represent an absence.

We answer RQ2 in this section: What properties do the dis-
covered KC candidates have? What kind of patterns have we
discovered as KCs in students’ code?

First, we found that there are important differences between
the discovered KC candidates and how experts would likely
define KCs for a given domain. Rather than discrete con-
cepts (conditionals), the KCs are amalgamations of differ-
ent micro-concepts (e.g. correct ordering of the primary
if-statements in a problem), where no single behavior seems
to explain the KC itself, and different KCs overlap. Some of
these micro-concepts show up across different problems (e.g.
KC #4 detects the misuse of = in conditions (or assignment
in conditional) misconception across various problems).
Some of these are also problem-specific, e.g. the order of
two if statements in the problem shown in 4. This suggests
the need for further research on operationalizing the idea
of a KC’s ”consistency” – that a KC should mean the same
thing when detected across students and problems. This
is a non-trivial idea to encode in a model, which lacks any
domain expertise. Ideally, such a definition should be de-
fined based on student behavior (e.g. if a KC is consistent,
students’ performance for problems that use the KC will be
correlated). In some ways, this idea is operationalized by
approaches such as AFM [9]. However, since the actual do-
main information is not used, it would not be feasible to
evaluate the performance of such methods. Although the
Q-matrix learned by the model was not meaningful, we also
found that the candidate KCs can inform our understanding
of what skills students develop in a domain. For example,
we found that KC #4 clearly detected a micro-concept fo-
cused on students’ use of brackets in code. Importantly,
these brackets did not change the function of the student’s
code, and it is unlikely an expert would have thought to in-
clude them as a discrete skill. However, our model identified
this pattern as being predictive of student success and fit-
ting a good learning curve. In retrospect, this makes sense
as skill students develop: acquiring familiarity with syntax
and style conventions (e.g. when brackets are and are not
necessarily) can help students succeed on various problems,
even if it does not directly affect their correctness. We also
found that candidate KCs included misconceptions, such as
the confusion of = and == in if conditions. More work is

needed to develop methods for extracting the meaning of
these data-driven KC candidates, and use this understand-
ing to develop insight.

6.3 Design Choices
We made design choices according to our assumptions (See
details in Section 3.1). Assumption A3 specified that KCs
should be detectable from code, and thus we used the code2vec
model to process code into vectors z [2]. Code2vec has been
used for educational data mining tasks recently [50, 49, 19],
and the code embedding extracting module can be other
models such as ASTNN [29, 57] as well. Assumption A4
specified that problems should have a fixed set of KCs, and
we thus 1-hot embedded the problem IDs into vectors x,
and use them to calculate a set of masks m to specify the
KCs active for different problems. The masks select relative
KCs for processed code vectors h, and the selected values k
participate in the loss calculation. According to assumption
A1, one requirement is that if we let k correspond to KCs,
they should follow the power law of practice. We designed
the loss so that k values fit an exponential curve, generated
by a fixed set of parameters, relaxed by assumption A5. Fi-
nally, since A2 specifies the performance of KCs should be
predictive of the code correctness, we use k values to make
the predictions and have the model also train on the clas-
sification loss. When we assume the learning curves have
the same parameters, the model may overlook KCs with
very different starting error rates and learning rates. We
thus used an L1-regularization to encourage the sparsity of
WKC and allow KCs to drop. While many variations and
improvements can be made, this model is a proof of concept
and serves as a prototype for the KC discovery task in the
programming education domain.

6.4 Research and Educational Implications
This work introduced a fully data-driven KC-discovery al-
gorithm designed for the CS education domain. It uses stu-
dent log data describing the correctness of student responses
and actual student code submissions to discover KCs and
map them to individual programming problems. It connects
pieces of computer science education with learning theories
to discover a Q-matrix which conforms to the power law of
practice [53]. It has been a different task from the KC refine-
ment methods such as LFA, which uses learning curve analy-
sis for KC-refinement, but it requires an initial Q-matrix [9,
24]. These student model improvement methods can reduce
the load on experts when performing cognitive tasks analysis
[11]. In contrast, our model directly reduces expert effort by
providing a student model that produces KCs with learning
curves fitting the power law of practice. Our model leverages
deep learning structures, typically known as “black boxes”,
however, we specifically designed the model such that the
middle layer information can be interpreted as the KC abil-
ity estimates and thus made this model interpretable. The
discovered KCs can be applied for performance prediction
tasks by directly using the KC values or plugging the model
structure to current knowledge tracing models for CS educa-
tion [49]. While there are vector representations of student
code submissions, they can also serve as language-agnostic
representations to represent the mastery of KCs [27]. Our
model can also be seen as a misconception attribution tool.
When a student is predicted to have a high error probability
on a certain KC, an automated hint or interference can be

generated in an adaptive way to help the learning process
[41]. Finally, the model can also be used to analyze the KCs
covered by a set of problems using submission data from
a semester, and thus to make more informed pedagogical
decisions [20].

6.5 Limitations
Besides the assumptions we made to guide the model design,
there are also other limitations present in this study. First,
we did not incorporate the factor of using test cases. The
run-time results of carefully designed test cases may con-
tribute to the attribution of errors when students practice
KCs. However, we do not have the full test case informa-
tion for every problem in the dataset, and it is non-trivial
to match KCs with specific test cases. Future work may in-
tegrate information about test case results into the existing
method to enhance the KC discovery process. Second, we
followed the tradition of knowledge tracing tasks and only
used students’ first submissions in model training and eval-
uation. One major limitation is that we cannot track the
actual opportunities of practicing KCs in repeated submis-
sions, especially if we don’t assume that problems have fixed
sets of KCs. We made this decision after the exploratory
data analysis, during which we found lots of students made
debugging submissions that are unnecessary. We found it
can be complicated to explain this behavior, and are unsure
if students actually intend to practice KCs when submitting
a debugged code (for example, they may hit submission but-
tons multiple times, or they just wanted to exhaust possible
choices to reach the correctness), as pointed out by Baker
et al. [5]. It could also be interesting to investigate student
behavior after their first submissions for programming prob-
lems. Finally, this model serves as a prototype and many
variations could possibly generate better KCs. However, we
do not have a metric to quantitatively evaluate the extent of
KCs being reasonable and interpretable. While we do have a
metric to examine the fitness of the learning curves and the
classification of the code correctness, one limitation of the
results is that the classification results are no better than
random, and the discovered KCs are sometimes meaningful
and non-obvious. The limited size of dataset may also cause
a limited generalization on other datasets. We will explore
ways to use expert knowledge to evaluate the quality of KC
models, using this research to guide our future direction.

Acknowledgements
This material is based upon work supported by NSF under
Grant No. #2013502 and #2112635.

7. REFERENCES
[1] V. Aleven and K. R. Koedinger. Knowledge

component (kc) approaches to learner modeling.
Design Recommendations for Intelligent Tutoring
Systems, 1:165–182, 2013.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[3] J. R. Anderson and B. J. Reiser. The lisp tutor. Byte,
10(4):159–175, 1985.

[4] A. Badrinath, F. Wang, and Z. Pardos. pybkt: An
accessible python library of bayesian knowledge

tracing models. In In: Proceedings of the 14th
International Conference on Educational Data Mining
(EDM 2021). ERIC, 2021.

[5] R. S. Baker. Gaming the system: A retrospective look.
Philippine Computing Journal, 6(2):9–13, 2011.

[6] R. S. Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian
knowledge tracing. In International conference on
Intelligent Tutoring Systems, pages 406–415. Springer,
2008.

[7] T. Barnes. The q-matrix method: Mining student
response data for knowledge. In American Association
for Artificial Intelligence 2005 Educational Data
Mining Workshop, pages 1–8. AAAI Press,
Pittsburgh, PA, USA, 2005.

[8] Y. Bergner, S. Droschler, G. Kortemeyer, S. Rayyan,
D. Seaton, and D. E. Pritchard. Model-based
collaborative filtering analysis of student response
data: Machine-learning item response theory.
International Educational Data Mining Society, 2012.

[9] H. Cen, K. Koedinger, and B. Junker. Learning
factors analysis–a general method for cognitive model
evaluation and improvement. In International
conference on intelligent tutoring systems, pages
164–175. Springer, 2006.

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O.
Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph,
G. Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374,
2021.

[11] R. E. Clark, D. F. Feldon, J. J. van Merriënboer,
K. A. Yates, and S. Early. Cognitive task analysis. In
Handbook of research on educational communications
and technology, pages 577–593. Routledge, 2008.

[12] C. Conati and K. VanLehn. A student model to assess
self-explanation while learning from examples. In
UM99 User Modeling, pages 303–305. Springer, 1999.

[13] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Modeling and User-adapted Interaction,
4(4):253–278, 1994.

[14] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y.
Rubinstein. A tutorial on the cross-entropy method.
Annals of operations research, 134(1):19–67, 2005.

[15] M. C. Desmarais and R. Naceur. A matrix
factorization method for mapping items to skills and
for enhancing expert-based q-matrices. In H. C. Lane,
K. Yacef, J. Mostow, and P. Pavlik, editors, Artificial
Intelligence in Education, pages 441–450, Berlin,
Germany, 2013. Springer.

[16] M. C. Desmarais and R. Naceur. A matrix
factorization method for mapping items to skills and
for enhancing expert-based q-matrices. In
International Conference on Artificial Intelligence in
Education, pages 441–450. Springer, 2013.

[17] M. Du, N. Liu, and X. Hu. Techniques for
interpretable machine learning. Communications of
the ACM, 63(1):68–77, 2019.

[18] S. H. Edwards and K. P. Murali. Codeworkout: short
programming exercises with built-in data collection. In
Proceedings of the 2017 ACM conference on

innovation and technology in computer science
education, pages 188–193, 2017.

[19] B. Fein, I. Graßl, F. Beck, and G. Fraser. An
evaluation of code2vec embeddings for scratch. In In
Proceedings of the 15th International Conference on
Educational Data Mining (EDM) 2022, 2022.

[20] S. Guerriero. Teachers’ pedagogical knowledge and the
teaching profession. Teaching and Teacher Education,
2(1):7, 2014.

[21] L. Gusukuma, A. C. Bart, D. Kafura, J. Ernst, and
K. Cennamo. Instructional design+ knowledge
components: A systematic method for refining
instruction. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pages
338–343, 2018.

[22] M. Hoq, P. Brusilovsky, and B. Akram. Analysis of an
explainable student performance prediction model in
an introductory programming course. In Proceedings
of the 16th International Conference on Educational
Data Mining (EDM) 2023, 2023.

[23] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning. Cognitive science, 36(5):757–798, 2012.

[24] K. R. Koedinger, E. A. McLaughlin, and J. C.
Stamper. Automated student model improvement.
International Educational Data Mining Society, 2012.

[25] A. S. Lan, A. E. Waters, C. Studer, and R. G.
Baraniuk. Sparse factor analysis for learning and
content analytics. Journal of Machine Learning
Research (JMLR), 15(57):1959–2008, 2014.

[26] J. Leinonen. Open ide action log dataset from a cs1
mooc. In Proceedings of the 6th Educational Data
Mining in Computer Science Education (CSEDM)
Workshop, 2022.

[27] Y. Mao, F. Khoshnevisan, T. Price, T. Barnes, and
M. Chi. Cross-lingual adversarial domain adaptation
for novice programming. 2022.

[28] Y. Mao, S. Marwan, T. W. Price, T. Barnes, and
M. Chi. What time is it? student modeling needs to
know. In In proceedings of the 13th International
Conference on Educational Data Mining, 2020.

[29] Y. Mao, Y. Shi, S. Marwan, T. W. Price, T. Barnes,
and M. Chi. Knowing” when” and” where”:
Temporal-astnn for student learning progression in
novice programming tasks. In In: Proceedings of the
14th International Conference on Educational Data
Mining (EDM 2021), 2021.

[30] Y. Mao, R. Zhi, F. Khoshnevisan, T. W. Price,
T. Barnes, and M. Chi. One minute is enough: Early
prediction of student success and event-level difficulty
during a novice programming task. In Proceedings of
the 12th International Conference on Educational
Data Mining (EDM 2019), 2019.

[31] S. Marwan, Y. Shi, I. Menezes, M. Chi, T. Barnes,
and T. W. Price. Just a few expert constraints can
help: Humanizing data-driven subgoal detection for
novice programming. International Educational Data
Mining Society, 2021.

[32] M. J. Nathan, K. R. Koedinger, M. W. Alibali, et al.
Expert blind spot: When content knowledge eclipses
pedagogical content knowledge. In Proceedings of the

third international conference on cognitive science,
volume 644648, 2001.

[33] B. Paaßen, M. Dywel, M. Fleckenstein, and
N. Pinkwart. Sparse factor autoencoders for item
response theory. In Proceedings of the 15th
International Conference on Educational Data Mining,
pages 17—-26, Durham, UK, 2022. EDM.

[34] Z. A. Pardos, A. Dadu, et al. dafm: Fusing
psychometric and connectionist modeling for q-matrix
refinement. Journal of Educational Data Mining,
10(2):1–27, 2018.

[35] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In International
Conference on User Modeling, Adaptation, and
Personalization, pages 255–266. Springer, 2010.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32, 2019.

[37] P. Pavlik Jr, H. Cen, and K. Koedinger. Performance
factors analysis–a new alternative to knowledge
tracing. In Frontiers in Artificial Intelligence and
Applications, volume 200, pages 531–538, Amsterdam,
Netherlands, 01 2009. IOS Press.

[38] P. I. Pavlik Jr, H. Cen, and K. R. Koedinger. Learning
factors transfer analysis: Using learning curve analysis
to automatically generate domain models. Online
Submission, 2009.

[39] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. Advances in Neural Information Processing
Systems, 28, 2015.

[40] T. Price, R. Zhi, and T. Barnes. Evaluation of a
data-driven feedback algorithm for open-ended
programming. International Educational Data Mining
Society, 2017.

[41] T. W. Price, Y. Dong, and D. Lipovac. isnap: towards
intelligent tutoring in novice programming
environments. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education, pages 483–488, 2017.

[42] T. W. Price, D. Hovemeyer, K. Rivers, G. Gao, A. C.
Bart, A. M. Kazerouni, B. A. Becker, A. Petersen,
L. Gusukuma, S. H. Edwards, et al. Progsnap2: A
flexible format for programming process data. In
ITiCSE’20, pages 356–362, 2020.

[43] T. W. Price, R. Zhi, and T. Barnes. Hint generation
under uncertainty: The effect of hint quality on
help-seeking behavior. In International conference on
artificial intelligence in education, pages 311–322.
Springer, 2017.

[44] K. Rivers, E. Harpstead, and K. Koedinger. Learning
curve analysis for programming: Which concepts do
students struggle with? In Proceedings of the 2016
ACM Conference on International Computing
Education Research, pages 143–151, 2016.

[45] R. J. Salden, V. A. Aleven, A. Renkl, and
R. Schwonke. Worked examples and tutored problem
solving: redundant or synergistic forms of support?
Topics in Cognitive Science, 1(1):203–213, 2009.

[46] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen.
Automatic generation of programming exercises and
code explanations using large language models. In
Proceedings of the 2022 ACM Conference on
International Computing Education Research-Volume
1, pages 27–43, 2022.

[47] R. Schmucker, J. Wang, S. Hu, T. Mitchell, et al.
Assessing the knowledge state of online students-new
data, new approaches, improved accuracy. Journal of
Educational Data Mining, 14(1):1–45, 2022.

[48] D. Selent, T. Patikorn, and N. Heffernan. Assistments
dataset from multiple randomized controlled
experiments. In Proceedings of the Third (2016) ACM
Conference on Learning@ Scale, pages 181–184, 2016.

[49] Y. Shi, M. Chi, T. Barnes, and T. Price. Code-dkt: A
code-based knowledge tracing model for programming
tasks. In In Proceedings of the 15th International
Conference on Educational Data Mining (EDM) 2022,
2022.

[50] Y. Shi, Y. Mao, T. Barnes, M. Chi, and T. W. Price.
More with less: Exploring how to use deep learning
effectively through semi-supervised learning for
automatic bug detection in student code. In EDM’21,
2021.

[51] Y. Shi and T. Price. An overview of code2vec in
student modeling for programming education. MMTC
Communications-Frontiers, 2022.

[52] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In LAK21: 11th
International Learning Analytics and Knowledge
Conference, pages 606–612, 2021.

[53] G. S. Snoddy. Learning and stability: a
psychophysiological analysis of a case of motor
learning with clinical applications. Journal of Applied
Psychology, 10(1):1, 1926.

[54] P. Sztajn, J. Confrey, P. H. Wilson, and C. Edgington.
Learning trajectory based instruction: Toward a
theory of teaching. Educational researcher,
41(5):147–156, 2012.

[55] S. Yang, X. Liu, H. Su, M. Zhu, and X. Lu. Deep
knowledge tracing with learning curves. In 2022 IEEE
International Conference on Data Mining Workshops
(ICDMW), pages 282–291. IEEE, 2022.

[56] M. Yudelson, R. Hosseini, A. Vihavainen, and
P. Brusilovsky. Investigating automated student
modeling in a java mooc. In In Proceedings of the 7th
International Conference on Educational Data Mining
(EDM) 2014, 2014.

[57] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu. A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM
41st International Conference on Software
Engineering (ICSE), pages 783–794. IEEE, 2019.

[58] Y. Zhang, J. D. Pinto, A. X. Fan, L. Paquette, et al.
Using problem similarity-and orderbased weighting to
model learner performance in introductory computer
science problems. Journal of Educational Data
Mining, 15(1):63–99, 2023.

