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ABSTRACT

Recent research seeks to develop more comprehensive learner
models for adaptive learning software. For example, models
of reading comprehension built using data from students’
use of adaptive instructional software for mathematics have
recently been developed. These models aim to deliver ex-
periences that consider factors related to learning beyond
performance in the target domain for instruction. We in-
vestigate the extent to which generalization is possible for
a recently developed predictive model that seeks to infer
students’ reading comprehension ability (as measured by
end-of-year standardized test scores) using an introductory
learning experience in Carnegie Learning’s MATHia intelli-
gent tutoring system for mathematics. Building on a model
learned on data from middle school students in a single
school district in a mid-western U.S. state, using that state’s
end-of-year English Language Arts (ELA) standardized test
score as an outcome, we consider data from a school district
in a south-eastern U.S. state as well as that state’s end-
of-year ELA standardized test outcome. Generalization is
explored by considering prediction performance when train-
ing and testing models on data from each of the individ-
ual school districts (and for their respective state’s test out-
comes) as well as pooling data from both districts together.
We conclude with discussion of investigations of some algo-
rithmic fairness characteristics of the learned models. The
results suggest that a model trained on data from the smaller
of the two school districts considered may achieve greater
fairness in its predictions over models trained on data from
the other district or both districts, despite broad, overall
similarities in some demographic characteristics of the two
school districts. This raises interesting questions for future
research on generalizing these kinds of models as well as on
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ensuring algorithmic fairness of resulting models for use in
real-world adaptive systems for learning.
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1. INTRODUCTION

Recent research seeks to develop more comprehensive mod-
els of students using adaptive software for learning. Such
models consider learning factors that are at least nominally
beyond the scope of the learning software’s target domain
(e.g., modeling students’ reading comprehension ability in
the context of their usage of software for mathematics in-
struction) [15] [1]. Richey el al. [15] considered a particu-
lar piece of introductory instructional content in Carnegie
Learning’s MATHia (formerly Cognitive Tutor [16]) intelli-
gent tutoring system (ITS) and used students’ performance
on that content as a proxy for their reading ability. Their
argument for this choice was that performance measures for
that content, generally providing instruction on how to use
the I'TS and its various support features, were more likely to
be indicative of students’ reading ability than their mathe-
matics ability.

Almoubayyed et al. [1] built on this initial work by provid-
ing empirical support for the argument due to Richey and
colleages [15], demonstrating that performance on this intro-
ductory MATHia content is correlated with students’ perfor-
mance on end-of-year standardized test scores for English
Language Arts (ELA). Further, it was found that the cor-
relation of student performance with ELA test scores com-
pared to the correlation of student performance with mathe-
matics test scores was greater than almost all other content
in MATHia, suggesting the possibility that this early per-
formance in MATHia might serve as a type of instruction-
embedded assessment of reading ability. Such an assessment
of reading ability, especially early within a student’s use of
MATHia or other adaptive software, might serve at least two
purposes:
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e Early prediction(s) that a student may still be emerg-
ing as a reader of English at their grade-level can serve
as quick (relatively low-stakes) diagnoses that adap-
tive reading supports should be made available to stu-
dents. In the situation in which such supports are
broadly available to all users of software, then messag-
ing prompts or similar “nudges” might be adaptively
presented to suggest their usage to particular students
based on these kinds of predictions.

e Predictions that a student is likely an emerging En-
glish language learner (ELL) or for some other reason
is struggling to read can be used in retrospective anal-
yses and design-loop adaptivity processes [Aleven et
al., 2017] to better understand whether various soft-
ware features, content improvements, and/or supports
for reading, meta-cognition, or other learning factors
are having their desired effect (e.g., via randomized
experiments or so-called “A/B tests” [18]), especially
if such features, content, or supports are targeting a
particular population of learners like ELLs. In large-
scale deployments of adaptive learning software like
MATHia, standardized test outcome data or student-
level characteristics like ELL status are generally not
available, neither to the software at run-time, nor to
developers and analysts who seek to better understand
how to improve users’ learning experiences.

Almoubayyed et al. [1] develop neural network based predic-
tion models for ELA exam scores that use performance fea-
tures in this introductory content that are promising for at
least the two above uses-cases." These models were trained
and tested on data from hundreds of students, including
data for hundreds of thousands of student actions, in a single
school district in a mid-western U.S. state. A natural ques-
tion concerns the extent to which models learned in a single
school district (and state) generalize to other school districts
in other states. We build on the work of Almoubayyed et
al. [1] to consider this question of generalizability.

2. MATHIA

MATHia (formerly Cognitive Tutor [16]) is an ITS for math-
ematics instruction that is a part of a blended, basal cur-
riculum for middle school and high school mathematics de-
veloped by Carnegie Learning, and used by around half
a million students across the United States. Instruction
in MATHia is delivered via complex, multi-step problems,
with most steps within problems mapped to one or more
knowledge components (KCs, or skills [11]). Students work
through “workspaces” that provide practice on a set of KCs
until the ITS has determined that the student has reached
mastery [3] of all such KCs (using the Bayesian Knowledge
Tracing framework [2]) in the workspace (or the student
reaches a pre-defined maximum number of problems). When
the student reaches mastery of all KCs (or the maximum
number of problems), the student is moved on to the next
workspace in the curriculum set by their teacher or school
for their grade-level.

"Models developed by Almoubayyed et al. [1] that consider
data from content beyond introductory content may be espe-
cially useful for retrospective analyses germane to the second
use-case.

To introduce students to the practice opportunities they will
receive in MATHia, the first workspace in MATHia, referred
to by MATHia developers as the Pre-Launch Protocol, intro-
duces students to the ITS software, its user-interface (e.g.,
how to watch videos and provide input to the ITS), adap-
tive support features like just-in-time (JIT) feedback and
context-sensitive hints, as well as providing some motiva-
tional messaging about “growth-mind-set” [13] and related
ideas (e.g., the video about “growing your brain” visible in
the screenshot provided by Figure 1). Problems in the Pre-
Launch Protocol are not necessarily about mathematics, but
rather engage students with questions that are nearly certain
to require students to engage with adaptive features of the
software, such as hint requests. For example, one question
asks students to provide the name of an animal that begins
with the letter “e.” Since the answer is not obvious (e.g., not
“elephant”), students almost always have to request a hint
and receive feedback on incorrect answers as they make at-
tempts to correctly guess what the ITS is “thinking” about.
The Pre-Launch Protocol is a non-mastery workspace in
MATHia, and performance on the Pre-Launch Protocol is
not related to KCs, but students’ interactions, attempts,
and correctness is nonetheless tracked in the Pre-Launch
Protocol. Student performance data from the Pre-Launch
Protocol workspace have figured prominently in two pre-
vious papers on developing more comprehensive models of
reading comprehension while students use MATHia [15], [1].

The usefulness of the Pre-Launch Protocol in this context is
due to several reasons: Firstly, the Pre-Launch Protocol is
the very first thing that a student interacts with in MATHia,
and therefore, the possibility of making accurate predictions
using only Pre-Launch Protocol data can be powerful. Such
predictions can be used to improve and personalize students’
learning experiences in MATHia very early on in the aca-
demic year (whereas making a prediction near the end of the
year would be less useful for many applications). Secondly,
while content in intelligent tutoring systems is typically per-
sonalized to the student, and thus not every student encoun-
ters the same problems, that issue is not relevant for the
Pre-Launch Protocol. Every student using MATHia com-
pletes an identical Pre-Launch Protocol, resulting in com-
plete data. Finally, expecting the Pre-Launch Protocol to
have predictive signal about factors of student learning not
related to mathematics is well-motivated, due to the fact
that it is the only piece of content in MATHia that does
not deliver content directly related to mathematics or the
student’s curriculum.

The present work builds on the intuition of Richey et al.
[15] and the initial empirical validation of their argument
by Almoubayyed et al. [1] that student performance in this
introductory content may serve as an instruction-embedded
assessment of reading ability? that can be used to develop a
more comprehensive student model within an ITS for math-
ematics. By considering additional data than these previous
works, we seek to better understand whether the predictive

2Using statistical models of student performance and pre-
dictions about behavior and affective states in systems like
MATHia as instruction-embedded assessments for the sys-
tem’s target domain (i.e., for predicting mathematics stan-
dardized test scores) has been explored in some depth across
software platforms and U.S. states (e.g., [17] [12] [5]).



model developed in [1] generalizes to a new school district
context. The new school district context includes a larger
sample of students in a different U.S. state with outcome
measures from a different standardized test. We now con-
sider our data in more detail.

3. DATA

Relying partially on data provided by the authors of [1], we
use two datasets of student end-of-year English Language
Arts (ELA) standardized (state) test scores in Grade 7 in
the 2021-2022 academic year. The datasets come from two
school districts: one from a mid-western U.S. state that was
studied in [1] and one from a south-eastern U.S. state. Here-
after, we refer to the dataset from the mid-western state as
MW, the dataset from the south-eastern state as SE, and the
combination of both as the Combined dataset. The datasets
additionally include demographic information of the stu-
dents. Although the demographics were similar in some
aspects, for example, around 60% of the student popula-
tion in both districts were white; there were large differences
in overall student performance between them. Specifically,
78% of students in our MW dataset passed their end-of-year
ELA state test, compared to 49% in our SE dataset. There
were also a large difference between the size of the districts
and the Grade 7 students for whom we have data, while MW
had 831 students, SE had 4,349 students. For the purposes
of this study, we categorized student performance as a bi-
nary measure of either passing or failing to pass the state
test. We also received access to the students’ action-level
performance in MATHia on the 36-step Pre-Launch Proto-
col. In total, we received 563,650 action-level student records
for the two districts combined, which is equivalent to 3 ac-
tions per step per student on average. There was no missing
data for any student for any step: because the Pre-Launch
Protocol is the first workspace a student interacts with in
MATHia, and is presented identically across students, ev-
ery student completed every step in the Pre-Launch Proto-
col. Students can either make an attempt or request a hint.
If a student makes an incorrect attempt, they may receive
JIT feedback if their mistake is deemed by MATHia as a
“common misconception.” Following the feature engineering
steps that Almoubayyed, et al. defined in [1], we generate
the following features from the data:

e correct: Whether a student’s first attempt on a step
was correct (1) or incorrect (0).

e hint: The number of hints that a student requested
on a step. This number can be between 0 and 3.

e jit: The number of JIT feedback a student received
on a step

e attempt: The number of attempts a student made on
a step until reaching the correct answer.

We split each of the datasets into a training set and a test
set, each containing half of the number of students selected
at random. When training and testing on a combination of
the datasets, we combine the two training set and the two
test sets separately.

Test score and demographic data were provided by the two
districts to Carnegie Learning according to data sharing

agreements between Carnegie Learning and the district that
allows for the use of these data for research purposes.

4. READING ABILITY PREDICTIVE MODEL

GENERALIZATION

Almoubayyed et al. [1] found that the Pre-Launch Protocol
is one of the workspaces in MATHia that are most corre-
lated with end-of-year ELA test scores, compared to their
correlations with end-of-year mathematics test scores, across
grade levels. Additionally, they were able to build a predic-
tive model of student end-of-year ELA achievement levels
by training machine learning models on Pre-Launch Proto-
col data.

We aim to extend the predictive models of reading ability
in MATHia to both explore the generalizability of such a
model and to increase trust in it such that it can be used
with higher confidence over a large population of users to
predict students’ reading ability from their interaction with
a mathematics ITS.

We use a Multi-Layer Perceptron (MLP) model with iden-
tical architecture to the highest-performing model that Al-
moubayyed et al. developed in [1]. In particular, the model
is an MLP with a single hidden layer containing 100 nodes,
with a relu activation function and adaptive learning rate.
The model is trained with a categorical cross-entropy loss
function, optimized by the stochastic gradient-based opti-
mizer defined in [10]. We note that Almoubayyed et al. [1]
carried out model exploration with several set-ups. Addi-
tionally, while this model explicitly does not provide causal
evidence, Almoubayyed et al. do investigate confounding
factors in [1]. We do not replicate that work here and we
encourage interested readers to refer to [1] for more details
on the model details.

We train the model on four sets of features separately: the
four sets being the correct, hint, jit, attempt defined
in Section 3. For each set, there are 36 features correspond-
ing to the steps in the Pre-Launch Protocol. While we retain
the model architecture and feature engineering steps, we re-
train the model with the following changes:

e We train the model on a binary classification task
(passing or failing to pass the state test), rather than
achievement levels. This is due to the fact that differ-
ent states have different numbers of achievement lev-
els, and a binary classifier may be of more practical
usefulness. It is possible to use post-processing on a
classifier that predicts achievement levels instead of re-
training, but we decided that retraining the model on
binary classes would be a more consistent implemen-
tation across the two districts.

e We treat the Pre-Launch Protocol steps to be the same
features regardless of whether a student attempts the
Pre-Launch Protocol in a different grade level. The
Pre-Launch Protocol itself is identical for any grade
level, however, the fact that it is attempted a different
grade level may still have predictive signal. We find,
however, that the number of students that attempt the
Pre-Launch Protocol varies very largely between the



@ MATHia® Preaunch Protocol

< Unit Overview Hints

Growing Your Brain

This animation explains how you can improve your learning by exploring, studying hard, asking for help, and
making mistakes.

> 0:34/1:05

As you answer each question, you can pause the video or rewatch the video as many times as you need.

¢

Watch the animation. Then answer each question.

Taxi drivers in London have to memorize about 320 routes and + streets.

Why do London taxi drivers have larger hippocampuses?

Asking for help when you need it is an important part of learning.
Try asking for help now by clicking on the Hints button above.

As you study and do math, ask for help, and make mistakes, your brain vl

D Are you ready to learn?

Figure 1: Screenshot of a problem within MATHia’s “Pre-Launch Protocol” introductory workspace. The student is presented
a brief video animation on the left and then asked questions about the video on the right, serving as an introduction to the
MATHia ITS, its user interface, and the adaptive support it can provide.

two districts, and that treating the Pre-Launch Proto-
col steps to be the same features more appropriate for
generalization purposes.

e Almoubayyed et al. [1] developed an ensemble model
to combine the four models by taking the mode of the
predictions (i.e., a “majority vote” of the four models).
Instead, for an ensemble predictive model, we average
the predicted probabilities of the four models. Using
probabilities allows us to construct a Receiver Opera-
tor Characteristic (ROC) curve and avoids situations
where the predictions of the four models result in a tie.
We refer to this model as prob.

We use the ROC curve and the area under the ROC curve
(AUC) as metrics to compare models. The ROC curve shows
the False Positive Rate (FPR), and the True Positive Rate
(TPR), for decision thresholds ranging between 0 and 1 for
the classification task. The FPR and TPR are defined as
follows:

FPR = FP/N
TPR = TP/P

where FP, or False Positives, are defined here as students
who are predicted to pass the end-of-year ELA test, but in
reality fail to pass it. Conversely, TP, or True Positives,
are students who are predicted to pass the end-of-year ELA
test, and do indeed pass it. N and P are the total number
of negatives and positives respectively in the ground truth
dataset.

Analyzing ROC curves allows for choosing specific models
with different thresholds depending on the purpose (a lower
threshold results in a model with lower FPR and lower TPR,
an appropriate choice if minimizing the FPR is a priority.
On the other hand, a higher threshold results in a model
with higher FPR and higher TPR, an appropriate choice if
maximizing the TPR is the priority).

To assess the generalizability of this model, we train and test
the models on every combination of training and testing sets.
Specifically, we train the 4 (correct, hint, jit, attempt)
models and compute the ensemble prob model on each of the
(MW, SE, Combined) training sets, and for each of these
models, we test them on each of the (MW, SE, Combined)
test sets. This results in 9 combinations (with 4 trained +
1 ensemble model for each of the 9 combinations).

Figure 2 shows the ROC curves for the model trained on
the MW dataset and tested on the MW, SE, and Combined
datasets, top to bottom respectively. Figure 3 shows the
ROC curves for the model trained on the SE dataset and
tested on the SE; MW, and Combined datasets, top to bot-
tom respectively. Finally, Figure 4 shows the ROC curves
for the model trained on the Combined dataset and tested on
the Combined, MW, and SE districts, top to bottom respec-
tively. The ensemble models generally perform significantly
better than the four trained models; suggesting that there
is a signal gained from combining the four trained models
in each case. While a model trained and tested on data
from the same school districts performs better, there are no
cases where a model tested in a different district performs



Table 1: AUC scores for the ensemble predictors in each case.
Each ensemble predictor uses four trained models on each
of the MW, SE, and Combined training set, and then each
is tested on the MW, SE, and Combined test sets. Models
trained and tested on with a dataset from the same district
consistently achieve an AUC score of 0.80, while training on
one and testing on the other achieves a slightly lower AUC
score. Models trained on the Combined training set consis-
tently achieves 0.80 on either test set.

Tested on
Model MW SE  Combined
MW 0.80 0.76 0.77
SE 0.78 0.80 0.80
Combined || 0.80 0.80 0.80

significantly poorer.

Table 1 shows the AUC scores of the ensemble (prob) models
in each of the 9 cases. We find that the AUC scores range
between 0.76 and 0.80. A model trained and tested on the
same district, in each of the districts, achieve an AUC of
0.80, while a model trained in one district and tested on the
other achieves a slightly lower AUC of 0.76-0.78. Finally,
a model trained on both districts achieves an AUC of 0.80
on either district. This suggests that adding data from an
additional district makes the model perform better, however,
even a model trained in one district and tested in another
only slightly underperforms.

Although the district have significantly different performance
and base pass rates, the models seem to transfer well without
additional changes. Adding data does improve the perfor-
mance of the models, however, but the performance of these
models seems to saturate with an AUC of 0.80 across the
two districts.

S. FAIRNESS ASSESSMENTS

Considering how the models perform for different student
populations is important to build learners’ and other stake-
holders’ trust in the ITS and ensure that models generalize
well over populations of diverse learners nation-wide (and
perhaps world-wide). Such considerations are especially im-
portant if we are to reach the goal of such embedded assess-
ments playing a role in deployed, real-world ITSs. We look
at the ROC curve for each of the ensemble models previously
describe (trained on MW, SE, or Combined training sets)
when tested on subsets of demographics in each of the test
sets. In particular, we look at race and gender information
as provided by the school districts. In order to obtain large
enough test sets for the demographic subsets, we bifurcate
the data into two categories for each demographic. Namely,
we look at model performance for white (W) and non-white
(NW) students; and for female (F) and male (M) students.
We recognize that this bifurcation is broad and does not
provide complete information (e.g., on relative model per-
formance for students of different non-white races and for
students with different gender identities). We leave more
comprehensive and nuanced analyses for important future
work.

Figure 5 shows the models’ performance when predicting
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Figure 2: The performance of the four trained models of read-
ing ability and the ensemble model, depicted by the ROC
curve of the models, showing the FPR and TPR at different
thresholds. These models are trianed on the MW dataset and
tested on the MW, SE, and Combined test sets from top to
bottom. While the four trained models generally have simi-
lar performance, the ensemble model has consistently better
performance.
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Figure 3: The performance of the four trained models of read-
ing ability and the ensemble model, depicted by the ROC
curve of the models, showing the FPR and TPR at differ-
ent thresholds. These models are trained on the SE training
set and tested on the SE, MW, and Combined test sets from
top to bottom. While the four trained models generally have
similar performance, the ensemble model has better perfor-
mance in most cases.
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Figure 4: The performance of the four trained models of read-
ing ability and the ensemble model, depicted by the ROC
curve of the models, showing the FPR and TPR at different
thresholds. These models are trained on the Combined train-
ing set and tested on the Combined, MW, and SE test sets
from top to bottom. While the four trained models gener-
ally have similar performance, the ensemble model has con-
sistently better performance.



the reading ability of non-white and white students in each
of the districts. In all cases, evaluating the model on a
test set from the same district yielded similar ROC curve
across white and non-white students. However, interest-
ingly, the performance varied significantly when evaluating
the models on the other district. Specifically, we see that
the model trained on MW data generalized similarly across
both non-white and white students, but the model trained
on SE and evaluated on MW performs significantly poorer
for non-white students compared to white students. Given
the relatively similar proportion of white and non-white stu-
dents in both districts, this suggests that any relatively sim-
ple assumption that such similarity ought to lead to similar
performance across districts appears flawed. These results
are also possibly surprising due to the fact that the MW
dataset is significantly smaller in sample size than the SE
dataset. In particular, the SE dataset contains over 5 times
as many students as the MW dataset.

Similarly for gender, Figure 6 shows the models’ perfor-
mance broken into female and male students. We find a
similar trend here, where the model trained on MW gen-
eralizes similarly well across female and male students in
SE; while there is a significant difference in how the model
trained on SE generalizes across female and male students.
In particular, we find that the model trained on SE performs
significantly poorer when evaluated on male students in MW
compared to female students.

Due to the fact that the Combined model is more influenced
by data from the (larger) SE district, it performs more sim-
ilarly to the SE model when broken down by demographics.
This leads us to believe that, although the Combined model
has a higher AUC on the whole, the MW model might be the
better model in practical implementations, due to its simi-
lar performance across demographics, at the cost of a slight
loss of 0.03-0.04 in AUC performance. Additional data from
diverse school districts will be needed to further consider nu-
ances of how models generalize across student populations
and the relative fairness characteristics of such generalized
models.

While we only consider model performance on different de-
mographics, it may also be valuable to use algorithmic fair-
ness metrics and bias mitigation algorithms. For example,
Stinar and Bosch [19] compare the effectiveness of several
unfairness mitigation algorithms in the context of mathe-
matics end-of-year state test scores for around 5 million mid-
dle school students in Texas; using algorithms such as Dis-
parate Impact Preprocessing [6], Reweighing [4], and Equal-
ized Odds Postprocessing [7].

Disparate Impact Preprocessing, for example, aims to mod-
ify the model (by modifying the training data) such that it
achieves a Disparate Impact metric closer to unity; where
Disparate Impact is defined as

_Pr(y=1|D=gl)

DI =
Pr(y=1|D=g2)’

(1)

where y is the target (i.e., y = 1 corresponds to passing
the state test), and D is the protected class (i.e., the demo-
graphic), with g1 and g2 being two groups in the protected
class. When computing the DI metrics on the MW and SE

Model trained on MW

o o
(2] [=-]

L

. b
!

True Positive Rate
o
e <

-,

“;" —— NW - tested on MW
: = -- NW - tested on SE
W - tested on MW
W - tested on SE
0.0 b ----- random chance

0.2

0.0 0.2 0.8 1.0

0.4 0.6
False Positive Rate
Model trained on SE

0.8

e
o

o
~

True Positive Rate

£ o ---- NW - tested on MW
0.2 i —r —— NW - tested on SE

[ e W - tested on MW
7 W - tested on SE
0.0 o ----- random chance

0.0 0.2 0.6 0.8 1.0

0.4
False Positive Rate

Model trained on Combined

0.8

o
=Y
1

True Positive Rate
2
)

-- NW - tested on MW
NW - tested on SE
W - tested on MW
P W - tested on SE
0.0 e ----- random chance

o
N

b bt

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 5: The ROC curve of the ensemble predictors trained
on (top to bottom) the MW, SE, and Combined training sets.
In the cases where a model was trained on a single district,
solid lines correspond to the ROC curve evaluated on a test
set that comes from the same district, while dashed lines cor-
respond to evaluation on a test set from the other district.
The performance of the predictors are evaluated for white
(W) and non-white (NW) students on each of the MW and
SE test sets to assess model fairness when generalized to an-
other student population. The plots show that the models
trained on the SE and Combined datasets perform signifi-
cantly poorer when predicting non-white students’ reading
ability in the MW district. Conversely, the model trained on
the MW training set seems to perform similarly well when
predicting the reading abilities of both non-white and white
students in both districts.
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Figure 6: The ROC curve of the ensemble predictors trained
on (top to bottom) the MW, SE, and Combined training sets.
In the cases where a model was trained on a single district,
solid lines correspond to the ROC curve evaluated on a test
set that comes from the same district, while dashed lines cor-
respond to evaluation on a test set from the other district.
The performance of the predictors are evaluated for female
(F) and male (M) students on each of the MW and SE test sets
to assess model fairness when generalized to another student
population. The plots show that the models trained on the
SE and Combined training sets perform significantly poorer
when predicting male students’ reading ability in the MW dis-
trict. Conversely, the model trained on the MW training sets
seems to perform similarly well when predicting the reading
abilities of both female and male students in both districts.

datasets we found that the base rates for the DIs (i.e., the
DIs computed on the ground truth data) was in some cases
significantly different than 1, and thus there is a trade-off be-
tween (a) achieving a DI closer to 1 and (b) achieving better
performance on predicting reading ability for students across
demographic groups. Upon inspection of the DIs, we do find
that the DIs for the model predictions were always slightly
closer to unity than the DIs of the test sets. We leave a
more comprehensive study of these metrics and whether it
is appropriate to use algorithms that aim to alter them to
future work.

6. CONCLUSIONS

Results of the present exercise in generalizing a model to
predict reading ability built first on data from a school dis-
trict in the mid-western U.S. [1] to a larger school district in
the south-eastern U.S. are promising. We see largely simi-
lar predictive performance results (ranging from 0.76 to 0.8
AUC) regardless of whether we learn and/or test models on
either of the districts individually or “pool” together or com-
bine data from both districts to create a single dataset for
training and testing. These results suggest that such models
may be helpful in suggesting relatively “low-stakes” interven-
tions to support readers who may be experiencing difficulty
with reading in their mathematics learning in the MATHia
software (e.g., behavioral nudges or suggestions to engage
with reading supports or possibly directly presenting stu-
dents with such supports). Additionally, these models are
likely to help learning engineers and analysts to better un-
derstand whether such supports are working for those they
are intended to help (especially if presented across a wide
population learners for which data about their reading abil-
ity is unavailable).

Our investigations into one facet of algorithmic fairness of
the approach we consider leads us to an interesting result:
the model trained on a smaller dataset performs better in
terms of prediction accuracy across two demographic cate-
gories (i.e., a bifurcation of race and gender) we considered
while only performing slightly worse overall compared to
a model learned over a much larger, pooled dataset. Pre-
vious work on data from Cognitive Tutor [21] found a re-
sult that was analogous in some ways to the present result,
specifically that a model trained over a smaller amount of
“high quality” usage data (i.e., students with a lot time using
the software and completing content) out-performed models
learned over larger populations of students without regard
to inclusion criteria for usage. However, the present work
considers a much different prediction task, namely ensem-
bled neural network model performance on an end-of-year
standardized test outside the target instructional domain of
the system, rather than predictions of individual student
actions within an ITS. Additionally, the model trained on
the larger dataset does out-perform the model trained on a
smaller dataset overall; it is just when we begin to consider
demographic breakdowns of model performance (as one op-
erationalization of algorithmic fairness, among many) that
we start to notice the potential that the model trained on
a smaller dataset may be out-performing the model trained
on the “larger” dataset. There are other metrics and unfair-
ness mitigation algorithms that have been developed, such
as Disparate Impact Preprocessing, Reweighing, and Equal-
ized Odds Postprocessing — we leave a more comprehensive



study of these metrics to future work.

While we studied two districts in two states in different re-
gions across the United States, we found that models trained
on one or the other have varying performance over different
demographics. With data from more states with different
demographic make-ups, it would still be interesting to test
how these models further generalize, and whether the MW
model that generalized well across demographics in both the
MW and SE datasets, would also generalize well to districts
in more regions.

We believe that taking steps to ensure trust and fairness
in predictive models in education are essential when using
these models for practical purposes. For example, models
that generalize well could be used in A/B testing experi-
ments to predict the reading ability of a large population of
students to see how different aspects of personalized learning
may work better for them (e.g., by using them to person-
alize BKT model parameters to students with reading diffi-
culties). An example of such a personalization could, for ex-
ample, find it more suitable to allow students with predicted
reading difficulties to attempt more practice opportunities
on mastery content, and vice versa. Such personalization
and other adaptive supports may improve student learning
and user experience in ITSs, but could also have adverse ef-
fects if the predictive ability of the models is unfair towards
certain demographics.

We look forward to further engaging with these questions
of both generalization and fairness as well as how different
goals for prediction are likely to impact appropriate choices
for how to operationalize fairness to ensure more trustwor-
thy, equitable, and high-quality learning experiences for all
learners.
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