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ABSTRACT 
Instruction in many STEM domains heavily relies on visual repre-
sentations, such as graphs, figures, and diagrams. However, 
students who lack representational competencies do not benefit 
from these visual representations. Therefore, students must learn 
not only content knowledge but also representational competencies. 
Further, as learning progresses, knowledge likely becomes more 
abstract, so that content knowledge may no longer be tied to a spe-
cific representation. This raises the question of whether students 
integrate representational competencies with content knowledge as 
learning progresses. The present study addresses this question by 
building knowledge-component models using log data collected 
from two studies in an introductory electrical engineering course. 
We compared knowledge-component models that separate repre-
sentational competencies from content knowledge to knowledge-
component models that integrate representational competencies 
with content knowledge. Our results show that as learning pro-
gressed, integrated knowledge-component models had better model 
fit. This finding indicates that over time, students’ representational 
competencies become gradually integrated into content knowledge. 
Further, this suggests that different knowledge-component models 
might be needed at different times during a learning progression.  
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1. INTRODUCTION 
The success of adaptive educational technologies depends on anal-
yses of students’ knowledge growth during their interaction with 
problem-solving activities. These analyses equip the educational 
technology with information about the students’ current learning 
progress to mastery of the targeted knowledge [32] and enables it 
to provide adaptive feedback or to select appropriate interventions 
[16]  based on the individual student’s learning progress [7]. This 
capability has contributed to the success of adaptive educational 
technologies [30]. 

Therefore, much research has investigated how to analyze students’ 
knowledge growth based on log data generated by students’ prob-
lem-solving interactions in educational technologies. The first step 
in analyzing knowledge growth is to capture students’ knowledge 
in a way that can then be used to trace their knowledge acquisition 
over time [4, 7]. Knowledge-component models are a common way 
of capturing students’ knowledge [15]. The basic assumption of 

knowledge-component models is that knowledge consists of fine-
grained “atom-like” components [15]. Hence, knowledge-compo-
nent modeling seeks to identify all knowledge components required 
for mastering the targeted knowledge [13].  

Traditional knowledge-component models have focused on captur-
ing content knowledge. However, focusing on only content 
knowledge may not adequately enable educational technologies to 
support students’ learning, especially in STEM fields. Previous re-
search showed that, students often have difficulties understanding 
visual representations, while most STEM instruction heavily relies 
on multiple visual representations [2, 17]. Such struggles can im-
pede their content learning [24]. For example, electrical 
engineering courses on signal processing frequently use visual rep-
resentations as shown in Fig. 1 to explain concepts related to 
sinusoids. While visual representations are often thought to support 
learning [1], they can impede learning for students who do not 
know how to interpret the visual representations. For instance, if 
the students are unfamiliar with time-domain graphs (Fig. 1a) or 
phasor graphs (Fig. 1b), they may struggle to understand the con-
cept of the sinusoid. This example typifies that many instructional 
scenarios expect students to have representational competencies. 
Representational competencies are defined as the knowledge and 
skills that enable students to understand and use visual representa-
tions to reason and solve tasks [9].  

While most research on knowledge-component models has focused 
on content knowledge, only a few studies show that capturing rep-
resentational competencies in addition to content knowledge 
improves the fit of knowledge-component models [25]. A limita-
tion of these studies is that they have assumed a static structure of 
knowledge-component models; that is, representational competen-
cies and content knowledge were captured as separate knowledge 
components, and this did not change over time. However, as learn-
ing progresses, students’ content knowledge likely becomes more 
abstract and their use of representational competencies becomes 
more automated. Thus, the goal of this paper is to address this lim-
itation by comparing knowledge-component models that separate 
or integrate representational competencies and content knowledge 
in various ways. 

2. LITERATURE REVIEW 
In the following, we first review research on representational com-
petencies. Then, we briefly review the few prior studies that have 
captured representational competencies in knowledge-component 
models. 

2.1 Representational Competencies 
The educational psychology has identified several types of repre-
sentational competencies that enable students to learn content 
knowledge from visual representations [24]. 

First, students need visual-understanding competencies: the ability 
to map visual features to relevant to-be-learned content [28]. In the 
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previously mentioned example of a student learning about sinus-
oids, visual-understanding competencies allow the student to map 
a visual feature (e.g., the peak in the time-domain graph) to the con-
cept it depicts (e.g., the amplitude of a sinusoid).  

Second, students need conceptual connection-making competen-
cies: the ability to conceptually understand similarities and 
differences between multiple visual representations [1]. This allows 
students to explain how domain-relevant concepts are depicted in 
different visual representations [29]. For example, the red arrow in 
Fig. 1 illustrates how a student should connect the amplitude in the 
time-domain graph (Fig. 1a) to the phasor’s magnitude in the 
phasor graph (Fig. 1b). Conceptual connection-making competen-
cies also involve identifying visual features that have surface 
similarities among visual representations but are conceptually irrel-
evant [11]. For example, a student may notice that both the time-
domain graph (Fig. 1a) and the phasor graph (Fig. 1b) have two 
axes. Yet, the axes represent different concepts: time and amplitude 
in the time-domain graph, the imaginary and real parts of the phasor 
in the phasor graph. 

Third, students need perceptual connection-making competencies: 
the ability to effortlessly and efficiently translate between multiple 
visual representations [12]. Students with perceptual connection-
making competencies can intuitively translate between two visual 
representations and quickly judge whether they depict the same 
concept, without experiencing mental effort when executing this 
task [12]. For example, a perceptually proficient student would see 
"at a glance" the phasor graph in Fig. 1b represents the amplitude 
of the sinusoid in Fig. 1a. 

 
Figure 1. Mapping time-domain graph amplitude (a) to phasor 
graph magnitude (b). 

2.2 Knowledge-Component Model 
Adaptive educational technologies require information about the 
students’ learning progress in order to provide individualized sup-
port. [30]. They must describe the knowledge students have already 
learned and what knowledge they still have to learn [6]. Further-
more, adaptive educational technologies rely on algorithms that 
predict which types of support (e.g., contextual feedback, choice of 
problem-solving activities) would help the student acquire the 
knowledge s/he has not yet learned [21].  

Educational technologies rely on knowledge-component models to 
trace students’ knowledge acquisition and to predict the growth of 
students’ knowledge. Knowledge-component models represent 
“acquired units of cognitive function that can be inferred from per-
formance on a set of related tasks” [15]. Here, knowledge 
components refer to a unit of distinct skills or concepts, which to-
gether compose the knowledge students learn in problem-solving 
activities. Therefore, the accuracy of a knowledge-component 
model depends on identifying all relevant knowledge components 
that describe the targeted knowledge [13, 16].  

Cognitive Task Analysis (CTA) is one prominent method to de-
scribe the requisite knowledge components to perform a task [33]. 
However, since CTA relies on a thorough analysis of how experts 
solve tasks, it is time consuming. To increase the efficiency of 
knowledge-component modeling, educational data mining tech-
niques can be used to automate the process of building models, 
including learning factors analysis (LFA) [4],  Knowledge Spaces 
[31], and matrix factorization [8]. Typically, multiple potential 
models are compared using Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) scores [14]. However, 
since this research has focused mostly on modeling content 
knowledge, the interplay between representational competencies 
and content-focused knowledge components remains unexamined.  

One study compared knowledge-component models that captured 
(1) only content knowledge and (2) content knowledge and repre-
sentational competencies. Capturing both content knowledge and 
representational competencies resulted in better model fit [25]. A 
follow-up study tested whether adapting instructional support to 
students’ representational competencies in addition to content 
knowledge resulted in higher learning outcomes than adapting only 
to content knowledge [23]. Results showed that adapting to stu-
dents’ representational competencies in addition to content 
knowledge enhanced students’ learning of content knowledge.  

However, this prior research is limited in two ways. First, while 
most prior research focuses on modeling content knowledge [18, 
20], the few studies that have also modeled representational com-
petencies [23, 25] have focused on a particular domain; namely 
chemistry. Therefore, we seek to replicate these findings in another 
domain. A second limitation is that the prior studies assumed that 
the structure of the knowledge-component model remains static 
over time. Yet, according to expert-novice research, students grad-
ually acquire highly abstract schemas about the content knowledge 
relevant to a given domain [5, 10]. This yields the hypothesis that 
capturing representational competencies separately from content 
knowledge is most important early in a learning progression 
whereas later in a learning progression, representational competen-
cies likely become integrated with content knowledge.  

3. HYPOTHESES 
To address the limitations of prior research just described, we test: 

Hypothesis 1: A knowledge-component model that captures repre-
sentational competencies and content knowledge is more accurate 
than a knowledge-component model that captures only content 
knowledge or a knowledge-component model that captures only 
representational competencies. 

Hypothesis 2. As students’ learning progresses, a knowledge-com-
ponent model that integrates content knowledge and 
representational competencies is more accurate than a knowledge-
component model that captures content knowledge separately from 
representational competencies. 

4. DATASETS 
To test these hypotheses, we use log data generated from students’ 
problem-solving interactions in Signals Tutor, an intelligent tutor-
ing system (ITS) for undergraduate electrical engineering. In the 
following, we first describe the problem-solving activities in Sig-
nals Tutor, and then the log data we used to test our hypotheses. 



4.1 Signals Tutor 
Signals Tutor supports learning through problem solving [22, 27, 
30]. As is typical for ITSs, Signals Tutor provides step-by-step 
guidance for complex problem-solving tasks [30], detects multiple 
possible solution paths, provides personalized feedback that ad-
dresses diagnosed misconceptions, and on-demand hints for each 
step. As illustrated in Fig. 2, students work with interactive visual 
representations to visually depict concepts related to sinusoids. 
Because Signals Tutor incorporates multiple visual representations, 
it offers opportunities for students to practice representational com-
petencies. Specifically, students practice visual-understanding 
competencies when they interact with one visual to make sense of 
sinusoid concepts. Students practice conceptual connection-mak-
ing competencies when they have to integrate information from 
multiple visual representations to understand sinusoid concepts. 
They practice perceptual connection-making competencies when a 
task requires translating quickly among multiple visual representa-
tions to extract relevant information about sinusoids. 

4.2 Log Data 
We collected log data from two studies that were conducted as part 
of an introductory electrical engineering course on signal pro-
cessing at a university in the Midwestern U.S. Study 1 was 
conducted in Fall 2020; Study 2 was conducted in Spring 2021. The 
course was taught online during both semesters. Students used Sig-
nals Tutor as part of the course for a study described elsewhere [26]. 
The present paper focuses on log data generated from students’ in-
teractions with two units of Signals Tutor that provided 
opportunities to practice the representational competencies de-
scribed above. Specifically, we extracted 84,960 transactions 
generated by 136 students from Study 1 log data and 76,786 trans-
actions generated by 145 students from Study 2. These transactions 
involved problem-solving steps where students constructed visual 
representations and equations and answered conceptual questions 
by selecting answers from drop-down menus or via text input. 

5. ANALYSIS 
To test hypothesis 1, we created knowledge-component models 
with and without representational competencies. To test hypothesis 
2, we created several knowledge-component models that captures 

the integration of content knowledge and representational compe-
tencies. We compared the fit of each model in the earlier vs. the 
later unit of Signals Tutor. 

5.1 Knowledge-Component Models with and 
without Representational Competencies 

To test hypothesis 1, we created three knowledge-component mod-
els: (1) the only-content-KC model captures only content 
knowledge, (2) the only-RC-KC model captures only representa-
tional competencies, and (3) the both-content-and-RC-KC model 
captures both content knowledge and representational competen-
cies. The knowledge components captured by each model were 
derived from manual cognitive task analysis relying on expert con-
tent knowledge provided by an engineering professor who taught 
the course for more than 30 years/decades.  

First, the only-content-KC model contains 9 only-content 
knowledge components that describe concepts and skills irrespec-
tive of the representational competencies, listed in Table 1. For 
example, the knowledge component ‘Inference’ in Table 1 refers 
students’ ability to make an inference about changing a value of the 
given sinusoid’s frequency into the angular frequency. 

Second, the only-RC-KC model captures only representational 
competencies but not content knowledge. It contains 11 knowledge 
components, listed in Table 1. As mentioned above, Signals Tutor 
offers opportunities to practice three types of representational com-
petencies. The only-RC-KC model describes the competencies 
students need to understand the visual representations used in the 
problems; for example, conceptual connection-making competen-
cies (e.g., ‘Conceptual_time-phasor’) and perceptual connection-
making competencies (e.g., ‘Perceptual_time-phasor’) related to 
translating a time-domain graph to a phasor graph.  

Finally, the both-content-and-RC-KC model captures both content 
knowledge and representational competencies. It contains 42 
knowledge components, listed in Table 1. To develop content 
knowledge of translating a time-domain to a phasor graph, students 
practice competencies for making both conceptual and perceptual 
connections among visuals. For example, consider the following 
steps that provided practice opportunities for conceptual connec-
tion-making competencies. Students first built a time-domain graph  

Figure 2 Example of a problem in Signals Tutor and steps that labelled with different knowledge components for hypothesis 1 



representing a given sinusoid represented in the equation form (e.g., 
‘Conceptual_step1_equ-time’ KC in Table 1). The next step is to 
find the value of phase shift (e.g., ‘Conceptual_step2_phaseshift’), 
which is basis for building a corresponding phasor graph in the next 
step. In the third step, students translate the time-domain graph to a 
phasor graph (e.g., ‘Conceptual_step3_time-phasor’).  

Hypothesis 1 predicts that the both-content-and-RC-KC model has 
better model fit than the other knowledge-component models. 

5.2 Knowledge-Component Models with and 
without abstracted Knowledge Compo-
nents 

To test hypothesis 2, we created two knowledge-component mod-
els: (1) the separate-RC-KC model describes the knowledge 
structure of students starting at the novice-level (2) the integrated-
RC-KC model describes the knowledge structure of students reach-
ing to the expert-level through working on Signals Tutor, detailed 
in the following. 

First, based on learning gains we observed between units [26], we 
assumed that structural changes in knowledge components would 
occur between units 1 and 2. Therefore, we chose to investigate 
knowledge components that were common to units 1 and 2 and ex-
amined how these knowledge components changed after finishing 
each unit. Thus, starting with the list of knowledge components in 
the both-content-and-RC-KC model described in 5.1, we identified 
33 knowledge components that unit 1 and unit 2 had in common. 

This yielded the separate-RC-KC model. Given that this 
knowledge-component model separately captures content 
knowledge and representational competencies, we anticipate that 
this might capture the knowledge structure of novice students in the 
first unit.  

Second, based on previous studies’ finding that sufficient training 
makes students’ knowledge become abstracted [5, 10] or abstracted 
away from the type of representational competencies [25], we as-
sumed that students’ knowledge components started to be 
integrated into content knowledge after finishing unit 1. Thus, we 
identified lists of knowledge components from the both-content-
and-RC-KC model that describe similar content knowledge. For ex-
ample, in Signals Tutor, students learn about concepts related to the 
phase shift of sinusoids, which we classify as content knowledge. 
Depending on how students interact with the visual representations 
that depict these concepts, they practice different representational 
competencies. The both-content-and-RC-KC model contains six 
knowledge components related to phase shift, illustrated in Table 
1: three knowledge components describe students’ ability to con-
ceptually connect a sinusoid’s shifted amount and direction shown 
in a time-domain graph to a phasor’s rotational direction and 
amount shown in a phasor graph (e.g., ‘Concep-
tual_step1_equ_time’, ‘Conceptual_step2_phaseshift’, 
‘Conceptual_step3_time-phasor’), and two knowledge components 
describe students’ ability to make perceptual connections between 
a time-domain graph and a phasor graph by treating the representa-
tions holistically (e.g., ‘Perceptual_time-phasor (0)’, 

Knowledge 
Components 

Examples of  
knowledge components Description Example 

only-content 
KC 

Inference 
Make inferences about changing the 

value of frequency to angular frequency 
or vice versa. 

𝑥(𝑡) is has an angular frequency 𝜔 of 
!
"
 in radians/sec. The frequency in cy-

cles/sec is [.25]. 

Planning Plan how to represent the sinusoid using 
different type of visual representation. 

The complex amplitude can be repre-
sented visually by a [phasor]. 

Build phasor graph Construct a phasor graph of a given si-
nusoid Plot the phasor corresponds to 𝑥(𝑡). 

Build time-domain graph Construct a time-domain graph of a 
given sinusoid 

Plot this sinusoid on the given time-
domain graph. 

only-RC KC 
Conceptual_time-phasor 

Make sense of how a time-domain vis-
ual correspond to a given phase-domain 

visual 

The given graph shows a sinusoid 
𝑥(𝑡). Plot the phasor corresponding 

to 𝑥(𝑡). 

Perceptual_phasor-time Translate a phase-domain visual to a 
time-domain visual 

Here’s a phasor. Which cosine func-
tion represents that phasor? 

both- 
content-and-

RC KC 

Conceptual_step1_equ_time 
Given a cosine function, build a time-
domain graph representing the given 

time-domain equation 

For the equation 𝑥(𝑡) = 3cos	(𝜋𝑡), 
plot 𝑥(𝑡). 

Conceptual_step2_phaseshift After building a time-domain graph in 
step 1, identify its value of phase shift The phase shift 𝜑 of 𝑥(𝑡) is [0]. 

Conceptual_step3_time-phasor 
Based on identified information in step 
2, translate a time-domain graph to a 

phasor graph 

Draw the phasor associated with 
𝑥(𝑡), 𝑐 = 𝐴𝑒#$. 

Conceptual_step4_phasor-exp 
After building a phasor graph in step 3, 
write corresponding complex exponen-

tial notation. 

We may express 𝑥(𝑡) in complex ex-
ponential notation as     

𝑅𝑒{[3]exp(𝑗[0])exp(𝑗[3.14]𝑡)} 

Perceptual_time-phasor  
(clockwise) 

Translate a time-domain graph to a 
phasor graph (rotated in the clockwise 

direction) 

Here’s a sinusoid (cosine function). 
Which phasor represents that sinus-

oid? 

Perceptual_time-phasor  
(counter-clock) 

Translate a time-domain graph to a 
phasor graph (rotated in the counter-

clockwise direction) 

Here’s a sinusoid (cosine function). 
Which phasor represents that sinus-

oid? 

Table 1 Examples of knowledge components in Signals Tutor (For the value in [ ], students type in their answer). 



‘Perceptual_time-phasor (clockwise)’, ‘Perceptual_time-phasor 
(counter-clock)’).  

If these six representational competencies become more integrated 
with content knowledge about phase shift after practice (hypothesis 
2), separating these representational competencies from content 
knowledge may no longer adequately describe students’ abstracted 
knowledge structure. To capture this more abstracted understand-
ing, we built new knowledge-component models that contained 
merged knowledge components. Starting with the knowledge com-
ponents from the separate-RC-KC model, we first merged 
knowledge components that covered similar content knowledge. 
For example, ‘Conceptual_step1_equ_time’, ‘Concep-
tual_step2_phaseshift’, ‘Conceptual_step3_time-phasor’ and 
‘Perceptual_time-phasor (clockwise)’ were merged into the ‘Build 
phasor graph’ knowledge component, which is one of the 
knowledge components from the only-content KC model. We then 
tested whether merging these knowledge components improved 
model fit using AIC and BIC scores. If it did, we kept the merged 
knowledge component; if it did not, we kept the separated 
knowledge components. We repeated these steps until there were 
no more opportunities to merge knowledge components. We car-
ried out these steps separately for the data from Studies 1 and 2, 
yielding integrated-RC-KC model-1 and integrated-RC-KC model-
2 as shown in shown in Table 2.  

Hypothesis 2 predicts that the integrated-RC-KC model-1 and the 
integrated-RC-KC model-2 have a better model fit compared to the 
separate-RC-KC model in unit 2. Similarly, since students are nov-
ice at the beginning stage, hypothesis 2 predicts that the separate-
RC-KC model shows better model fit compared to the integrated-
RC-KC model-1 and the integrated-RC-KC model-2 in unit 1. 

Table 2.  Separate and integrated knowledge components.  

Separate KCs in  
unit 1 Integrated KCs in unit 2 

Conceptual_step3_time-phasor 

Build phasor graph 
(integrated-RC-KC 

model-1) 

Perceptual_time-phasor (0) 
Perceptual_time-phasor  

(clockwise) 
Perceptual_time-phasor  

(counter-clockwise) 

Perceptual_phasor-exp Write complex  
exponential notation 
(integrated-RC-KC 

model-1) 
Conceptual_step4_phasor-exp 

Perceptual_phasor-cartesian 
Write cartesian form 
(integrated-RC-KC 

model-2) 

Individual_phasor-cartesian  
(real part) 

Individual_phasor-cartesian  
(imaginary part) 

6. RESULTS 
To test hypothesis 1, we compared the model fit of the only-con-
tent-KC model, only-RC-KC model, and both-content-and-RC-KC 
model using data from Studies 1 and 2. Table 3 shows that the both-
content-and-RC-KC model has a better model fit than the only-con-
tent-KC model and the only-RC-KC model in Study 1 and Study 2. 
For AIC scores, the lower AIC indicate a better-fit-model, and more 
than -2 is considered significantly better than model it is being com-
pared [3]. Similarly, a decrement greater than 10 indicates very 

strong evidence in terms of BIC [19]. Lower values of RMSE also 
indicate better fit. These results support hypothesis 1. 

To address hypothesis 2, we compared the model fit of the sepa-
rate-RC-KC model, the integrated-RC-KC model-1, and the 
integrated-RC-KC model-2 as shown in Table 4. For Study 1, re-
sults show that in unit 1, the separate-RC-KC model shows the 
better fit than the integrated-RC-KC models. By contrast, in unit 2, 
the integrated-RC-KC model-1 shows better model fit than the sep-
arate-RC-KC model in terms of AIC and RMSE (but based on BIC 
the integrated-RC-KC model-2 shows the best model fit).  This sup-
ports hypothesis 2. 

For Study 2, we found that in unit 1, the separate-RC-KC model 
shows a better model fit than the integrated-RC-KC models in terms 
of AIC as shown in Table 5. However, the BIC and RMSE scores 
indicated that the integrated-RC-KC model-1 had the best model 
fit. By contrast, in unit 2, the integrated-RC-KC model-2 shows the 
best model fit. This result supports hypothesis 2 in terms of AIC 
scores. For BIC and RMSE scores, the results partially support hy-
pothesis 2, because the integrated-RC-KC model-1 shows the better 
model fit than the integrated-RC-KC model-2. 

Table 3. Test of hypothesis 1: Model accuracy for study 1 and 
study 2. Bold stands for the best fit.  

Study KC Model # of 
KC AIC BIC RMSE 

1 

both-content-
and-RC 42 22,123 24,221 0.4422 

only-RC 34 22,736 24,709 0.4456 

only-content 9 23,853 25,446 0.4537 

2 

both-content-
and-RC 42 18,559 20,358 0.4370 

only-RC 34 19,120 20,796 0.4421 

only-content 9 20,133 21,418 0.4544 

 

Table 4. Test of hypothesis 2: Model fit by unit (Study1). Bold 
stands for the best fit.  

Unit RC-KC Model # of 
KC AIC BIC RMSE 

1 
 

separate-RC-
KC model 33 9,733 11,488 0.4367 

integrated-RC-
KC model-1 30 9,779 11,491 0.4368 

integrated-RC-
KC model-2 27 9,803 11,492 0.4374 

2 

separate-RC-
KC model 33 10,387 12,133 0.4414 

integrated-RC-
KC model-1 30 10,372 12,075 0.4387 

integrated-RC-
KC model-2 27 10,396 12,054 0.4399 



 

Table 5. Test of hypothesis 2: Model fit by unit (Study 2). Bold 
stands for the best fit.  

Unit RC-KC Model # of 
KC AIC BIC RMSE 

1 

separate-RC-
KC model 33 8,134 9,587 0.4445 

integrated-RC-
KC model-1 30 8,156 9,567 0.4431 

integrated-RC-
KC model-2 27 8,201 9,570 0.4461 

2 

separate-RC-
KC model 33 9,095 10,598 0.4278 

integrated-RC-
KC model-1 30 9,085 10,546 0.4263 

integrated-RC-
KC model-2 27 9,080 10,498 0.4264 

 

7. DISCUSSION 
Our results show that the knowledge-component model incorporat-
ing both representational competencies and content knowledge had 
the best model fit (hypothesis 1). This result aligns with findings 
from a previous study that investigated whether a knowledge-com-
ponent model should incorporate representational competencies 
using chemistry students’ learning data. Our results replicate this 
finding in the electrical engineering domain.  

Further, we found that students’ representational competencies be-
come abstracted and integrated with content knowledge as students 
practice representational competencies (hypothesis 2). This shows 
that as students’ learning progress, their representational competen-
cies are gradually merged with content knowledge. We note that 
the time at which each representational competency is integrated 
into the content knowledge may not be uniform. For instance, while 
students’ representational competency of translating a time-domain 
graph to a phasor graph were merged with content knowledge in 
unit 2, the representational competency of translating a phasor 
graph to a time-domain graph remained separate from content 
knowledge. It is possible that after more practice, the latter repre-
sentational competency would also merge with content knowledge.  

Additionally, our results indirectly suggest that students’ timelines 
may differ depending on their learning rates. Specifically, we found 
differences between the Study 1 and Study 2 cohorts. The fact that 
BIC, AIC, RMSE disagreed as to whether the integrated-RC-KC 
model-1 or the separate-RC-KC model had a better model fit for 
unit 1suggests that students in Study 2 started with somewhat more 
integrated knowledge and ended with more integrated knowledge 
compared to students in Study 1. We do not want to speculate what 
might have caused these cohort effects because there are numerous 
possible reasons, but it suggests that students may start and end at 
different points on a separate-to-integrated knowledge trajectory.  

Our study makes novel contributions to the field of educational data 
mining because it is, to our knowledge, the first study capturing 
dynamic development of students’ representational competencies 
using knowledge-component models. Knowledge-component 
modeling allowed us to identify dynamic, developmental patterns 
of representational competencies and to show that they are not 
static. Further, our finding that knowledge-component models 
should incorporate representational competencies in addition to 

content knowledge expands the search space for knowledge-com-
ponent models in future work.  

Our findings also have important implications for the design of 
adaptive educational technologies. First, technologies that use vis-
ual representations should trace students’ acquisition of 
representational competencies in addition to content knowledge. 
Doing so is particularly important at the beginning of a learning 
sequence. When students first learn a new concept with visual ma-
terials, instructional supports should be designed with 
consideration of students’ representational competencies and con-
tent knowledge. Second, as students’ representational 
competencies change dynamically through practice, the educa-
tional technology may no longer need to monitor representational 
competencies separately from content knowledge. This, however, 
may need to be adapted to the rate at which students learn specific 
representational competencies and content knowledge. 

8. LIMITATIONS & FUTURE WORK 
Our results should be interpreted considering the following limita-
tions. First, we collected log data from students working on Signals 
Tutor in the context of online learning. Online learning differs from 
in-person learning in multiple ways. Therefore, future studies 
should replicate our results in the context of in-person learning. 
Second, our experiment was constructed in a specific electrical en-
gineering course. Even though visual representations are 
commonly used in many STEM instructions, representational com-
petencies are domain-specific and highly dependent on the 
particular content knowledge covered. Thus, future research needs 
to test whether our results generalize to other STEM domains and 
topics. Finally, open questions remain about the suitable length of 
a learning intervention to ensure that all representational competen-
cies become integrated with content knowledge. Although this 
study found that the students’ representational competencies are 
gradually integrated with content knowledge, it did not examine 
when each representational competency becomes fully integrated 
into the content knowledge. To address this limitation, a longer in-
tervention is needed. Such research could help establish the length 
of learning trajectories that relate to representational competencies.  

9. CONCLUSION 
The present paper shows that the structure of students’ knowledge 
changes over time. Consequently, different knowledge-component 
models are best suited at different times during a learning trajec-
tory. While modeling representational competencies is important, 
representational competencies become integrated with content 
knowledge with practice. Thus, educational technologies should 
employ dynamic knowledge-component models that capture repre-
sentational competencies separately from content knowledge at the 
beginning of a learning trajectory while merging them with content 
knowledge later in a learning sequence. The way in which these 
knowledge components are merged may depend on the student’s 
learning rate. Given that prior research shows that adapting instruc-
tional support to students’ representational competencies can 
significantly enhance their learning of content knowledge and 
given the prevalence of visual representations in STEM instruction, 
our study may have considerable impact on the effectiveness of ed-
ucational technologies.  
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