ABSTRACT

Studies have shown that on-demand assistance, additional instruction given on a problem per student request, improves student learning in online learning environments. Students may have opinions on whether an assistance was effective at improving student learning. As students are the driving force behind the effectiveness of assistance, there could exist a correlation between students’ perceptions of effectiveness and the computed effectiveness of the assistance. This work conducts a survey asking secondary education students on whether a given assistance is effective in solving a problem in an online learning platform. It then provides a cursory glance at the data to view whether a correlation exists between student perception and the measured effectiveness of an assistance. Over a three year period, approximately twenty-two thousand responses were collected across nearly four thousand, four hundred students. Initial analyses of the survey suggest no significance in the relationship between student perception and computed effectiveness of an assistance, regardless of if the student participated in the survey. All data and analysis conducted can be found on the Open Science Foundation website.

Keywords

Online Education, On-Demand Assistance, Student Perception

1. INTRODUCTION

Collecting student perceptions on educators’ performances, practices, and generated content has been well established in higher education, along with its ability to potentially improve student instruction [3, 10]. However, very few have been conducted on student perception in secondary education settings [11]. Additionally, surveys conducted on student perception rarely consider individual pieces of content and their effectiveness in context.

In 2017, ASSISTments, an online learning platform [9], deployed the Special Content System, formerly known as TeacherASSIST. The Special Content System allows educators to create and provide on-demand assistance for problems assigned to their students. On-demand assistance was known as student-supports within the application, with most as either hints or explanations. Additionally, educators marked as star-educators had their student-supports provided to any student, regardless of their class, for any problem a class’s educator did not generate a student-support for. The effectiveness of a student-support was evaluated using whether the student answered the next problem in the problem set correctly on their first try [13, 16].

In summary, this work aims to answer the following research
questions:

1. Can student perceptions accurately predict the overall effectiveness of student-supports?

2. Can student perceptions accurately predict the effectiveness of student-supports for students who participated in the survey?

2. BACKGROUND

In this work, ASSISTments will be used to conduct the studies. ASSISTments\(^2\) is a free, online learning platform providing feedback to inform educators on classroom instruction [9]. ASSISTments provides open source curricula, the majority of which is K-12 mathematics, containing problems and assignments that teachers can assign to their students. Students complete assigned problems in the ASSISTments Tutor. For nearly all problem types, students receive immediate feedback on response submission, which tells the student the correctness of the answer [6]. When a student-support has been written for a problem, a student can request to receive a student-support during the span of problem completion. Student-supports may come in the form of hints which explain how to solve parts of the problems [8, 17], similar problem examples [12], erroneous examples[17, 1], and full solutions to the problems [18, 19].

ASSISTments runs an application known as the Special Content System in which student-supports, usually as hints or explanations, are crowdsourced from educators. Student-supports are created by educators and then provided to students when solving. In this work, data from the ASSISTments Dataset generated by the Special Content System [14, 15] alongside the student perception on student-support effectiveness is used to analyze whether student perceptions accurately predict the effectiveness of student-supports.

3. METHODOLOGY

Data was collected within the original ASSISTments platform over the course of three years. During this period, when a student-support was provided to a student, a prompt may appear asking about the effectiveness of the student-support, as shown in Figure 1. The student additionally had an equally likely chance that a prompt may not be shown. 46,620 responses across 13,509 students were recorded on the effectiveness of a student-support. Preprocessing on the responses removed any where the effectiveness of a student-support could not be determined. Additionally, any students who only answered one of the available choices across many problems were discarded as the provided answers may not be in full consideration of the question or without major bias. After processing, 21,736 responses across 4,374 students remained. The responses consisted of 5,861 student-supports across 4,120 problems.

After the response were processed, they were grouped by problem and sub-grouped further by student-support. Each sub-group of student-supports contained the data for the student perception of effectiveness and the effectiveness data as specified by the research questions: overall effectiveness and the effectiveness across the students who responded respectively. For every pair of student-supports with a problem group, a Sign Test[5] was performed between the student perception of effectiveness and measured effectiveness of the student-supports. As A Sign Tests measures whether the differences between pair of data is consistent, the results are expected to follow a binomial distribution. As such, a two-sided Binomial Test[4] was performed to measure whether the student perception of effectiveness and the measured effectiveness is consistent. If there was less than two student-supports available for a problem or the difference between the perception or measured effectiveness was zero, then no useful comparison could be made and was thus discarded[5]. The results of the pairwise comparisons between all student-supports are reported using the Pair prefix within Table 1. To make claims on the effectiveness of student-supports on a given problem, another two-sided Binomial Test was performed only on the two supports with the largest combined sample size. The results of the pairwise comparison between the two student-supports with the largest sample size per problem are reported using the Problem prefix within Table 1. As multiple analyses were being performed on the dataset, the Benjamini-Hochberg Procedure[2] was applied to the corresponding p-values to reduce the false discovery rate.

To measure the effectiveness across only those who participated in the survey, a Chi-squared Test[7] was performed comparing the relationship between the student perception of effectiveness and the measured effectiveness across students who responded for a student-support in addition to the Sign Test. In comparison to the Sign Test which measures consistent differences, a Chi-Squared Test measures the difference in frequencies between two relationships. A Chi-squared Test was not conducted on the overall effectiveness as the sample size considers all students who were provided the associated student-support which violates the equality of sample sizes across observation. As the results of all the Chi-Squared Tests performed is infeasible to report, only those which found significant results are shown in Table 2.

4. RESULTS
Table 1: Binomial Test of the Sign Tests on student perception of effectiveness and the measured effectiveness of student-supports.

<table>
<thead>
<tr>
<th>Test Performed</th>
<th>Sample Size</th>
<th>Number of Successful Sign Tests</th>
<th>P-Value</th>
<th>Corrected P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair: Overall</td>
<td>1,699</td>
<td>876</td>
<td>0.2071</td>
<td>0.379</td>
</tr>
<tr>
<td>Problem: Overall</td>
<td>1,182</td>
<td>607</td>
<td>0.3672</td>
<td>0.379</td>
</tr>
<tr>
<td>Pair: Responding Students</td>
<td>1,320</td>
<td>695</td>
<td>0.0575</td>
<td>0.23</td>
</tr>
<tr>
<td>Problem: Responding Students</td>
<td>942</td>
<td>485</td>
<td>0.379</td>
<td>0.379</td>
</tr>
</tbody>
</table>

4.1 Overall Effectiveness
As shown in Table 1, across the 5,861 available student-supports with responses, 1,699 pairs of student-supports were created with 876 pairs (proportion estimate of 0.5156) returning a correlated difference on the Sign Test for overall effectiveness. Across the 1,699 pairs of student-supports, there were 1,182 problems, of which 607 (proportion estimate of 0.5135) had a correlated difference on the Sign Test. Both results were not significant ($\alpha < 0.05$) before Benjamini-Hochberg correction.

4.2 Effectiveness Across Responding Students
Also in Table 1, 1,320 pairs of student-supports were created with 695 pairs (proportion estimate of 0.5265) returning a correlated difference on the Sign Test for effectiveness across responding students. Across the 1,320 pairs of student-supports there were 942 problems, of which 485 (proportion estimate of 0.5149) had a correlated difference on the Sign Test. Both results were not significant ($\alpha < 0.05$) before Benjamini-Hochberg correction.

The Chi-squared Test ($\chi^2 > 3.8415$) revealed only six out of the 5,861 responded student-supports with a relationship between the student perception of effectiveness and the measured effectiveness across the responding students. The results of the significant Chi-squared Tests are shown in Table 2. The significance of the results can be attributed to randomness due to sample size ($6/5861 = 0.001 < 0.05$). The corrected p-values using the Benjamini-Hochberg Procedure[2] also conveys the non-significance of the results at $p = 1$.

5. CONCLUSION
In this work, initial findings show no significant relationship between student perception of effectiveness and the measured effectiveness of a student-support. Only 5% of students who used the original system were considered in the performed analysis. Additionally, less than 1% of the responses collected showed any significance in the relationship. As such, the significance of any current results can be attributed to randomness. The response set is unlikely to be generalizable to other online learning platforms or across students and problems.

Potential improvements to further analysis could view the features of the participating students or problems, such as prior knowledge or problem accuracy. The prompts could also be subdivided further to determine if phrasing has a desired effect on student perception. Accurate markers of student response times could also be recorded to differentiate responses before and after completing the given problem. Additionally, the location of when the prompt was delivered could be moved to better reflect the measure of effectiveness used for an on-demand assistance.

Although no evidence of the relationship between student perception of effectiveness and the measured effectiveness of a student-support was found in this work, other qualities could attempt to better provide understanding of student perceptions on effectiveness in more granular surveys. Future work can explore better opportunities in student perceptions on effectiveness of student-supports for themselves. Afterwards, further steps can be taken to gradually generalize effectiveness overall and eventually to other online learning platforms.

6. ACKNOWLEDGMENTS
We would like to thank the NSF (e.g., 2118725, 2118904, 1950683, 1917808, 1931523, 1940236, 1917713, 1903304, 1822830, 1759229, 1724889, 1636782, & 1535428), IES (e.g., R305N210049, R305D210031, R305A170137, R305A170243, R305A180401, & R305A120125), GAANN (e.g., P200A180088 & P200A150306), EIR (U411B190024 & S411B210024), ONR (N00014-18-1-2768), and Schmidt Futures. None of the opinions expressed here are that of the funders. We are funded under an NIH grant (R44GM146483) with Teachly as a SBIR.

7. REFERENCES
Table 2: Chi-Squared Tests with a relationship between the student perception of effectiveness and the measured effectiveness across the responding students for a student-support. The tables are in the following order: both student perception and measured effectiveness are true, only student perception is true, only measured effectiveness is true, neither student perception and measured effectiveness are true.

<table>
<thead>
<tr>
<th>Contingency Table</th>
<th>Expected Table</th>
<th>Critical Statistic</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 2</td>
<td>6.05 4.95</td>
<td>4.8995</td>
<td>0.0269</td>
</tr>
<tr>
<td>2 7</td>
<td>4.95 4.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 14</td>
<td>6.12 10.88</td>
<td>5.4767</td>
<td>0.0193</td>
</tr>
<tr>
<td>6 2</td>
<td>2.88 5.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 10</td>
<td>4.67 7.33</td>
<td>4.9383</td>
<td>0.0263</td>
</tr>
<tr>
<td>5 1</td>
<td>2.33 3.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 5</td>
<td>7.68 8.32</td>
<td>5.5314</td>
<td>0.0187</td>
</tr>
<tr>
<td>1 8</td>
<td>4.32 4.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 2</td>
<td>4.05 4.95</td>
<td>4.8995</td>
<td>0.0269</td>
</tr>
<tr>
<td>2 9</td>
<td>4.95 6.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 3</td>
<td>9.71 7.29</td>
<td>8.7625</td>
<td>0.0031</td>
</tr>
<tr>
<td>2 9</td>
<td>6.29 4.71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

