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ABSTRACT 
A child’s ability to understand text (reading comprehension) can 
greatly impact both their ability to learn in the classroom and their 
future contributions to society. Reading comprehension draws on 
oral language; behavioural measures of knowledge at the word and 
sentence levels have been shown to be related to children’s reading 
comprehension. In this study, we examined the impact of word and 
sentence level text-features on children’s reading comprehension. 
We built a predictive model that uses natural language processing 
techniques to predict the question-level performance of students on 
reading comprehension tests. We showed that, compared to a 
model that used measures of student knowledge and subskills 
alone, a model that used features of sentence complexity, lexical 
surprisal, rare word use, and general context improved prediction 
accuracy by more than four percentage points. Our subsequent 
analyses revealed that these features compensate for the shortcom-
ings of each other and work together to produce maximal 
performance. This provides insight into how different characteris-
tics of the text and questions can be used to predict student 
performance, leading to new ideas about how text and reading com-
prehension interact. Our work also suggests that using a 
combination of text features could support the adaptation of reading 
materials to meet student needs. 

Keywords 
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1. INTRODUCTION 
Elementary students’ ability to understand text, or their reading 
comprehension (e.g., [30]), supports their successful participation 
in both education and society [7]. It is well-established that reading 
comprehension is determined, at least in part, by children’s skill in 
oral language [19], with strong impacts of oral language skills—at 
both the word and sentence levels (i.e., vocabulary and syntax) —
on reading comprehension skills (e.g., [11]). We built on these 
ideas and tested whether automatically extracted indicators of vo-
cabulary and syntax complexity would be indicative of reading 

comprehension scores. To address this question, we extract features 
from a widely used standardised measure of reading comprehen-
sion [34]. Thus, we introduce various text-based measures that can 
be automatically extracted. After extracting these features, we 
trained and evaluated models. We then tested their relative perfor-
mance and analyzed the added value of including all of these 
features in the context of a predictive neural network model. Our 
modelling approach could also be used to analyze new reading 
comprehension tests or tasks, enabling others to better understand 
how student knowledge and subskills interact with the characteris-
tics of the text to influence reading comprehension.  
The educational value of this work lies in informing the optimal 
selection of texts and questions to support the development of chil-
dren’s reading comprehension. Predictions on where mistakes 
would likely be made by individual students could be used to sup-
port downstream tasks, such as adapting systems so that both the 
comprehension questions asked and the assigned texts challenge 
students appropriately [57]. Further, interpreting the predictions 
made by such models and the model attributes may improve our 
understanding of what contributes to reading comprehension chal-
lenges, which could support the design of optimally effective 
interventions. 

2. RELATED WORK 
The single most widely cited theory of reading comprehension is 
the Simple View of Reading [19]. According to this theory, chil-
dren’s reading comprehension is determined by the product of their 
word reading and their oral language skills. Behavioural research 
since its development has made good progress in identifying the 
individual oral language skills that support reading comprehension. 
Two of the best-established lie in vocabulary, or knowledge of in-
dividual word meanings, and syntactic awareness, or the ability to 
reflect on or manipulate spoken sentences [5].  Each of vocabulary 
and syntactic awareness are strong predictors of children’s levels 
of reading comprehension [54]. For instance, Deacon and Kieffer 
[11] showed that children’s ability to manipulate sentences in 
Grade 3 predicted gains made in reading comprehension between 
Grades 3 and 4, a contribution similar in magnitude to that of word-
level reading. There is an even larger body of research demonstrat-
ing the impacts of children’s vocabulary knowledge on their ability 
to understand what they read [43]. Together, this body of work 
shows that individual differences in oral language skills—at both 
the word and sentence levels—are related to children’s ability to 
understand the texts that they read.  

But what about the features of the texts themselves? 
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It is well-established that the features of a text impact a person’s 
comprehension of that text. These features can be identified manu-
ally, or we can use techniques from natural language processing 
(NLP) to identify the qualities of a text and extract their associated 
features. The field of NLP has developed many approaches that can 
be used to identify syntax, semantics, and word use. There are also 
methods that can identify the broader relationships in people’s lan-
guage use once those methods have been trained with corpora.   

Of the techniques that do not require training with a corpus, are 
those that predominantly count elements of a text to derive 
measures that can then be used as features in a model. One widely-
used tool that employs this approach to capture the syntactic com-
plexity of sentences is Coh-Metrix. Coh-Metrix tracks the linguistic 
properties of a text using features such as the average length of 
words in a sentence or number of sentences in a paragraph [23]. 
The most recent version of Coh-Metrix also incorporates the scor-
ing of connections between sentences, such as noun overlap 
between adjacent sentences  and causal cohesion (sentences that are 
linked by causal connectives) [22].  

Given the importance of syntactic complexity to reading compre-
hension, it is not surprising that Coh-Metrix has been used to 
extract the linguistic properties of texts to predict student reading 
comprehension scores in the context of the iStart tutoring system 
[1]. iStart provided training in active reading strategies (i.e., self-
explanation) to support improved reading comprehension. In this 
case, features were extracted from student self-explanations and 
used to predict reading comprehension scores on the Gates Mac-
Ginitie test. These analyses provided insight into how the language 
produced by students can be used to predict their overall reading 
comprehension performance. Including the simple linguistic fea-
tures that were extracted using Coh-Metrix accounted for additional 
variance in student performance, which demonstrated that the in-
clusion of such features has the potential to support learner 
modelling tasks.  

Building on the idea of Coh-Metrix, AMOC aimed to automatically 
capture the semantic complexity and context of a text [8]. It uses 
similar approaches to those embedded within Coh-Metrix and adds 
semantic links using dictionary-like tools and Word2Vec. These 
links are then used to output a graph representation of the semantic 
model (context) associated with a segment of text.  

Language models are a potential alternative approach to automati-
cally capturing the syntactic and semantic or contextual features of 
a text. Existing language modelling approaches vary in complexity 
from relatively simple probabilistic representations of language 
(e.g., n-grams) to more complex neural network-based approaches 
(e.g., RNNs). All of these language modelling approaches require 
a corpus of data from which they can learn language-usage patterns. 

Assuming you have access to a corpus, n-grams can be used to cap-
ture both the syntactic and semantic constraints in a text by 
determining the probability with which words are expected to fol-
low one another. Mitchell et al [39] investigated using trigrams (i.e., 
n-grams of length 3) to analyze reading times and understand read-
ing comprehension. They used these n-grams to estimate the lexical 
surprisal associated with a text and found a correlation between the 
surprisal measure and reading time. Similarly, a study by Hofmann 
et al [29] used a trigram language model to predict reading speed 
from eye-tracking data while acknowledging that trigrams do not 
account for long-range semantic effects (unlike AMOC and some 
more advanced language modelling approaches). The finding that 
reading time may be related to comprehension is not directly 

measurable with n-grams; rather, they enable the extraction of 
measures, such as lexical surprisal, that can be used to predict read-
ing time. 
To better model long-range semantics and sentence meaning, re-
current neural networks (RNN) have been used to improve 
predictions of reading comprehension scores and reading times. 
Frank and Hoeks [18] used a specific type of RNN, called long 
short-term memory (LSTM),  to correlate reading times with com-
prehension. Through this investigation, they found RNNs can 
capture both the structure and semantics of a long text thus improv-
ing reading time predictions. Transformer-based neural network 
models [53], such as BERT [15], have shown superior performance 
over RNNs when conducting various NLP tasks, such as neural ma-
chine translation [31] and sentiment analysis [38]. This suggests the 
use of transformer-based models may support improved perfor-
mance when predicting reading comprehension scores. 
Outside of the use of language models, other approaches to repre-
senting student performance (learner or student models) have been 
attempted in systems that rely on language as a primary source of 
interaction with the student. One project aimed to predict student 
scores on a post-test using the logs of student interactions from in-
telligent tutoring systems (ITS) that teach physics and probability 
using word-based problems [35]. Mao et al. [35] collected data 
from two ITSs and used the training content to predict student post-
test results. They trained a Bayesian knowledge tracing (BKT) 
model to infer whether students had learned the intended units of 
knowledge (knowledge components). Their results showed BKT’s 
prediction is more accurate than that of the LSTM on its own. A 
model that jointly used BKT and LSTM to predict post-test scores 
outperformed both individual models, suggesting the potential for 
combining different approaches to capturing student capabilities in 
relation to the complexities of the learning and assessment materi-
als. This initial work has provided promising results by 
incorporating representations of the text as part of the prediction of 
student performance. However, the skill representations used by 
BKT models typically require the expert labelling of skills along 
with the careful development and sequencing of questions, and this 
sequencing is often specific to an  ITS. Consequently, it cannot be 
easily generalized or applied to other prediction tasks. 

Moreover, these types of approaches have yet to be applied to mod-
elling student reading comprehension within e-learning systems. 
Within the instructional domain of literacy, previous attempts at 
modelling student skills or knowledge have focused on understand-
ing student reading strategies [24], improving their vocabulary 
acquisition [14, 17], or improving reading proficiency (decoding 
and fluency) [2, 40], as steps towards supporting literacy. In these 
cases, the logs of student activities, their interactions with the sys-
tem, and the texts they produce are used to model student 
knowledge and skills. These types of models are then used to pro-
vide feedback to students [13], inform teachers of student activities 
and skills, or adapt learning content [12, 13]. Consistent with the 
above modelling goals, the training provided by the e-learning sys-
tems that aim to support student literacy has tended to focus on 
exposure-based approaches [3, 12], stealth assessment during game 
play [17], and the training or modelling of reading strategies [17, 
21]. In the research on the use of software to support reading profi-
ciency, tests of reading comprehension have been used to evaluate 
the effectiveness of the system [1, 16, 40] rather than being an in-
tegral part of the content that is adapted.  

We do not yet have a model that can predict student performance 
on comprehension questions by capturing students’ underlying oral 
language skills while accounting for text features. A model that 



could do this would support the selection of both texts and ques-
tions within an adaptive learning environment like an ITS. The 
present study is a first attempt at developing such a model. It asks, 
‘What is the added value of including text features as input when 
predicting the correctness of question answering in reading tasks?’ 

3. METHODS 
To answer the above question, we applied supervised learning to 
archival data from a study of children’s reading development. We 
compared models that include different features we extracted from 
a reading comprehension test to a baseline that only included 
measures of student oral language skills and language knowledge.  

3.1 Participants 
This study was approved by the Social Sciences and Humanities 
Research Ethics Board of Dalhousie University. All children par-
ticipated with parental consent and child assent. We recruited 
Grade 3 students from a combination of urban and rural public 
schools in Nova Scotia.  

There were 139 students with a mean age of 8.80 years at the time 
of testing (SD = 0.29; range = 8.15–9.37 years). Of these students, 
74 were boys and 65 were girls. Based on parent-report, most chil-
dren were native speakers of English; 4 spoke a language other than 
English at home.   

Table 1 shows the children’s performance on standardized 
measures (see section 2.3.2 for details on these measures). Student 
scores suggest that participants were typically developing. 
Table 1. Descriptive Statistics for the Individual knowledge and 
sub-skill measure scores 

Measure Name Rel. Mean SD Min Max 
PPVT-M .84 31.95 4.93 19.00 46.00 
CTOPP .93 23.01 6.10 8.00 33.00 

Syntax Awareness  .74  9.57 3.27 2.00 16.00 
TOWRE  .93 56.97 14.40 4.00 87.00 

WISC .91 13.17 2.31 8.00 20.00 
WRMT-3 .97 60.97 12.72 3.00 83.00 

Note. Raw scores are reported for all measures. Reliability (Rel.) 
was retrieved from the instrument manual. SD - standard deviation.  

3.2 Procedures 
The measures reported on here were completed as a part of a larger 
battery, presented in two individual sessions and one group session 
(up to 12 children). We only report measures relevant to the present 
study.  

In session 1, participants completed the Sight Word Efficiency sub-
test of the Test of Word Reading Efficiency (TOWRE), amongst 
other measures.  
Session 2 was completed an average of two days after the first in-
dividual session (M = 1.93, SD = 1.39; range: 1 to 9 days). 
Participants completed the Word Identification subtest of the 
Woodcock Reading Mastery Tests (WRMT), a modified version of 
Peabody Picture Vocabulary Test (PPVT-M), Digit Span from the 
Wechsler Intelligence Scale for Children (WISC), and Elision from 
the Comprehensive Test of Phonological Processing (CTOPP).  

 
1 The test content is available at https://edinstruments.com/instru-

ments/gates-macginitie-reading-tests-4th-edition-gmrt-4 

The group session was completed an average of just over 2 days 
after the first individual session (M = 2.27, SD = 2.12; range: 1 to 9 
days). In the group session, children completed the Comprehension 
subtest of the Gates–MacGinitie Reading Tests.  

3.3 Measures 
3.3.1 Reading Comprehension Measure 
To measure reading comprehension, we administered the Level 3 
Comprehension subtest of the fourth edition of the Gates–MacGin-
itie Reading Tests 1  [34] according to manual instructions. The 
manual reports a reliability of .93 for this instrument. Students were 
given 35 minutes to read 11 short texts and answer the three to six 
multiple choice questions following each text.  
We aim to predict whether students correctly answered individual 
questions for each of the texts from this test. 

3.3.2 Individual Knowledge and Sub-skill Measures 
To incorporate differences in student oral language skills and 
knowledge, we administered tests to assess their vocabulary, pho-
nological awareness, working memory, word reading fluency, and 
word reading accuracy. The descriptive statistics for these 
measures are shown in Table 1, and the instruments are detailed 
below. 
Vocabulary knowledge. To measure receptive vocabulary 
knowledge, a shortened version (51 items) of the PPVT-3 [36] was 
used. For each item, students chose which of a set of four black-
and-white pictures referred to an orally presented word. This short-
ened version (PPVT-M) has been validated with Grade 1 to 3 
children [11]. 

Syntactic awareness. This was measured with an 18-item task in 
which children corrected sentences based on Deacon and Kieffer’s 
framework [11]. For instance, children are presented orally with the 
scrambled sentence, “From the library were stolen the books.” and 
they were asked to fix the sentence so that it sounds right (in this 
case, “the books were stolen from the library”). Children were 
given 3 practice items prior to completing the test.  

Phonological awareness.  We measured phonological awareness 
with the Elision subtest of the second edition of CTOPP [55]. Par-
ticipants were asked to repeat words without pronouncing certain 
syllables or phonemes (e.g., bold without /b/). Phonological aware-
ness was measured because of its association with word reading and 
reading comprehension [10]. 
Working memory. Given established correlations of working 
memory with both reading comprehension and word reading in 9-
year-olds (e.g., [5]), we measured it using the Digit Span subtest of 
the fourth edition of the WISC [56]. In this task, participants repeat 
a series of digits of increasing length in the order given or the re-
verse order. 
Word reading fluency. We measured word reading fluency using  
the Sight Word Efficiency subtest of the TOWRE [51]. Participants 
were given 45 seconds to read a list of words as fast as possible. 
Word reading accuracy. We measured  word reading accuracy 
with the Word Identification subtest of the WRMT-3 [58]. Students 
read words that became increasingly difficult. 



3.3.3 Text-based Features 
We extracted both word- and sentence-level text-based features. 
The features included sentence complexity, rare word use, lexical 
surprisal, and sentence context. The descriptive statistics of all ex-
tracted features can be seen in Table 2. Since rare word use 
represents a proportion of the text, it produces a single input feature. 
Similarly, question complexity produces a single input feature be-
cause questions are one sentence long. In contrast, lexical surprisal 
and sentence complexity for the text, which contains multiple sen-
tences, are represented using three features: mean, standard 
deviation, and maximum. 

3.3.3.1 Sentence Complexity 
Complex sentences increase working memory load, which makes 
reading comprehension challenging [20].  We used the depth of the 
parse trees from the text as a proxy for sentence complexity. Each 
parse tree identifies the grammatical constituents of a sentence and 
communicates an aspect of a sentence’s complexity through its 
structure. 

Table 2 Descriptive Statistics for the Text-based Features 

Feature Name Mean SD Min Max 
Sentence Complexity     

 Mean 8.41 0.88 7.18 10.33 
 SD 2.32 0.74 1.34 3.96 
 Maximum 12.33 1.75 10.00 16.00 
Lexical Surprisal     
 Mean .44 .30 0 1 
 SD .49 .26 0 1 
 Maximum .56 .30 0 1 

Rare Word Use .46 .06 .35 .56 
Question Complexity 8.37 1.94 6 13 

Note. SD -  standard deviation. 
To obtain this sentence-level measure, we first tagged the sentences 
from each text in the reading comprehension test with their associ-
ated parts of speech (POS). From the tagged words, we  built parse 
trees using a probabilistic context-free grammar (PCFG). Both tag-
ging and parsing were performed by the CoreNLP tagging tool [52]. 
Figure 1 shows a parse tree for the “Snow turns blue when blue ice-
worms live in it.” This sentence is taken from one of the texts that 
was used to measure reading comprehension.  

 
Figure 1. The parse tree with the highest probability for the 
sentence “Snow turns blue when blue ice-worms live in it.” 

The PCFG assigns a probability to each potential parse of a sen-
tence. The highest probability parse is selected; its associated tree 
is used to derive our measure of sentence complexity. We take the 
depth of the tree for each sentence in the text and derive three 
measures per text: the maximum tree depth, the average depth, and 
the standard deviation of tree depths. As an example, the parse tree 
in Figure 1 has a depth of 10.  

3.3.3.2 Rare Word Use 
The number of rare words in a text influences reading comprehen-
sion; one rare word can lead to a complete miscomprehension of a 
sentence [23]. Given this fact, it is important to capture the amount 
of rare word use in a text when assessing reading comprehension. 
We model vocabulary rarity by quantifying the percentage of rare 
words in each text of the test. This language feature is expected to 
represent the difficulty of the text on a vocabulary level. 
To calculate the percentage of rare words, we first used the Chil-
dren’s Book Test corpus [27] to compute all word frequencies. We 
then chose a cut-off threshold (700) for determining word rarity. 
The top 700 frequent words occupy 1.5% of all distinct words and 
account for 60% of the corpus content. The most frequent 700 
words were extracted to form a common word list. We consider 
words rare if they are not contained in the common word list.  

 
Figure 2. Word frequency in the Children’s Book Test dataset. 
The x-axis is in log2 scale. The dashed line is the cut-off at 700; 
any words with indices that exceed the cut-off are excluded. 
To compute the percentage of rare words in a text, we count the 
number of rare word tokens (i.e.,  those that do not appear in the 
common word list) and divide that by the total number of word to-
kens in the text. This percentage is our measure of rare word use. 

𝑅𝑎𝑟𝑒	𝑊𝑜𝑟𝑑	𝑈𝑠𝑒 = 	
𝑟𝑎𝑟𝑒	𝑤𝑜𝑟𝑑	𝑐𝑜𝑢𝑛𝑡
𝑡𝑜𝑡𝑎𝑙	𝑤𝑜𝑟𝑑	𝑐𝑜𝑢𝑛𝑡 

3.3.3.3 Lexical Surprisal 
The surprisal of a word  in a sentence is related to the amount of 
cognitive work required for human comprehension of that word 
within the sentence [33], and it is predictive of reading times [46]. 
To model this word-level feature, we needed to determine the like-
lihood of one word appearing right after another word.  

Since our prediction task is targeted towards Grade 3 students with 
elementary-level vocabulary, we built bigrams (n-grams of length 
2) from the Children’s Book Test dataset [27]. We then derived the 
lexical surprisal value [25] for each sentence in the Gates-MacGin-
itie texts by computing the mean word-level surprisal. Min-max 
normalization [42] was used to ensure the values are on a similar 
scale to the other features. After extracting the surprisal of each 
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sentence in the text, we compute the mean, standard deviation, and 
maximum of all sentence surprisal values for the whole text. These 
normalized values are used for the lexical surprisal input feature. 

3.3.3.4 Sentence Context 
The sentence-context feature employs a prevalent method for rep-
resenting text - a universal sentence encoder – which incorporates 
context, meaning, sentence complexity, and word order infor-
mation [6]. The embedding represents the text in the form of a 
vector. To obtain these embeddings, we used the pre-trained 
MPNet encoder [49], which is a transformer-based language model. 
MPNet was used to encode both the text and questions into vectors 
with 768 dimensions. The generated universal sentence embedding 
was used to represent the general context of the texts. 

3.4 Prediction Task 
The goal of each model is to predict whether a particular student 
would answer a specific reading comprehension question correctly 
or incorrectly based on measures of their individual knowledge and 
sub-skills and the features of the texts (see Figure 3). 
The input to our task includes features derived from the textual con-
tent of the Comprehension subtest of the Gates–MacGinitie 
Reading Tests and students’ individual knowledge and sub-skill 
measures that provide information about their oral language skills. 
Since each of these instruments provides scores on different scales, 
we applied min-max scaling normalization [41]. This allows all 
measures to be placed on the same scale, thereby facilitating com-
parisons. This type of normalization also facilitates model accuracy 
in classification tasks [4].  
Of the questions students answered, 54 % are labelled correct and 
46 % incorrect. Due to the limited size of our data (6,576 entries), 
all entries were used during model training and testing. 

 
Figure 3. The features used in our prediction task, grouped by 
measure (child) and feature (text) source. 

3.5 Models 
3.5.1 Base Model 
The Base Model is a fully connected neural network classifier that 
takes all sub-skill measures as input to predict whether a student 
will answer each question correctly. Given that the input layer is 
relatively small with 6 features, our network has two hidden layers 
each with 12 nodes.  

3.5.2 Text-based Feature Models 
Our proposed models augment the Base Model with the language 
features of the text. They incorporate four features: sentence com-
plexity, vocabulary rarity, word surprisal, and context.   

3.5.3 Base + Sentence Complexity Model 
This model is a fully connected neural network that includes all 
sub-skill measures and sentence complexity text features as input. 
The network has two hidden layers, both of which have 18 nodes 
and use the ReLU activation function. Since we are predicting the 
probability of a binary event (correct/incorrect), a sigmoid layer 
follows the hidden layer. Loss is calculated using binary cross en-
tropy. Adam optimization [32] is also used. 

3.5.4 Base + Rare Word Use Model 
This model is a fully connected neural network that includes all 
sub-skill measures and rare word use as input features. The network 
has two hidden layers, both of which have 14 nodes and use the 
ReLU activation function. Following the hidden layer there is a sig-
moid layer. Loss was calculated using binary cross entropy and 
optimization was done using Adam. 

3.5.5 Base + Lexical Surprisal Model 
This model is a fully connected neural network that includes all 
sub-skill measures and lexical surprisal features as input. The net-
work has two hidden layers, both of which have 18 nodes and use 
the ReLU activation function. Following the hidden layer, there is 
a sigmoid layer and the loss was calculated using binary cross en-
tropy. Adam was used for optimization. 

3.5.6 Base + Context 
This model, shown in Figure 4, is a neural network that includes 
two parts, sub-skill measures (Base Model) and context as repre-
sented through sentence embeddings. 

The six sub-skill measures are first passed through a 6x12 dense 
layer. 

The sentence context part starts with two vectors: one represents 
the embeddings from the text and the other that of the question. 
Each vector is then passed through a 764x64 dense layer and trans-
formed into 64 nodes.  

We concatenate the sentence embedding and sub-skill measures 
into one fully connected layer followed by a hidden layer with 128 
nodes. A sigmoid layer follows the hidden layer. Once again, loss 
was calculated using the binary cross-entropy function, and Adam 
optimization was performed.  

 
Figure 4. Neural network structure for the Base + Context 
Model. The “+” indicates the concatenation operation from the 
previous three dense layers. 

3.5.7 Full Model 
The Full Model (Figure 5) consists of all sub-skill measures from 
the Base Model, sentence complexity, vocabulary rarity, word 



surprisal, and sentence context. This should allow us to best cap-
ture the language features of the tests that might affect children’s 
reading comprehension performance.  

We manually tuned the number of nodes in each layer. Specifi-
cally, for the dense layer after concatenating sub-skill and  text-
based features, we tried {12, 24, 48, 96}; 24 nodes had the best 
performance. For the dense layers after vector embedding, we 
tested values among {32, 64, 128, 256} and picked 64. Both dense 
layers from the vector embeddings are kept at the same size, and 
no individual testing was done. For the last layer, where all three 
hidden layers were combined, we tested among {32, 64, 128, 256} 
for number of nodes and 128 nodes yielded the best result. 

 
Figure 5. Neural network structure for the Full Model, where 
all measures and features are used as input. The “+” indicates 
the concatenation operation from the previous three dense lay-
ers. 

3.5.8 Hyperparameter Tunning 
For all of our models, we tested three learning rates: .01, .001, 
and .0001. The learning rate of .001 returned the best result for all 
models. Table 3 shows tunning details for the number of nodes in 
the two dense layers that are part of our models. We kept the node 
number the same for both dense layers during tuning. 

Table 3. Hyperparameter tuning details 

Model Values Tested Value Chosen 
Base 6, 12, 24 12 

Base + Sent. Complex. 9, 18, 36 18 
Base + Context 64, 128, 256 128 

Base + Rare Word Use 7, 14, 28 14 
Base + Lexical Surprisal 9, 18, 36 18 

Note. Sent. – Sentence, Complex. – Complexity 

3.6 Model Evaluation & Analysis Procedures 
We used k-fold cross-validation with k = 10 to evaluate all models. 
Since predicting whether a student answers a question either cor-
rectly or incorrectly is equally important, all models were 
optimized for accuracy during hyperparameter tuning. The whole 
training process is done within approximately two hours on a com-
modity machine after hyperparameter tuning. 

We used McNemar’s test to determine whether there is a significant 
difference between the Base Model and all other models. 
McNemar’s test compares machine learning based classifiers in 
pairs by looking at the correct and incorrect classification each 
model makes. It can distinguish model differences even if the mod-
els yield similar accuracy results [37]. Bonferroni step-down 
correction was used to control for multiple comparisons; the ad-
justed p-values are reported. 

Since it is not enough to determine which model performs best, we 
used integrated gradients [50] to examine feature importance. Inte-
grated gradients quantitatively shows the effect each feature has on 
the final prediction. This measure evaluates the contribution of fea-
tures (feature importance) to the prediction results of machine 
learning models. It does so by gradually increasing the values of 
the input features from those of a baseline. We used the value zero 
as our baseline since it represents zero information in our study. 
This method computes the integral of gradients with respect to in-
puts along the path from outputs to inputs in a neural network. 
Integrated gradients can provide insight into which features con-
tributed to students correctly answering a question. A positive 
integrated gradients value shows an increase in the feature value 
that contributes to an increase in the output prediction value. A neg-
ative value indicates the opposite. The magnitude of the value 
shows how much the input feature influences the output. A value 
of zero means the measure or feature did not contribute to the pre-
diction. There is no specific range for integrated gradients because 
the slope describing the relationship between the input and output 
(gradient) is not bounded. 

4. RESULTS 
4.1.1 What is the added value of including text fea-
tures as input when predicting the correctness of 
question answering in reading tasks? 
Model performance was measured through precision, recall, and 
accuracy (see Table 4). Chance accuracy for this prediction task 
was 54%. The average training and validation accuracy difference 
for all models during cross validation is under 2%. 

Table 4. K-fold (k = 10) cross-validation results for each model 
as M (SD).  

Note. Sent. – Sentence, Complex. – Complexity 

The full Model yields the highest accuracy and precision. It also 
had relatively high recall, suggesting the Full Model performs well. 
The Base Model had high recall but the lowest precision and accu-
racy. Adding any one of sentence complexity, rare word use, or 
surprisal to the Base Model was associated with an increase in pre-
cision while maintaining similar recall, demonstrating the potential 
for text-based features to support model prediction. Adding sen-
tence embeddings to the Base Model resulted in the highest 
precision among all models except for the Full Model. However, it 
also had the lowest recall value. Thus, the model that included con-
text, as represented through embeddings, made the lowest number 
of errors in its predictions of answering a question correctly. How-
ever, it also had the most prediction errors for questions that 
students had answered incorrectly. 

The Full Model and Base + Context Model show significantly 
higher predictive accuracy than the Base Model (see Table 5). The 
performance of the remaining models did not show significant dif-
ferences from that of the Base Model. 

Model Precision Recall 
Accuracy 

(%) 
Base .665 (.012) .737 (.011) 65.8 (0.76) 

Base + Sent. Complex. .696 (.017) .751 (.015) 67.5 (1.17) 
Base + Context .713 (.014) .738 (.017) 68.7 (0.91) 

Base + Rare Word Use .704 (.009) .751 (.019) 68.1 (0.69) 
Base + Lexical Surprisal .691 (.014) .756 (.019) 67.6 (0.74) 

Full .715 (.016) .747 (.013) 69.8 (0.95) 



Since the full model and Base + Context Model both outperformed 
the Base Model, we compared these top-performing models to see 
whether one outperformed the other. While the difference is  

relatively small, the Full Model achieves higher performance than 
the Base + Context Model suggesting that representing many as-
pects of the text is important. 

 

4.1.2 Full Model Features 
We used integrated gradients to examine how much each text-based 
feature affected whether the model would predict that a student an-
swered a question correctly. In Figure 6, the y-axis shows the value 
of integrated gradients for each feature, with large values indicating 
the feature has a strong influence on the model’s prediction. A pos-
itive value indicates the feature contributes to predicting a question 
is answered correctly. Negative values mean the feature supports 
the prediction of incorrect student answers. 

The integrated gradient results for the Full Model show that an in-
crease in maximum sentence complexity and mean question 
complexity helps the Full Model predict when students will be 
more likely to incorrectly answer a question (Figure 6). In contrast, 
predicting when students will correctly answer a question is sup-
ported by an increase in maximum (max) sentence complexity. 
Contributions from all other features are low. 

 
Figure 6. Integrated gradient result for each feature from the 
Full Model. M – mean and SD - standard deviation 

4.1.3 Sentence Complexity Features 
Here we investigate how much the mean, standard deviation, and 
maximum values of sentence depth contributed to the prediction in 
the Base + Sentence Complexity Model.  

As can be seen in Figure 7, the integrated gradient results do not 
show substantial contributions from any of the features when they 
are used on their own. To see if this finding is due to invariability 
among different instances, we plotted the feature value distribution 
across all texts (Figure 8). As shown by the values for texts two, 

six, and eight, which are relatively high, a lack of  variability fails 
to account for the limited contribution of this feature. 

4.1.4 Lexical Surprisal Features 
Here we investigate how much the mean, standard deviation, and 
maximum values of lexical surprisal contributed to the prediction 
when the Base + Lexical Surprisal Model was used. The integrated 
gradients results show both the mean and maximum of lexical sur-
prisal contributed little to the prediction (Figure 9). Mean has a 
small positive impact while maximum has a small negative impact. 
Given the relatively small gradient, we checked variability across 
texts: Figure 10 shows that the mean lexical surprisal is relatively 
stable (its values range from .02 to .04) whereas the maximum lex-
ical surprisal values vary considerably (~.02 - .12). 

 
Figure 7. Integrated gradient result for each feature from the 
Base + Sentence Complexity model. M – mean and SD - stand-
ard deviation 

 
Figure 8. Maximum and mean sentence complexity values for 
each text. The band represents the area within one standard 
deviation of the mean.  

Table 5. Model comparisons using McNemar’s Test 

Model 1 Model 2 McNemar Test Statistic p 
Full Model Base Model 7.771 .025 
Base + Context Base Model 8.040 .024 
Base + Sentence Complexity Base Model 0.547 1 
Base + Vocabulary Rarity Base Model 2.972 .340 
Base + Lexical Surprisal Base Model 0.105 .746 
Full Model Base + Context 4.971 .026 

 



4.2 Error analysis 
We compare the models that use text features as input to the Base 
Model because the Base Model does not incorporate any text fea-
tures. Thus, it is not biased towards or against any of the readings 
or questions. By comparing model performance against that of the 
Base Model, we can see where a particular feature supports the task 
and where it performs poorly. 

Base + Rare Word Use Model performed especially poorly in 
Text 7 compared to the Base Model. Text 7 is an expository para-
graph containing scientific facts about snow colors. The rare word 
use feature of Text 7 has a high value of .550 where the average 
rare word use value across all texts (including Text 7) is .493. The 
most errors occur for question 30 in Text 7, which is an inference 
question where the answer is not explicitly stated in the text. 

Among the questions where the Base + Rare Word Use Model out-
performed the Base Model, Text 8 has the highest percentage of 
correct predictions. Questions 34 and 35 from Text 8 have a partic-
ularly high correct rate and rare word use rate. Both questions are 
non-inference questions. These differences in performance indicate 
that this model performs well in situations when the vocabulary is 
difficult and questions are direct. 

 
Figure 9. Integrated gradient result for each feature from the 
base + lexical surprisal model. M - mean and SD - standard de-
viation 

 
Figure 10. Mean and maximum lexical surprisal values for each 
text. The band represents the area within one standard devia-
tion from the mean 

Base + Sentence Complexity Model output differs in many places 
from that of the Base Model for Text 7. When comparing these two 
models on the Text 7 questions, we see that it is common for one 
of the models to correctly predict student performance when the 
other is incorrect. All three questions that belong to this text have 
high error rates in classification. The mean depth feature of this text 
is 10.3 whereas the average depth across all texts is 8.4. 

Base + Context Model predictions disagreed often with those of 
the Base Model for Text 11, questions 44, 45, and 48. Question 44 
and 45 are inference questions and question 48 uses a near synonym 
for a keyword from the text to assess comprehension. The Base + 
Context Model performed particularly well in Text 8, question 31 
and 34; the answers to these questions can be explicitly found in 
the text. This differential performance suggests that adding sen-
tence context information supports model performance when 
predicting student responses to non-inference questions. 

Full Model prediction errors come from questions 44 and 45 from 
Text 11 in most cases. These errors are similar to those made by the 
Base + Context Model, but the Full Model performs slightly better: 
the percentage of prediction errors decreased from 22.5% to 18.5% 
(question 44) and 19.3% to 16.9% (question 45). The Full Model 
performed particularly well on Text 4, question 14 and 16. Text 4 
is a relatively short narrative text containing sentences with simple 
structures, and the answer to both of the Text 4 questions is easy to 
find in the text. 

5. DISCUSSION 
To answer the research question, “What is the added value of in-
cluding text features as input when predicting the correctness of 
question answering in reading tasks?”, we trained and evaluated 
models using information about students’ oral language skills and 
features from the texts they were reading as input. The developed 
models were used to explore how these features supported the pre-
diction of student performance on reading-comprehension 
questions. The text-based features each provide a hidden represen-
tation of aspects of the text that were expected to affect reading 
comprehension. Individually, their inclusion does not appear to 
lead to strong model performance; however, their joint use supports 
prediction across a variety of text and question types.  

It appears that the strengths identified when adding some features 
compensate for the weaknesses associated with adding others. For 
example, sentence complexity performs poorly when the vocabu-
lary is challenging, which can be captured through the addition of 
the rare word use feature. Similarly, the context feature underper-
forms on inference questions, which seem to be better supported by 
the combined use of all features. Analyses of feature contributions 
to model performance (Section 5.1.2), and the error analysis (Sec-
tion 5.2) indicate that the features interact. The complicated nature 
of how features supported the prediction task suggests that text 
characteristics need to be treated in a nuanced manner if we are to 
understand children’s reading comprehension or develop learner 
models that can be used to adapt reading materials to children.  

5.1 Text-based Feature Contributions to Pre-
diction 
Each of the text features that we added appeared to improve model 
accuracy when they were used jointly (Full Model). The only text 
feature that supported improved model performance on its own was 
the sentence context feature that used sentence embeddings, and 
this model was outperformed by the Full Model that included sen-
tence context as one of its text-based features. Given the relatively 
high contribution of sentence complexity features to the Full Model 
and the low contribution of most other text-based features (as iden-
tified using integrated gradients - Section 5.1.2), the sentence 
context and other features likely augmented the information pro-
vided by the sentence complexity feature. 

The improved performance associated with adding sentence con-
text information may be the result of it implicitly capturing several 
aspects of the text. Universal sentence encoders, which were used 



to extract the sentence context feature, incorporate word order, sen-
tence meaning, and grammar into a single vector so they implicitly 
capture some aspects of sentence complexity and vocabulary. They 
also implicitly capture aspects of the content domain through their 
representation of the surrounding text. The support provided by 
adding the sentence context feature parallels Hirsch’s [28] findings 
on reading comprehension of elementary students. Hirsch found 
that a gap in reading comprehension appears (or is widened) when 
more advanced domains (e.g., math, science) are introduced. This 
effect of domain context was also found to be more influential when 
compared to differences in vocabulary size and decoding skills 
among students in elementary school. Our models accounted for 
the vocabulary knowledge (i.e., PPVT-M score) of children and 
added text-based features that represent the vocabulary knowledge 
needed to understand the texts (i.e., rare word use). This text-based 
feature only contributed to improved model performance when 
used in combination with sentence context. This lack of contribu-
tion by rare word use on its own suggests that Hirsh’s domain 
influence findings can be partly captured through the sentence con-
text feature.  

The sentence complexity of both the text and the question contrib-
uted substantially to predictions when sentence complexity was 
used alongside other features even though this feature did not im-
prove model performance when added to the Base Model by itself. 
This pattern suggests the sentence complexity of both the text and 
the question interacts with other features to produce meaningful 
predictions. That is, sentence structure by itself does not determine 
the difficulty students may experience when trying to understand a 
piece of text. This is consistent with our error analysis (Section 5.2) 
which identified high error rates for questions with low levels of 
rare word use and high levels of mean sentence complexity.  

The rare word use feature improved prediction task performance 
(section 5.1.1), which is consistent with the lexical quality hypoth-
esis [44]. Lexical quality is typically interpreted in relation to the 
role of high-quality word representations in reading comprehen-
sion; the flip side is that the presence of rare words will negatively 
impact reading comprehension because of their connection to the 
precision and flexibility of a mental representation of a word. Our 
rare word use feature provides a way to model the demands that a 
text will place on lexical quality, which will in turn be related to 
reading comprehension. That said, it seems that the most frequent 
prediction error emerged for inference questions accompanying a 
scientific information text with high levels of rare word use.  

One’s knowledge of vocabulary and exposure to language influ-
ence what one expects to see. Like with rare words, people can be 
surprised by the use of a relatively familiar word in an unexpected 
collocation or context [23]. The lexical surprisal feature was meant 
to capture this element of how we process language. In contrast to 
our expectations, the n-gram language model that we used to meas-
ure lexical surprisal did not appear to help predict performance on 
reading comprehension questions, either on its own or in combina-
tion with other text-based features. Its lack of contribution to 
predicting student correctness may be partly due to the limited di-
versity of content in the training corpus. For future work, the 
Corpus of Contemporary American English [9] is another publicly 
available dataset that could be used to model surprisal for children’s 
readings. Additionally, using other language modelling ap-
proaches, such as a PCFG [46] or recurrent neural network 
grammars [26], to obtain surprisal measures might yield more ac-
curate predictions since these language modelling approaches can 
output a more nuanced estimate of surprisal. It is also possible that 
rare word use and sentence context capture this aspect of language 

processing for the target text. This suggests a need for follow up 
work that can help to tease apart the contributions of these vocabu-
lary-related features. 

Like the Base + Context Model, the Full Model is also less accurate 
when predicting correctness for inference questions. This short-
coming is mitigated by the inclusion of other text-based features 
that supported the prediction task. The analysis of feature contribu-
tions to this model (see Section 5.1.2) shows that the features that 
supported the prediction of a correct student answer (the mean and 
standard deviation of sentence complexity in a text) were different 
from those used to inform the prediction of which questions would 
be answered incorrectly (the maximum sentence complexity in a 
text and the sentence complexity of the question). This finding par-
allels those of Perin and Lauterbach [45], who found that there was 
consistency in the features that predicted strong performance in stu-
dent writing and that different features predicted low student 
scores. The fact that none of the oral language skills captured 
through the individual knowledge and sub-skill measures supported 
the prediction of which questions a child would answer incorrectly 
suggests that Perin and Lauterbach’s argument for there being 
many ways to perform poorly and only a few to perform well might 
be extendable to reading comprehension. When combined with the 
ability of text-based features to predict lower performance, this 
finding suggests text-based measures are needed to fully capture 
information about the reading-comprehension challenges that chil-
dren face.  

5.2 Implications for Understanding Reading 
In addition to needing text-based features to predict when students 
will incorrectly answer a question, the error analyses showed that 
different text-based features were useful for predicting answer cor-
rectness for each type of reading comprehension task (inference, 
retrieval from text). This finding implies that we need to consider 
different features of a text when trying to understand children’s in-
ferencing abilities or their ability to identify the content that is 
relevant to a question. 

Beyond demonstrating the potential utility of these text-based fea-
tures for predicting student answers to reading comprehension 
questions, these models and the approaches used can provide in-
sight into the text-related challenges that affect students’ reading 
comprehension based on their knowledge levels. Among these are 
the vocabulary used and whether its use matches that expected by 
a child based on their exposure to the language. It was expected that 
surprisal would support this prediction task since it has been pre-
dictive of reading times in some studies [46]. However, surprisal 
contributed little to model prediction, suggesting a need to further 
study the role of surprisal in children’s processing.    

The different contributions of features to the prediction task (see 
Figure 6), suggest that the sentence context feature augments infor-
mation provided by the sentence complexity feature. Students 
tended to have poor comprehension when there was even just one 
very complex sentence, and higher mean sentence complexity 
showed less effect on the prediction result. This indicates that chil-
dren’s ability to answer a reading comprehension question is less 
affected when the sentences are more complex overall, compared 
to having a particularly complex sentence. The specific contribu-
tions of the mean, standard deviation, and maximum values of this 
characteristic of the text imply that all three measures should be 
used to better understand student reading abilities in relation to a 
text. Including the maximum sentence complexity helps to under-
stand when students answer a question incorrectly and the mean 
and standard deviation help to understand when a question is 



answered correctly. Combined, these provide a more robust view 
of how learners comprehend text.  

5.3 Implications for Learner Modelling and 
Adaptation 
As reported in our results, adding the sentence context feature to 
the Base Model supported better predictions of correct responses to 
a comprehension question. The sentence context feature also pro-
duced a better performing model when combined with the other 
text-based features. The underperformance of the Base + Context 
Model relative to the Full Model may be due to embeddings not 
having explicit representations of sentence complexity and lexical 
surprisal. The Base + Context Model’s lack of explicit representa-
tion of these specific linguistic traits may be why our Full Model 
had the best performance. 

The performance of the Full Model suggests that we can augment 
the learner modelling and adaptation process in educational tech-
nologies by using features that are automatically extractable from 
texts. This implication is further supported by the performance of 
the Base + Context model. The sentence context feature relies on a 
heavily data-driven approach to support prediction for non-infer-
ence questions that share a similar context with the text. Since the 
addition did not support the ability to distinguish student perfor-
mance on inference questions, additional mechanisms will need to 
be found to support prediction for inference-based questions, which 
are usually harder for students to answer than non-inference ques-
tions [48]. In our case, the inclusion of multiple text-based features, 
specifically rare word use, helped mitigate the limitations of the 
context feature when inference-based questions were being pre-
dicted. So, this strategy can be used until a more powerful feature 
is found. 

As suggested by the insights gleaned from the sentence complexity 
measures, these features should be included to better identify which 
questions might be within a student’s abilities and which might not. 
This suggestion builds on Scott’s findings from a study investigat-
ing sentence comprehension [47]. In both Scott’s and our setting, 
measures of sentence complexity were more effective in prediction 
within the context of a specific domain. This may also suggest the 
benefit of including our sentence context features as they could re-
inforce domain information while also providing some information 
about sentence complexity and vocabulary use. 

It is worth noting that, as part of the nature of all universal encoder 
models, the generated embedding is less interpretable by people 
even though it provides an effective representation of the text for 
predicting comprehension performance. This means more effort is 
required to evaluate how much specific features of the text affect 
the prediction task. Given the enhanced performance that is associ-
ated with the use of these embeddings, this effort is warranted when 
developing models for supporting the adaptive selection of texts 
and questions in an educational technology.   

6. CONCLUSION 
Student performance on reading comprehension tasks is often pre-
dicted using assessments of oral language skills, such as vocabulary 
knowledge or syntactic awareness. We extend this work by captur-
ing features of text, which are rarely used in the prediction process 
despite an understanding that the characteristics of a text influence 
the ability to understand that text. In the present paper, we report 

 
2 https://github.com/EdTeKLA/ComprehensionScorePredictor 

on data from grade 3 students to develop and test our prediction 
model. We test automated methods for extracting and incorporating 
text-based features from the content of a reading test to help predict 
whether a student will answer a reading comprehension question 
correctly.  

The extracted text-based features were selected based on theories 
or evidence supporting their relationship with reading comprehen-
sion. Thus, they were designed to provide information about some 
of the aspects of a text that are expected to interact with children’s 
oral language skills. Specifically, the selected features represent 
sentence complexity, vocabulary frequency, lexical surprisal, and 
context. They were all extracted using natural language processing 
techniques that include n-grams, a probabilistic context-free gram-
mar, and a universal sentence encoder. 

We used these features as inputs to neural networks that can self-
update when given more student data or new texts are added. This 
mitigates the disadvantage where models with no texted-based fea-
tures have to be retrained fully every time a test is updated. Our 
model is also expected to better handle diversity across reading 
comprehension tests and student reading skill levels because it re-
lies on general features of a text rather than solely relying on 
historical records of student performance. Since our model has 
clear separation between different categories of features at the input 
layer, new features and new data can be easily added which offers 
a starting point to identify what additional training might help im-
prove student reading skills. To support the continued study of the 
role that text features play in reading comprehension, we have  
shared our approach to interpreting and analyzing the model (in 
section 5.4 and through GitHub2). This sharing will allow others to 
apply this approach to another test or population of learners.  

To summarize, we extracted and tested text-based features at the 
word and sentence level to examine their impact on the reading 
comprehension of children. Those features were used as input to a 
model that predicts student performance on reading comprehension 
tests at the question level. Analyses of the tested models show that 
one of the employed text-based features (e.g., sentence context) im-
proved model performance on its own while others did not (e.g., 
sentence complexity and lexical surprisal). The joint use of the text-
based features resulted in a more than 4 % gain. Subsequent error 
analysis suggests each of these text-based features represents an 
important characteristic of the text, with their combined use result-
ing in the best performing model. Exploration of how these text-
based features contributed to model performance provided insight 
into the complex relationships between text features and children’s 
reading comprehension performance. Thus, the models and their 
analysis can support the design of better learning systems, the se-
lection of appropriate reading materials, and increased 
understanding of the multi-faceted nature of student reading com-
prehension. 
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