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Great Progress on Al-driven Support to Problem
Solving

[DuBulay, Mitrovic, Yacef; Handbook of Al in Education 2023]
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Beyond Problem Solving

0 Exploratory Learning Environments (ELES) that support active
learning via student-driven exploration

Educational Games
and Simulations
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Crystal Island: Game-Based Learning
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A workman pulls a 50kg. block
along the floor. He pulls it with a
magnitude of 120N, applied at an
angle of 25° CCW from the
horizontal. What is the magnitude
of the normal force on the block?

25 ° [ ]

A person pulls a 9kg crate up a ramp
inclined 30° CCW from the horizontal. The
pulling force is applied at an angle of 30°
CCW from the horizontal, with a magnitude
of 100N. Find the magnitude of the normal
force exerted on the crate.

We answer this question using Newton’s
Second Law.

We choose the crate as the body.

A normal force acts on the crate.

It’s oriented 120° CCW from the

horizontal
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https://drive.google.com/file/d/0Byq6INjtr2t9SFZaQ0ttdDZTeW8/view?ts=5a717315

An Example

@L@@@@

o AlSpace (Amershi et al., 2007)

- Suite of interactive simulations of common Artificial
Intelligence algorithms

- Used regularly in our Al courses
- Google “AlSpace” if you want to try it out

0 CSP (Constraint Satisfaction Problems)
Applet

- visualizes the working of the AC3 algorithm
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The ACSP applet

£| CSP Applet Version 4,611 --- s1xml

File Edit View CSP Options Help
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Al-driven Support in ELE

2 Not all students learn well from exploratory activities
[e.g.,Van Joolingen et al., 2007]

- Important to provide support for those students who need help.
- While maintaining student initiative and engagement

a Challenge: No clear definition of correct/effective

¥

behaviors

what behaviors should drive personalized support?

how to provide such support effectively and unobtrusively?



FUMA for Data-Driven Personalization

a2 FUMA (Framework for User Modeling and Adaptation)
- First version proposed by Amershi and Conati 2009 (ToT Award 2022)
- Learn from data what user behaviors should trigger personalized help
- Recognize and react to these behaviors in real-time during interaction

0 Evaluated in several ELEs Four MOOCS [Lallé et al., AIED 2020]
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Overview

0 Overview of FUMA and initial results with the
CSP applet

a Extension to other data and environments
- Challenges and lessons learned

2 What's next?



FUMA

[Amershi and Conati 2009, Kardan and Conati 2011, 2015]

Behavior Discovery

Actions Logs Groups together
Other Data students that have

similar interaction

Extract rules describing
distinguishing interaction
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Test Bed - CSP Applet

[Amershi and Conati 2009, Kardan and Conati 2011, 2015]
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Behavior Discovery

Feature
vectors

Clustering Rule Mining

» Dataset: 70
* 64 subjects, 13,000+ actions, 17+ hour 60 -
« 7 types of actions - 21 features 59 7
« Action frequency 40
« Time between actions (Mean and SD) 22

* Found two clusters with different learning o,

* lower learning (LL) and higher learning (HL) o
Proportional LG (%)

m HL
mll

« Sample Rules

HL members:
Use Direct Arc Click action frequently (R1).

LL members:
Use Direct Arc Click sparsely (R3)
Leave little time between a Direct Arc Click and the next action (R2)



From Behavior Patterns to Hints

Inte(r:\; e;;tion Intervention Description
DAC fr Using Direct Arc Click more often
DAC PA Spending more time after performing Direct Arc Clicks
Reset fr Using Reset less frequently
AAC fr Using Auto Arc-consistency less frequently
DS fr Using Domain Splitting less frequently (only when
- appropriate)
FS PA Spending more time after performing Fine Steps
BT fr Using Back Track less frequently (only when appropriate)
FS fr Using Fine Step less frequently
Reset PA Spending more time after performing after resetting for

planning

Table 2. Description of hints




Classifier Evaluation on CSP Applet

[Kardan and Conati 2012] Ascociation
m Rules Mining
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Average Overtime Accuracy
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Providing Personalized Support

(Kardan and Conati CHI 2015)
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Incremental Hints: Level 1

Classifier User Model detects a Low Learner that
o Uses Direct Arc Click sparsely (R3)

Did wou knowe wou can tell AC-3 which arc

thecause of arc (D, A=D)

to make consistent by clicking on that arc?

Hide Highlights Close Hint

A=D




Incremental Hints: level 2

4l

chkirack

Arc (D, not(E=0O) ) is consistent

E=A

As | suggested earlier, you can choose
which arcto make consistent next by

clicking on it.

This way, you can get moare involved in
applying the AC3 algorithim.

| have highlighted the felevant arcs|for you.

Hide highlichts | | |24 Close Hint

A=D

not{E=0)




How to Delivet the Hints Effectively?




Evaluation

(Kardan and Conati CHI 2015)

a User study :
- Two groups of 18 students worked with the CSP applet
- One group with personalized hints, and one without

a Students in the ACSP group learned more

60.00-

Learning
Gains

40.00-

20.007 ——

No Hints Hints



Learning Gain: PreTestxCondition
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Results: Acceptance of Interventions

Average Hint Follow Rate (%)

~
92

73.33%

~
o

)]
92

62.96%

o)}
o

Follow Rate (%)

9
92

u
o

Level-1 Level-2



Overview

o Overview of FUMA and initial results with ACSP

applet jamershi and Conati 2009, Kardan and Conati 2012, 2015]

0 Extensions to
- multimodal data
- More complex OELEs

0 What's next?



Experimenting With Multimodal Data

Actions Logs . -
We tried with the CSP applet
[Kardan and Conati UMAP 2013]

Vector of

Interaction
Features

Behavior Discovery

User Classification

New .
Ve Adaptive

: Interventions
Actions




User Study to Collect Gaze Data

* 45 participants
» Tobii T120 eye tracker to

Bcse ion 4.6.1.1 — simple2.xml
File Edit View CSP Options Help
capture user gaze [d] = @ a e

nnnnn




Eye-tracking measures

A
\{y7/1 Fixation
2 Saccade
>
General Measures Measures specific to Areas of
Number of Fixations Interest (AOI)

Fixation rate

Fixation Duration

Saccade Length (d)

Relative Saccade Angles (y)
Absolute Saccade Angles (x)



Areas Of Interest
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Eye-tracking measures

\(;._7

N

Fixation

Saccade

>
General Measures Measures specific to Areas of
« Number of Fixations Interest (AQI)
. F!xat!on rate « Proportional number of fixations
* Fixation Duration * Proportional time spent
e Saccade Length (d)  Time to first fixation

* Relative Saccade Angles (y)
* Absolute Saccade Angles (x)

Transitions between two AOls

51 features based on summary statistics
(e.g. mean, st.dev.) of these measures



Apply FUMA to Action and Gaze Data

Average Overtime Accuracy

4 /\
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M Eye
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Merging Action and Gaze Data

[Kardan and Conati 2013)]
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O Action + Gaze classifier achieves 80% classification
accuracy over both classes after seeing 22% of the data




Multimodal Data: Lessons Learned

2 Combining action and gaze data increases classification
accuracy

0 But the associations rules from these multimodal clusters
are harder to turn into actionable hints

U They may include features such as average saccade angles or
fixation rate

Q Solutions to investigate

0 Use multimodal data for classification/user modeling, but only
action features to build hints

U Use only higher-level gaze features (E.g. transitions between AOI)
4 Other?

a More future work:

U investigate the tradeoff between classification accuracy and rule
interpretability with other multimodal data



Overview

o Overview of FUMA and initial results with ACSP

applet jamershi and Conati 2009, Kardan and Conati 2012, 2015]

0 Extensions to
- Multimodal data
- More complex OELEs

0 What's next?



PhET DC Circuit Construction Kit (CCK)

0 Part of large suite of simulations developed of U. of Colorado

O Allows students to explore building electrical circuits

00 @ Circuit Construction Kit (DC Only) (3.20)
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Interaction Demo




Complex Interaction

25 actions, eg:

a On circuit elements

Add
Move
Remove
Join

0 Measurement

Voltage
Current

0O On Interface

Simulation
settings

Window

Wire
amD
Resistor

Batte

-
Light Bulb

-2

o

=xd

Switcl

-

[ ]
m

—
Ammeter

22 components, eg:

i Context-dependent
— Basic circuit outcomes
elements * Light intensity
— Measurement change
tools » Current change
 Fire
r Tools « Measurement
7| Valtmeter fi\ Reading change
7| Ammeter(s) t e None
7 Mon-Contact [ "7 '
Ammeter =

Many ways to interact

Context plays an important role

» Different outcomes depending on the state
of the circuit



File

Options

Help

Circuit Construction Kit (DC Only) (3.20)

Grab Bag
el

[ ]
Wire

Resistor

Visual

(e) Lifelike () Schematic

[ | Show Values

Tools

™ Voltmeter /i\
@ Ammeter(s) :f__i-

@ Non-Contact
Ammeter

Size

() large
(e) Medium
) Small




Layered Representation to Capture Complex
Interaction with FUMA

[Fratamico at al. AIED 2015, JAIED 2017]
4 layers:

2 Actions (A), Components (C), Outcomes (O)
- from logs

2 Families (F): engineered

- Abstract actions into 8 more general activities that
students can perform in CCK, e.g.

» Build (add, changeResistance, join)
» Revise (changeResistance, join, split, remove)

» Test (startMeasure, endMeasure, traceMeasure)



Representing the User Interaction

a Different combinations of the 4 layers represent interaction-
events at different granularities, e.g.:
- All 4 layers (OFAC)
» current_change.revise.join.wire

» Student generated a current change while revising the circuit by
joining two wires

- Outcome, Action, Component: (OAC)
» current_change.join.wire
» Does not include high level information on family

0 Tested FUMA on 11 of these combinations, based on
- Quality of the derived clusters

- Classification accuracy
- Usefulness of the generated association rules for adaptive interventions



FUMA

Behavior
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User Study

Data collected from a lab study with CCK

1 96 UBC students taking a first year physics
course

2 Were given a general learning goal.

- Explore how resistors affect the behavior of circuits
by exploring different combinations of resistors and
resistances

1 Collected pre and post test data



Quality of Clusters

0 3 of the 11 feature sets generated clusters (2)
with significant difference in learning gains

Family.Action.Component (FAC) .041

Outcome.Action.Componenet (OAC) .076

Outcome.Family.Action.Component (OFAC) | .065

OAC achieves the best cluster quality in
term of highest difference in learning gains



Classification Accuracy

90

3

)

g @amm» OFAC f

O

< e FAC
s OA(

10 30 40 50 60 70 80 90 100
Percent of Interaction Observed

a OAC is the best classifier

- Achieves 70% accuracy after seeing 20% of interaction data (™ 5 min)
- OFAC gets there after seing 50% of the data



Generated Association Rules

2 All features sets identified 4 general behavior patterns that
instructors confirmed to impact learning with CCK

- test frequently
- frequently change resistance of resistors
- pause to reflect in between actions
- limit the usage of light bulbs and changes to their light
iIntensity
1 OFAC generated more specific rules (22)
- Against the 15 generated by OAC

0 Better suited to provide incremental feedback, e.g.
- Start at the “"Family” level; (e.g. “Test more”)
- Incrementally go into more detail on how to do it



Summary of Results

1 OAC best for classification accuracy, specifically
for providing timely hints

1 OFAC best for usefulness of the generated
association rules
- can provide richer hints

2 Need to empirically explore tradeoff between
there two factors

2 Investigate if this tradeoff exist with other complex
ELEs



FUMA: Evaluated in several ELES

PHET Circuit Construction Kit (CCK) Four MOOCs Laléetal, 2020,

Kardan et al., 2014, Fratamico et al., 2017;
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Unlty'CT e %

Collaboration with UME Academy:

« Use the popular Unity game engine to teach Computational Thinking
(CT) skills to K-12 kids

 Free-form
Interaction to create
small games

https.//7ume.academy
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Unity-CT e

Collaboration with UME Academy:

« Use the popular Unity game engine to teach Computational Thinking
(CT) skills to K-12 kids

 Free-form
Interaction to create
small games

https.//7ume.academy
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Unity-CT @

Collaboration with UME Academy: ACADEMY

» Use the popular Unity game engine to teach Computational Thinking
(CT) skills to K-12 kids

* Classes facilitated
by a UME instructor

« Can we have Al
agents that helps
with this facilitation?

https.//7ume.academy
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FUMA for Unity CT [Lalle et al LAK 2021]
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Current Work

» Designing the delivery of adaptive support, with UME
UX expert and instructors

* For instance, what to do about repeated hints (Yalcin et
al. lUl1 2022, AIED 2023)

Look out! Your changes will
not be saved because you
are in Play Mode.

Remember, editing in Play
Mode will cause you to lose
your changes. To avoid this

WHAT CAN I DO?
problem, exit play mode.

|5 I M

{Play]

2 p ¢
Exit play mode so that you
wont lose your future
changes.




Explaining FUMA Hints

[Conati et al., Al Journal 2021]

4 ® R i Gl A At e e e
i : =2 the oraph arc-consistent,
» TE[E’Iease consider other options available in the applet.
FUMA-driven hints

o= shown to improve

e N o S student learning

I O ot [Kardan and Conati, CHI 2015]
Adaptive CSP (ACSP)

Evidence that these hints are more effective if the
system can explain why and how they were generated

And that hint explanations may be even more effective if
they are personalized to specific student characteristic

™



Conclusions

a2 FUMA: data-driven framework for user modeling and
personalization to support learning with ELEs

0 Evaluation with several ELEs show that FUMA can

- ldentify clusters with behaviors representative of student
performance

- Classify student performance with good accuracy, early enough to
generate help when needed

- Drive the design of personalized help from the detected behaviors
2 Initial evidence that FUMA-driven interventions can help

learning
- And that their effectiveness can be improved with explanations



Future Work

a Apply FUMA to other OLEs
a Experiment with multimodal data
a More evidence that FUMA-driven hints foster learning

d These hints are shallow.

- How do they compare against richer, knowledge-based
hints?

0 Consider student affect for hint provision
0 Look at collaborative activities

2 Continue investigating the value of personalized
explanations of FUMA-driven hints
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