Facets of Fairness and Transparency in Student Learning Analytics From Accuracy to Actionability and Accountability

prof. dr. Mykola Pechenizkiy

http://www.win.tue.nl/~mpechen/

Test of Time Award for "*Predicting Student Drop Out. A case study*." by Gerben Dekker, Mykola Pechenizkiy, Jan Vleeshouwers

EDM 2019, Montreal, 4 July 2019

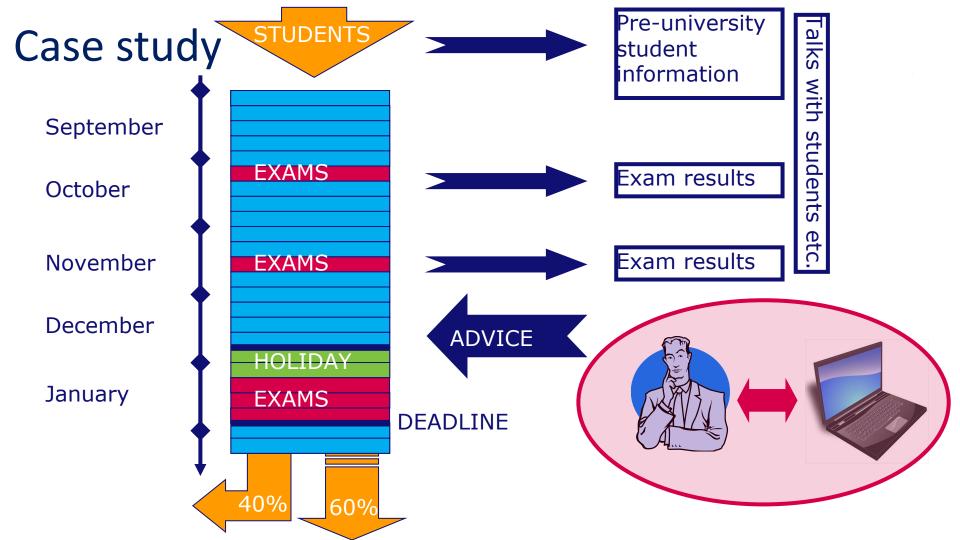
ToT award: strong correlations

- IEDMS President -> ToT award (2018 & 2019)
- ToT award (2017) -> IEDMS President

as we know correlation does not imply causation

Outline

Automation of decision making with AI by humans => by machines student drop out prediction case study (Un)Fairness of ML / AI: AI technology is not neutral lots of ongoing research to fix it Transparency of ML / AI: comprehension, correctness & trust, utility **Challenges and outlook**



Pre-university data only

One rule classifier on "Science_mean"

• 68% accuracy

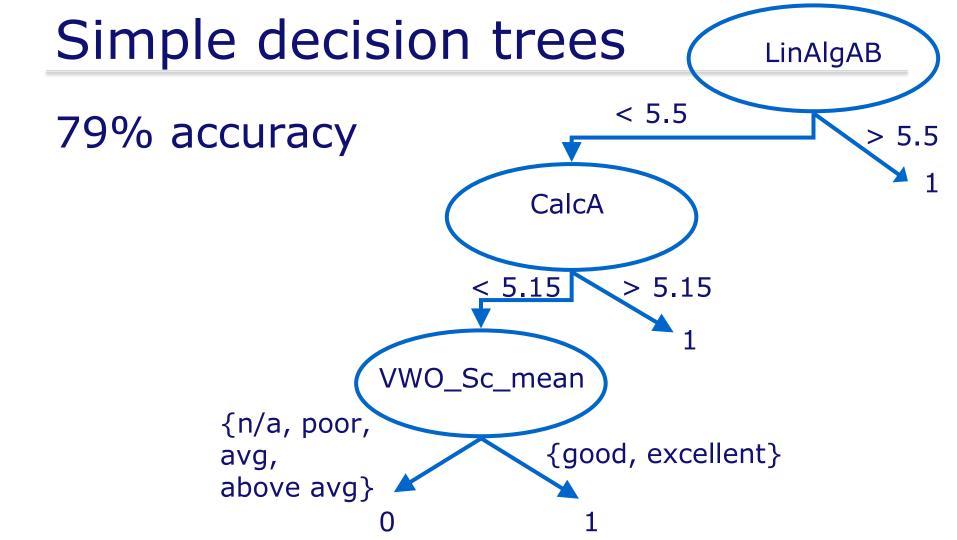
No significant improvement using more features with other classification techniques

cf. "...demographic data (such as race, gender, etc.) and pre-admission data (such as high school academics, entrance exam scores, etc.) - upon which most admissions processes are predicated - are not nearly as useful as early college performance/transcript data for these predictions. " Mining University Registrar Records to Predict First-Year Undergraduate Attrition, Aulck et al, EDM 2019

All features

One rule classifier

- 75% accuracy using "Linear algebra"
 Decision trees and other classifiers
- 80%; 40-50% FPs
- Similarities between models
 - Linear Algebra AB always root node
 - Science Mean always high in tree



Detailed analysis by student counselor

- Review of the problem formulation
 - actionability / utility
- Review of data inconsistenties
 - Semantics of grades/other features across years
- Review the classification measure:

– How to classify strong students who leave?

- Manual inspection of classification errors
 - 25% of False Negatives were True Negatives

Summary of the highlights

- Went beyond looking at model accuracies
- Detailed analysis by domain expert student counselor
- Tried to understand the data generation process
- Questions the utility , considered how the model could (not) be used in practice

R&D focused on accuracy and efficiency

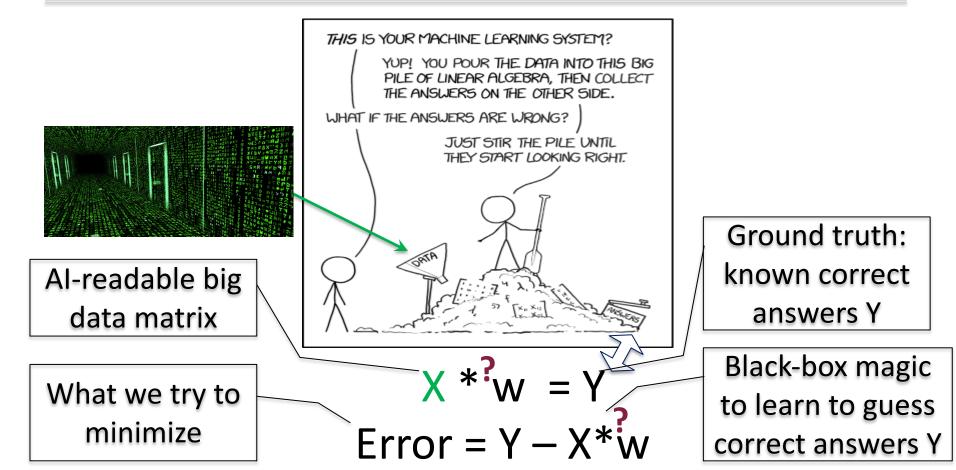
More complex and expressive models

ensembles and deep neural networks

- Support for handling 5V's of Big Data
 - more data, data types & operational settings
- More robust models
 - handling anomalies & changes in evolving data

"Anything you can do, AI can do better"

Predictive analytics as optimization

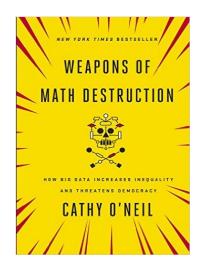


What are we optimizing for?

"I want everything I touch to turn to gold"

Do we really know what we are optimizing for with ML/AI? Side effects?

Dangers of blind optimizing for KPIs



- Education ecosystem
- Academic/research ecosystem
- Police and justice

Things can go wrong despite of good intentions behind the set KPIs

Reflection: Predictive analytics that works!?

- "Anything you can do, AI can do better" "All models are wrong, but some are useful"
- If not 100% accurate then there are trade-offs:
- Well formulated and well studied:
 - precision-recall; bias-variance; robustness-sensitivity;
- (not so) well formulated, and not so well studied:
 - accuracy-fairness, acc.-privacy, acc.-transparency, ...

Model comprehension is needed / required

Auditing model performance for biases in prediction-based decisions

Detecting, measuring and preventing unfair / discriminating decision making or profiling

Non-uniform accuracy Error_{males} << Error_{females} Favoritism in making decisions: P(+ | male) – P(+ | female)

#GenderShades: Facial Recognition Is Accurate

Gender Classifier	Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark (2017)		
Microsoft	93.7%	O DELA E ALLE PEALE ALLE	FENALE MALE
FACE**	90.0%	Pilot Parliaments Bench	ımark
IBM	87.9%		

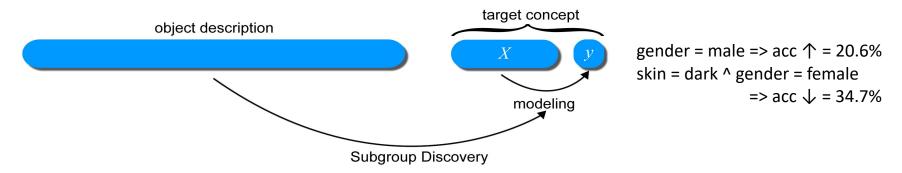
... if You're a White Guy

- 8.1% 20.6% worse performance on female faces
- 11.8% 19.2% worse performance on darker faces
- 20.8% 34.7% worse performance on darker female faces

#GenderShades; http://gendershades.org/

How about #GenderShades automation?

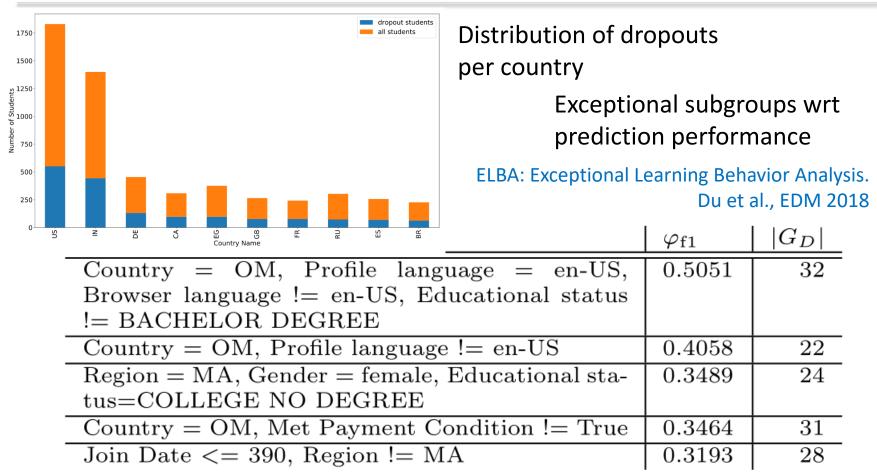
Find subgroups on which a classifier performs exceptionally well or exceptionally poor



Exceptional model mining (EMM) approach for finding subgroups for which soft classifier outputs align exceptionally well or bad wrt ground truth

W. Duivesteijn, J. Thaele: Understanding Where Your Classifier Does (Not) Work - the SCaPE Model Class for EMM, ICDM 2014

EMM on dropout prediction



Auditing model performance for biases in prediction-based decisions

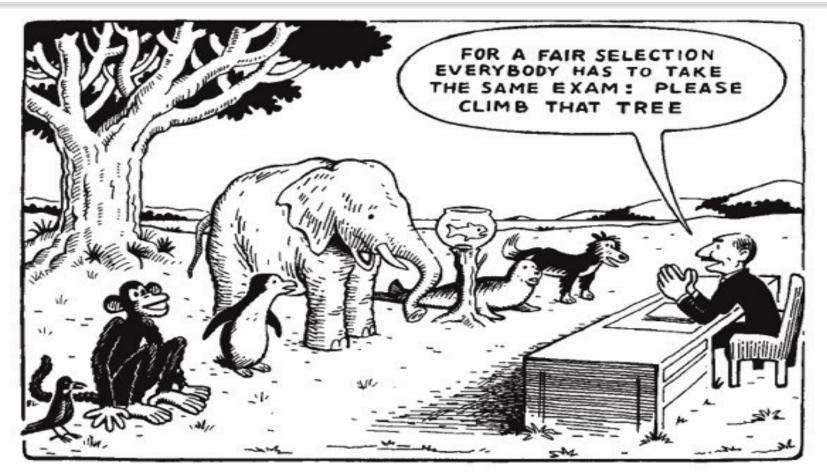
Detecting, measuring and preventing unfair / discriminating decision making or profiling

Non-uniform accuracy

Error_{males} << Error_{females}

Favoritism in making decisions: P(+ | male) – P(+ | female)

Different notions of quality and fairness



Facets of algorithmic fairness

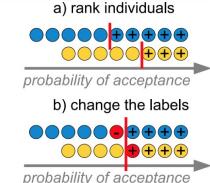
- Defining and measuring fairness
 - Achieving parity or satisfying preferences?
 - Focus on fair *treatment* or on fair *impact*?
 - Individual or group level
 - 20+ measures of fairness;
- Discovering and preventing unfairness (by design)
 - Theory, methods, experiments
 - Lots of new data mining techniques for discriminationaware classification, regression, recommendation, ...

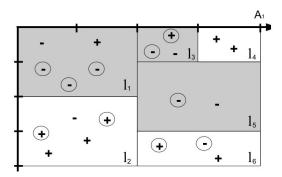
Early fairness-aware solutions

- Remove sensitive attributes?
- Preprocessing "data massaging"
 - Modify input data (labels)
 - Resample input data
- Constraint learning
 - Algorithm-specific,
 e.g. Bayesian, SVMs
- Postprocessing
 - Modify models and/or their outputs

Kamiran, F., Calders, T. & Pechenizkiy, M. (2013)

"Techniques for Discrimination-Free Predictive Models", In Discrimination and Privacy in the Information Society





Current Fairness-aware research

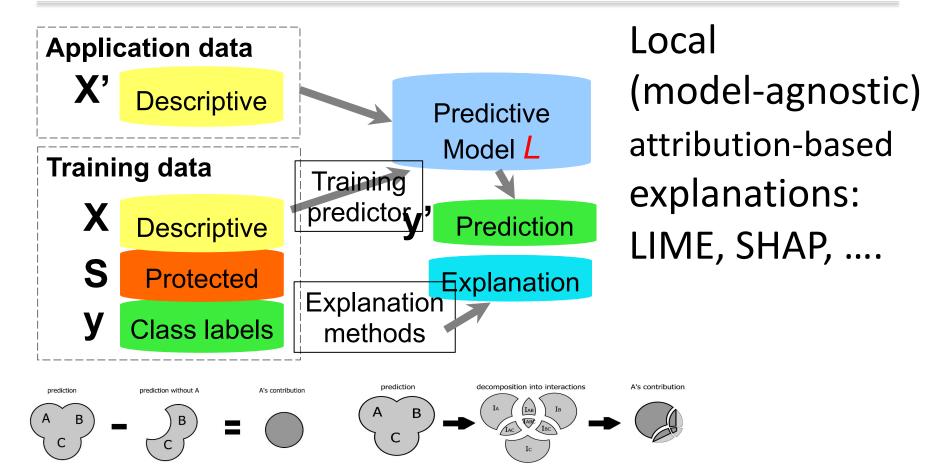
Spreading beyond classification: regression, ranking, cake-cutting, PCA

More attention to counterfactual reasoning Connections to social sciences, law, mathematical finance

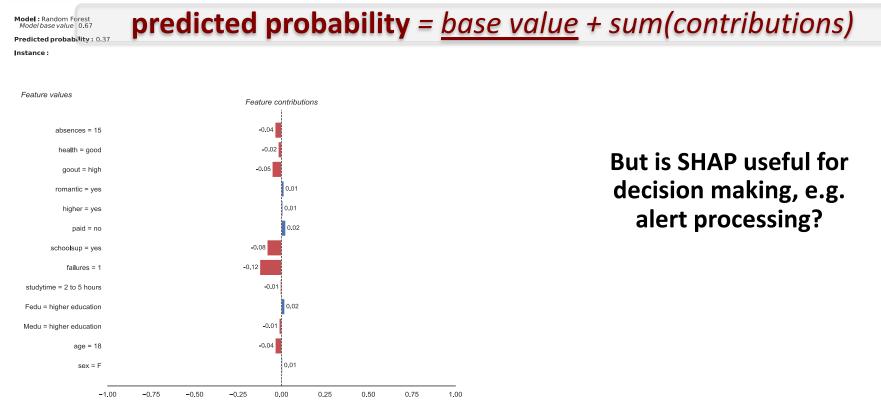
Picked in EDM-related research:

- A History of Quantitative Fairness in Testing, Hutchinson, FAT 2019
- Evaluating Fairness and Generalizability in Models: Predicting On-Time Graduation from College Applications Hutt et al., EDM 2019
- Evaluating the Fairness of Predictive Student Models Through Slicing Analysis , Gardner et al., LAK 2019

Automation of explanations



Shapley Additive Explanations (SHAP)



Weerts, H.J.P., van Ipenburg, W. & Pechenizkiy, M. (2019) *A Human-Grounded Evaluation of SHAP for Alert Processing*, In Explainable AI @ KDD 2019, abs/1907.03324

The Student Performance Dataset

- The dataset contains information on student performance in mathematics from two Portuguese high schools.
- The classification task is to determine whether a student will pass mathematics or not:
 - Positive class: passed mathematics
 - Negative class: failed mathematics

Weerts, H.J.P., van Ipenburg, W. & Pechenizkiy, M. (2019) *A Human-Grounded Evaluation of SHAP for Alert Processing*, In Explainable AI @ KDD 2019, abs/1907.03324

User Experiment: utility of SHAP values

- Real humans perform simplified alert processing tasks
- 2 experiments, 3 sessions, 159 participants in total

1 Quantitative Analysis

Statistical hypothesis testing of **utility metrics**

Result

Inconclusive: no significant difference in task utility

2 Qualitative Analysis

Analyze participants' written reflections and reasoning

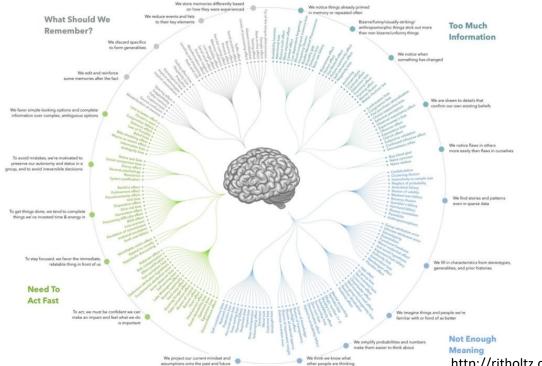
Results

- Large SHAP values impact decision-making
 process
- Model's **confidence score** is one of the leading sources of evidence

Weerts, H.J.P., van Ipenburg, W. & Pechenizkiy, M. (2019) *A Human-Grounded Evaluation of SHAP for Alert Processing*, In Explainable AI @ KDD 2019, abs/1907.03324

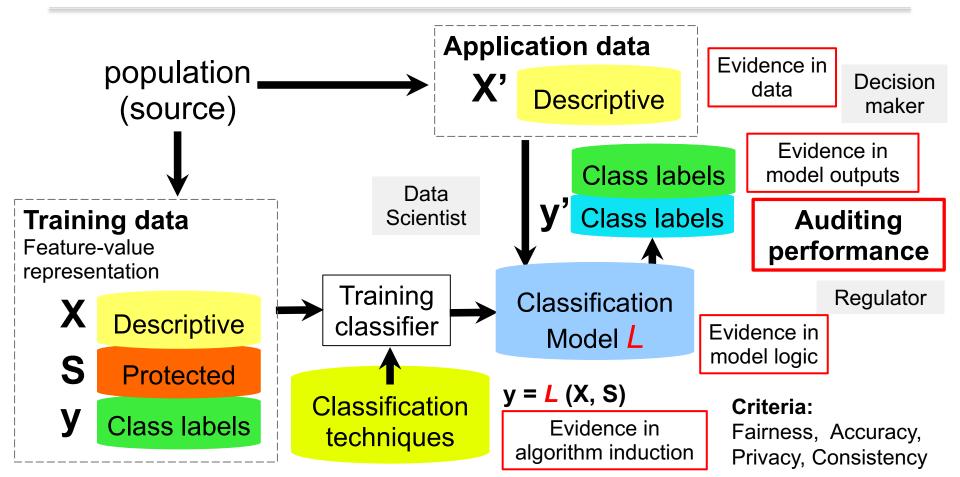
Wrong explanations vs. wrong interpretation of correct explanations

COGNITIVE BIAS CODEX, 2016



http://ritholtz.com/2016/09/cognitive-bias-codex/

Auditing Algorithmic Decision Making



Challenges and Outlook

- Better understanding of the real-world problems we try to address
 - Computer scientists: reductionist approach to optimization
 - Educators and policy-makers: but ignore operationalization
- Better understanding of the *trade-offs*, e.g. *personalization-discrimination*
- Better tooling for ML model debugging, profiling, certification, and data-driven decision making: *trust*, *transparency*, *reliability*
- Educating data scientists, the general public, regulators, and policy-makers

Take home food for thought

- Can we bridge the predictive vs. causal gaps?
 Why does this model give this answer?
- Can we achieve ML fairness without ML transparency?

– Or is fairness just another KPI as accuracy?

• Can we certify ML models without looking into data they were trained on?