Leveraging KOALA for Programming Data Collection:
A Half-Day Tutorial for Research Application

Daniil Karol, llya Vlasov, Katsiaryna Dzialets, Anna Potriasaeva, Anastasiia Birillo
JetBrains Research

{daniil.karol, ilya.vlasov, katsiaryna.dzialets, anna.potriasaeva, anastasia.birillo}@jetbrains.com

ABSTRACT

In the context of teaching programming, it is crucial for edu-
cators to have access to data regarding the learners’ behavior
within coding tools. Such data provides valuable insights
into how students approach problem-solving and develop
their programming skills, enabling improvements to teach-
ing practices. Moreover, it plays a critical role in conduct-
ing research experiments, testing prototypes, and validating
new ideas, providing a foundation for advancing educational
tools and methods. However, many existing tools tend to be
limited in terms of configurability and the types of data that
can be collected, often presenting a significant barrier to en-
try for educators. In order to address these challenges, the
KOALA tool was developed as a robust and configurable
solution for collecting programming data within JetBrains
integrated development environments (IDEs) developed by
JetBrains. The aim of this tutorial is to present the KOALA
tool, a plugin compatible with all JetBrains IDEs. This tool
is designed to facilitate the collection of detailed student
interaction data during the task-solving process, including
step-by-step code changes and IDE events. Furthermore, it
provides the capability to control and customize IDE set-
tings, such as disabling features like auto-completion, en-
abling researchers to create controlled experimental environ-
ments tailored to specific studies. The tutorial will provide a
practical demonstration of the tool’s capabilities by utilizing
it in an in-IDE programming course.

Keywords
programming education, in-IDE learning, activity tracking,
code tracking

1. INTRODUCTION

The collection of programming data within development en-
vironments has recently become increasingly significant [4,
3]. Such data serves a variety of purposes, including im-
proving development tools [14], analyzing user behavior and
interactions with system features [11], and advancing pro-

Daniil Karol, Ilya Vlasov, Katsiaryna Dzialets, Anna Potriasaeva, and
Anastasiia Birillo. Leveraging KOALA for Programming Data Col-
lection: A Half-Day Tutorial for Research Application. In Caitlin
Mills, Giora Alexandron, Davide Taibi, Giosu¢ Lo Bosco, and Luc
Paquette (eds.) Proceedings of the 18th International Conference on
Educational Data Mining, Palermo, Italy, July, 2025, pp. 712-715.
International Educational Data Mining Society (2025).

© 2025 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.15870316

712

gramming education [8]. In educational contexts, data col-
lection enables researchers and educators to explore how
students approach problem-solving tasks, how they interact
with programming tools, and how their programming skills
develop over time. These insights are critical for improving
programming education and creating better learning expe-
riences.

While tools and datasets for collecting programming data in
educational contexts are becoming increasingly available [12,
7, 3], significant gaps and limitations remain. Existing tools
often lack flexibility in their configuration, making it diffi-
cult to customize the learning environment or track specific
types of student behavior during experiments. For example,
they may not allow educators to adjust settings such as code
completion, syntax checking, or collection granularity.

To address these challenges, the KOALA tool [6] was re-
cently developed as a powerful and flexible extension [10] for
collecting programming data within JetBrains IDEs.! The
tutorial will focus primarily on the practical aspects, provid-
ing participants with a comprehensive overview of the tool,
guidance on configuration options, and hands-on experience
to customize the tool for their specific research needs. To
demonstrate the functionality of the configured tool and the
nature of the data it collects, participants will engage in solv-
ing an in-IDE course designed in the recently introduced in-
IDE learning format [2]. This hands-on experience will pro-
vide an in-depth understanding of one potential application
of the KOALA tool, as well as highlight the opportunities
offered by in-IDE courses for programming education. More
importantly, the tutorial will equip participants with the
knowledge required to leverage the tool not only for in-IDE
course development but also for a wide range of research
studies conducted within JetBrains IDEs.

2. BACKGROUND

This section provides an overview of the KOALA tool, which
will be used in the tutorial. Additionally, it introduces the
in-IDE learning format, which will serve as a practical exam-
ple to demonstrate the data collection and the capabilities
of the tool.

ntelliJ IDEA: https://www.jetbrains.com/idea/, Py-
Charm: https://www.jetbrains.com/pycharm/, CLion:
https://www.jetbrains.com/clion/

https://doi.org/10.5281/zenodo.15870316

e e EEEE s s s ...
] ©8) csC_Kotlin_Course -~ Version control 1) Current File : & Q © ' researches.csv '
N 1
1
: : '
1

[course - [Main kt [Solution.kt [X Main.kt — | 1users.csv
— Yy S ——
package jetbrains.kotlin.course vt fun getGaneRules(Wor A6 ~ v o
9o~ U Kotiin Onboarding: Introduction 1/¢ @
o) “For example, if the w L.
> 8 Introduction inti i
S B s o it programmin 3 T 1.Hz\|~ hiu‘);’l:]l wa: the t‘lrtlm'srh'nnl? t5he =] @ activity data.csv
< m roblem? Where 1 - not helpful at all, 5 -
If you enter the lettff |P s . " . .
> 88 Chat oy very helpful. * @ Execution, Run:'Gradle: Tests in
> B2 Warm up . ‘ . .
"Good luck in the game P
. o5 Mastenming Advanced o1 w Kotlin_Onboarding_Course.Hang
o)
& Hangman 2 /1 v i it S 2 man.test
~ [DJkotlin fun isWon(complete: Boolean, a 04
B3 jetbrains.kotlin.course.har o5
// You will use this function
[X Mainkt
X Solution.kt fun isLost(complete: Boolean, . . .
2.Why did you decide to ask for a hint? *
> 8 Amost done Yl 2 document_data.csv
oo fun main " "
> 83 Last push > p ‘0 {, o My solution did not pass tests Kk
> 88 Feedback Survey / Uncomnent this code ot §|) nign’t know what to do next package
I DEIHHERCTHID jetbrains.kotlin.course.
1 was curious
" // (JOther - open question hangman
38 g 5 N
If you have chosen 'other', please write
your answer here.
i 1 : .
3) fileeditor_data.csv
3 pause next —
Focus on Solution.kt from Main .kt
Build Sync Build Output
. e " o . 173ms > ONg.opentestéj.AssertionFailedErron Create breakpoint : The method public fun generateNewUserWord(secret: S1 —
2 © Tests in 'CSC_Kotlin_Course.Hangman-task 1 sec, 172 m. =
k4 . (TR (P at org.jetbrains.acadeny. test.systen.core.MethodUtilsKt . filterByCondition(tethodUtils. kt:28) .
% e e at org.jetbrains.acadeny.test.systen.core.MethodUtilsKt. findMethod(MethodUtils. kt:35) =
T Ot oes (eNewUserord! ; at org.jetbrains.acadeny.test.systen.core.MethodUtilsKt. findMethod$default (i ol
@ Test suite ‘testGenerateNewUserWordimp 50 ms s
® " at org.jetbrains.acadeny. test.systen.core.models.classes. TestClass. findHetho 4) tool window_data.csv
~ ©[1BOOK,A,____, null 1error aoms at Test. testGeneratellewUserliondInpLenentation (Tests. it (RNANNRRUNURINUIN
Tl T AL 4 G N U at java.base/java.util.ArrayList.forEach(Arraylist. java Opened, Build Window
Q . P , BuU
> @ [21BOOK,A,_0O_, null 1 error 1ms at java.base/java.util.ArrayList.forEach(Arraylist.ja
> @ [3]BOOK, A, ___K, null 1 error 1ms at jdk.proxyl/jdk.proxyl.$Proxy2.stop(Unknown Source)
> @ [41BOOK, B,____ B___ 1error 1ms at worker.org.gradle.process. internal.worker . GradleWorkd
0} > @I[5]BOOK,B,_00_,BOO_ Terror 1ms at worker.org.gradle.process.internal.worker.GradleWorky
@ > @ [61BOOK, K, . _ K, null 1 error e ® Tests failed: 11, passed: 0 survey_data.csv
4

> @ Test suite 'testFunctions(TestMethod)' 2 ¢14 ms
0 Koflin_Onboarding_Tntroduction3T 5 Hangman 5 O task 5 Dsrc 5 main 5 Kotin 5 jetbrains 5 Kothn 5 Course s

Rangman > L% Solution.kt

Question, option 1 - FALSE

T 31 O LF OIF8 Zspaces o

Figure 1: Examples of data collected using KOALA: (1) activities performed in the IDE, such as running, debugging, etc., (2)
current student code, (3) opening, closing, and refocusing of files, (4) opened tool windows, and (5) survey data.

2.1 KOALA tool

The TaskTracker tool was previously introduced as a solu-
tion for tracking and collecting detailed data while studying
inside the IDE [10]. Specifically designed for use with Jet-
Brains IDEs, TaskTracker captures step-by-step code mod-
ifications and records a wide range of student actions, in-
cluding debugging, running programs, and copying or past-
ing code snippets. By collecting this detailed data, Task-
Tracker enables researchers to gain deeper insights into how
students approach problem-solving and programming tasks.
This makes the tool a valuable resource for conducting edu-
cational research, analyzing programming behavior, and un-
derstanding learning patterns. The insights gathered from
TaskTracker data contribute to the design of more effective
teaching strategies, curricula, and educational tools, thereby
enhancing programming education [13, 1, 9].

This tutorial presents an enhanced version of the TaskTracker
tool called KOALA [6], which incorporates significant im-
provements tailored for research purposes. The updated
version allows conducting controlled experiments directly
within the IDE. For example, it enables researchers to dy-
namically modify IDE settings while participants solve spe-
cific tasks, allowing for precise experimental conditions. Ad-
ditionally, the new version introduces a flexible configuration-
based approach instead of source-code modification, where
a set of configuration files define the tool’s behavior and the
experimental scenarios.

Finally, the data collected by the new version of the tool
is stored in a structured tabular format that ensures clar-

713

ity and consistency. An example of the collected data can
be found in Figure 1. Additionally, the tool supports data
conversion into the widely-used ProgSnap2 format [5], en-
hancing compatibility with existing research workflows.

2.2 In-IDE learning

The in-IDE learning format was recently introduced as an in-
novative approach to teaching programming directly within
professional IDEs [2]. This format integrates all compo-
nents of the learning process, including theoretical content,
quizzes, and programming exercises, into the IDE. Currently,
there are over 50 courses available in this format across
various programming languages, including Java, JavaScript,
Python, and C++4. The format’s emphasis on extensive
student interaction with the IDE and its diverse features
present a valuable opportunity to demonstrate the capabil-
ities of the KOALA tool.

3. TUTORIAL GOALS

The tutorial introduces the KOALA tool that allows track-
ing the code that the students are writing in the editor and
the IDE features they are using, serving both as a data col-
lection tool and a platform for controlled experiments within
the IDE. This tool can be useful for researchers who want
to study the educational process in granular detail. We will
show how to set up and deploy the tool, collect the data in
real time and then analyze it to find valuable insights by
letting participants solve programming problems in a prede-
fined in-IDE course.

3.1 Prior to the Conference
Ahead of the conference, all necessary materials and re-

sources will be gathered, organized, and made available through

a dedicated website. This approach will provide partici-
pants with convenient access to the content both during the
tutorial and afterward. Furthermore, a pre-survey will be
conducted among all registered participants. This survey
is designed to collect information about participants’ prior
knowledge of the topics and their specific expectations for
the session. The insights gained from this process will en-
able the tutorial to be adapted to better suit the unique
needs of the audience, ensuring an interactive and engaging
experience for all.

3.2 During the Conference
Our tutorial session will be an interactive session split into
four parts, outlined below:

In the first part, we will provide participants with
an overview of the in-IDE learning format and the
KOALA tool to establish a better context for the au-
dience. By the end of this section, participants will be
familiar with the framework for the upcoming practical
part.

. In the second part of the tutorial, we will set up the
KOALA tool together with the audience. We will show
all available features of the tool and how to customize
it for the research needs. As the output of this part,
the participants will have a set of configuration files
that can be used for future research or adapted for
new studies.

In the third part of the tutorial, we will gather learner
data while navigating through a pre-made in-IDE course
within the pre-configured environment described ear-
lier. As we complete course assignments, we will en-
gage with various LLM-powered features designed to
assist learners in overcoming challenges. As a result,
participants will obtain data that is ready for analysis.

In the final part of the workshop, we will download
the KOALA data, process it, and conduct a simple
analysis. Participants will emerge from this section
with a compiled dataset that includes all step-by-step
changes and IDE interactions during their problem-
solving sessions, along with the insights gathered. An
example of such data can be found in Figure 1. We will
also show a way how to convert the gathered data to
the popular ProgSnap2 [5] format to use for the future
analysis.

We will have a short break after each part.

4. ORGANIZERS AND PRESENTERS

Daniil Karol is a researcher at the Education Research group
at JetBrains Research.? His main research interests focus on
exploring new approaches to in-IDE learning and methods
for data collection during studies. He has over five years of

2Education Research at JetBrains Research: https://1p.
jetbrains.com/research/education/

714

programming experience, one and a half years of research
experience, and one year of teaching experience.

Ilya Vlasov® is a researcher at the Education Research group
at JetBrains Research.? His main research interests are in-
IDE learning, data visualization, and statistics. He has over
five years of programming experience, three years of research
experience, and one year of teaching experience.

Katsiaryna Dzialets? is a researcher at the Education Re-
search group at JetBrains Research.? Her main research
interests are generative Al in Education and in-IDE learn-
ing. She has four years of product management and product
research experience and more than five years of experience
in building EdTech products and projects.

Anna Potriasaeva® is a software developer at the Education
Research group at JetBrains Research.? Her main research
interests include in-IDE learning, generative Al in educa-
tion, and intelligent tutoring systems. She has over five
years of programming experience and one year of research
experience.

Anastasiia Birillo® is the head of the Education Research
group at JetBrains Research? and an external PhD student
in Computer Science at Utrecht University. Her main re-
search interests are in-IDE learning, intelligent tutoring sys-
tems, and generative Al. She has more than eight years of
programming experience, more than five years of teaching
experience, and about five years of research experience.

5. REFERENCES

[1] A. Birillo, E. Artser, A. Potriasaeva, 1. Vlasov,
K. Dzialets, Y. Golubev, I. Gerasimov, H. Keuning,
and T. Bryksin. One step at a time: Combining llms
and static analysis to generate next-step hints for
programming tasks. In Proceedings of the 24th Koli
Calling International Conference on Computing
FEducation Research, pages 1-12, 2024.
A. Birillo, M. Tigina, Z. Kurbatova, A. Potriasaeva,
I. Vlasov, V. Ovchinnikov, and I. Gerasimov. Bridging
education and development: Ides as interactive
learning platforms. In Proceedings of the 1st
ACM/IEEE Workshop on Integrated Development
FEnvironments, pages 53-58, 2024.
Y. Cao, L. Wang, Z. Zheng, and X. Tao. A tool for
non-intrusive and privacy-preserving developers’
programming activity data collection. In 2020 IEEE
44th Annual Computers, Software, and Applications
Conference (COMPSAC), pages 953-962. IEEE, 2020.
J. Edwards, K. Hart, R. Shrestha, et al. Review of
csedm data and introduction of two public csl
keystroke datasets. Journal of Educational Data
Mining, 15(1):1-31, 2023.

3Tlya Vlasov’s Google Scholar: https://scholar.google.
com/citations?user=FEHwSdAAAAAJ&h]l=en

4Katsiaryna Dzialets’s Google Scholar: https://scholar.
google.com/citations?user=Cgk-_5MAAAAJ&hl=en

°Anna Potriasaeva’s Google Scholar: https://scholar.
google.com/citations?hl=en&user=Dn2kmtAAAAAT

% Anastasiia Birillo’s Google Scholar: https://scholar.
google.com/citations?user=V6PGOnwAAAAJ&hl=en

(5]
(6]

(7]

[14]

D. Hovemeyer and K. Rivers. Progsnap 2: Towards a
standard representation for programming process data.
D. Karol, E. Artser, I. Vlasov, Y. Golubev,

H. Keuning, and A. Birillo. Koala: Customizable ide
data collection tool. 2025.

A. M. Kazerouni, S. H. Edwards, T. S. Hall, and C. A.
Shaffer. Deveventtracker: Tracking development
events to assess incremental development and
procrastination. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in
Computer Science Education, pages 104109, 2017.
M. Kolling, B. Quig, A. Patterson, and J. Rosenberg.
The bluej system and its pedagogy. Computer Science
Education, 13(4):249-268, 2003.

D. Lohr, H. Keuning, and N. Kiesler. You’re (not) my
type-can llms generate feedback of specific types for
introductory programming tasks? Journal of
Computer Assisted Learning, 41(1):¢13107, 2025.

E. Lyulina, A. Birillo, V. Kovalenko, and T. Bryksin.
Tasktracker-tool: A toolkit for tracking of code
snapshots and activity data during solution of
programming tasks. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education,
pages 495-501, 2021.

R. Minelli, A. Mocci, R. Robbes, and M. Lanza.
Taming the ide with fine-grained interaction data. In
2016 IEEE 24th International Conference on Program
Comprehension (ICPC), pages 1-10. IEEE, 2016.

M. Pirtel, M. Luukkainen, A. Vihavainen, and

T. Vikberg. Test my code. International Journal of
Technology Enhanced Learning 2, 5(3-4):271-283,
2013.

L. Roest, H. Keuning, and J. Jeuring. Next-step hint
generation for introductory programming using large
language models. In Proceedings of the 26th
Australasian Computing Education Conference, pages
144-153, 2024.

T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In Third International
Workshop on Predictor Models in Software
Engineering (PROMISE’07: ICSE Workshops 2007),
pages 9-9. IEEE, 2007.

715

